Pre-Quiz Review

Textbook Ch.1 - §7.1

CMPUT 296: Basics of Machine Learning

Logistics

1. "In-class" quiz Thursday Oct 8 (day after tomorrow!)

- Covers all material through section 7.1
- Quiz will be on eClass during a 24 hour period
- Random spot checks scheduled starting the following week
- Thought questions #2 also due October 8 2.
 - TQ#1 will be marked by the end of this week

Recap: Optimal Predictors

- Supervised learning problem: Learn a predictor $f : \mathcal{X} \to \mathcal{Y}$ from a dataset $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$
 - ${\mathcal X}$ is the set of <code>observations</code>, and ${\mathcal Y}$ is the set of <code>targets</code>
- Classification problems have discrete targets
- **Regression** problems have continuous targets
- Predictor performance is measured by the expected $cost(\hat{y}, y)$ of predicting \hat{y} when the true value is y
- An optimal predictor for a given distribution minimizes the expected cost
- Even an optimal predictor has some irreducible error.
 Suboptimal predictors have additional, reducible error

Recap: Linear Models

A linear predictor has the form $f(\mathbf{x}) =$

Traditional approach: Find the linear predictor that minimizes squared error on the dataset (aka Ordinary Least Squares)

Probabilistic approach:

- 1. Assume i.i.d. Gaussian noise: Y
- 2. Use MLE to estimate model from resulting parametric family $\mathcal{F} = \left\{ p(\cdot \mid \mathbf{x}) = \mathcal{N}(\mathbf{w}^T \mathbf{x}, \sigma^2) \mid \mathbf{w} \in \mathbb{R}^{d+1} \right\}$
- 3. Use the optimal predictor for the estimated model \mathbf{w}^* : $f^*(\mathbf{x}) = \mathbb{E}[Y \mid X = \mathbf{x}] = \mathbf{w}^T \mathbf{x}$

$$w_0 + w_1 x_1 + \dots + w_d x_d = \sum_{j=0}^d w_j x_j = \mathbf{w}^T \mathbf{x}$$

~
$$\mathcal{N}(\boldsymbol{\omega}^T \mathbf{x}, \boldsymbol{\sigma}^2)$$

- 1. Recap & Logistics
- 2. Quiz structure and details
- 3. Learning objectives walkthrough
 - **Clarifying questions** are the point of this class
- Other questions, clarifications 4.

Lecture Structure

- The quiz is **Thursday, October 8** via **eClass**
- There will be a **3 hour** time limit for the quiz
 - Starting at any time between 12:01am and 11:59pm Mountain time
 - It should *not* take anywhere near this long (I aimed for it to take 90 minutes)
- You may use a **single**, **handwritten cheat sheet** if you wish
- You may use a non-programmable calculator if you wish
- Weeks 1 through 5 are included \bullet
 - Everything up to and including Linear Regression

Quiz Details

Quiz Structure

- There will be 130 marks total
- There will be 3-4 multi-part questions
 - How you got your answer will be the bulk of the marks
- There will be **no coding** questions
 - But you may be asked to **execute a few steps** of an algorithm
- Every question will be based on the **learning objectives** that we are about to walk through
- There will be five marks for uploading a picture of your cheat sheet

Probability

- Define a random variable lacksquare
- \bullet random variables
- \bullet
- Define **independence** and conditional independence
- Define variance for continuous and discrete random variables

Define joint and conditional probabilities for continuous and discrete

Define probability mass functions and probability density functions

Define expectations for continuous and discrete random variables

Probability (2)

- Represent a problem probabilistically \bullet
- Compute joint and conditional probabilities \bullet
- Use a provided distribution
 - I will always remind you of the density expression for a given distribution
- Apply **Bayes' Rule** to derive probabilities

Estimators

- Define estimator lacksquare
- Define **bias** lacksquare
- Demonstrate that an estimator is/is not biased lacksquare
- **Derive an expression for the variance of an estimator**
- Define **consistency** •
- Demonstrate that an estimator is/is not consistent \bullet
- Justify when the use of a biased estimator is preferable \bullet

Estimators (2)

- Apply concentration inequalities to derive error bounds
- Apply the weak law of large numbers to derive error bounds
- Apply concentration inequalities to derive confidence bounds
- Define sample complexity
- Apply concentration inequalities to derive sample complexity bounds
- Explain when a given concentration inequality can/cannot be used

Optimization

- Represent a problem as an optimization problem
- Solve an analytic optimization problem by finding stationary points
- Define first-order gradient descent
- Define second-order gradient descent
- Define step size and adaptive step size
- Explain the role and importance of step sizes in first-order gradient descent
- Apply gradient descent to numerically find local optima

Parameter Estimation

- Describe the differences between MAP, MLE, and Bayesian parameter estimation
- Define the posterior, prior, likelihood, and model evidence distributions
- Represent a problem as parameter estimation
- Represent a problem as a formal prediction problem
- Define a conjugate prior

Prediction

- Represent a problem as a supervised learning problem
- Describe the differences between regression and classification
- Derive the optimal classification predictor for a given cost
- Derive the optimal regression predictor for a given cost
- Describe the difference between discriminative and generative models
- Describe the difference between irreducible and reducible error
- Describe the assumptions implied by a given error model