
Optimal Prediction cont. & 
Linear Regression

CMPUT 296: Basics of Machine Learning 
 

Textbook §6.2, §7.1



Logistics
1. "In-class" quiz Thursday Oct 8 (next week!) 

• Covers all material through section 7.1 

• Tuesday class will be a review 

• Quiz will be on eClass during a 24 hour period 

• Random spot checks scheduled starting the following week 

2. Thought questions #2 also due October 8 

• TQ#1 will be marked by the end of this week



Recap: Supervised Learning

• Supervised learning problem: Learn a predictor  from a 
dataset  

•  is the set of observations, and  is the set of targets 
• Classification problems have discrete targets 
• Regression problems have continuous targets

f : 𝒳 → 𝒴
𝒟 = {(xi, yi)}n

i=1

𝒳 𝒴



Recap: Optimal Prediction
Suppose we know the true joint distribution , and we want to use it 
to make predictions in a classification problem. 

The optimal classification predictor makes the best use of this function. 

As with the optimal estimator, we measure the quality of a predictor  by 
its expected cost . The optimal predictor minimizes . 

, 

where  is the cost for predicting  when the true value is , 
and  is a random variable.

p(x, y)

f(x)
𝔼[C] 𝔼[C]

𝔼[C] = ∫𝒳
∑
y∈𝒴

cost (f(x), y) p(x, y) dx

cost( ̂y, y) ̂y y
C = cost (f(X), Y)
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Cost Functions: Regression
• Two most common cost functions for regression: 

1. Squared error:   

2. Absolute error:  

• Squared error penalizes large errors more heavily than absolute error 

• Other possibilities that depend on the size of the target 

• E.g., percentage error: 

cost( ̂y, y) = ( ̂y − y)2

cost( ̂y, y) = ̂y − y

cost( ̂y, y) =
̂y − y

|y |



Deriving Optimal Regressor 
for Squared Error

 

 

 

 

𝔼[C] = ∫𝒳 ∫𝒴
cost (f(x), y) p(x, y) dy dx

= ∫𝒳 ∫𝒴
(f(x) − y)2 p(x, y) dy dx

= ∫𝒳
p(x)∫𝒴

(f(x) − y)2 p(y ∣ x) dy dx

= ∫𝒳
p(x)𝔼[C ∣ X = x] dx

𝔼[C ∣ X = x]

• Once again, we can directly 
optimize : 

  

where 

𝔼[C ∣ X = x]

f*(x) = arg min
̂y∈𝒴

g( ̂y)

g( ̂y) = ∫𝒴
( ̂y − y)2 p(y ∣ x) dy



 

 

 

 

g( ̂y) = ∫𝒴
( ̂y − y)2 p(y ∣ x) dy

∂g( ̂y)
∂ ̂y

= 2∫𝒴
( ̂y − y) p(y ∣ x) dy = 0

⟺ ∫𝒴
̂yp(y ∣ x) dy = ∫𝒴

yp(y ∣ x) dy

⟺ ̂y∫𝒴
p(y ∣ x) dy = ∫𝒴

yp(y ∣ x) dy

⟺ ̂y = ∫𝒴
yp(y ∣ x) dy

Deriving Optimal Regressor 
for Squared Error, cont.

= 1

= 𝔼[Y ∣ X = x]

So,  

f*(x) = arg min
̂y∈𝒴

g( ̂y)

= 𝔼[Y ∣ X = x] ∎



Generative Models

• The optimal prediction approach depends on (an estimate of)  

• Two approaches to learning : 

1. Discriminative: Learn  directly 

2. Generative: Learn  and ,  
and exploit  

• Question: What are the relative advantages of these two approaches?

p(y ∣ x)

p(y ∣ x)

p(y ∣ x)

p(x ∣ y) p(y)
p(y ∣ x) ∝ p(x ∣ y)p(y)



Irreducible Error
What is our expected squared error when we use the optimal predictor? 

, so 

 

 

f*(x) = 𝔼[Y ∣ X = x]

𝔼[C] = ∫𝒳
p(x)∫𝒴

(f*(x) − y)2 p(y ∣ X = x) dy dx

= ∫𝒳
p(x)∫𝒴

(𝔼[Y ∣ X = x] − y)2 p(y ∣ X = x) dy dx

= ∫𝒳
p(x)Var[Y ∣ X = x] dx



Reducible Error
What is our expected squared error when we use a suboptimal predictor? 

 

 

 

𝔼[C ∣ X] = 𝔼 [(f(x) − Y)2 X = x] = 𝔼 [(f(x)−𝔼[Y ∣ X = x] + 𝔼[Y ∣ X = x]−Y)2 X = x]
= 𝔼 [(f(x) − 𝔼[Y ∣ X = x])2 + 2 (f(x) − 𝔼[Y ∣ X = x]) (𝔼[Y ∣ X = x] − Y)

+(𝔼[Y ∣ X = x] − Y)2 X = x]
= 0

We'll take expectation again at the

end to get to 𝔼[C] = 𝔼[𝔼[C |X]]



Reducible Error: Middle Term is 0

 

 

 

 

𝔼 [(f(x) − 𝔼[Y ∣ X = x]) (𝔼[Y ∣ X = x] − Y) X = x]
= (f(x) − 𝔼[Y ∣ X = x]) 𝔼 [(𝔼[Y ∣ X = x] − Y) X = x]
= (f(x) − 𝔼[Y ∣ X = x]) (𝔼[Y ∣ X = x] − 𝔼[Y |X = x])
= (f(x) − 𝔼[Y ∣ X = x]) 0

= 0



Reducible Error
What is our expected squared error when we use a suboptimal predictor? 

 

 

 

 

 

𝔼[C ∣ X] = 𝔼 [(f(x) − Y)2 X = x] = 𝔼 [(f(x)−𝔼[Y ∣ X = x] + 𝔼[Y ∣ X = x]−Y)2 X = x]
= 𝔼 [(f(x) − 𝔼[Y ∣ X = x])2 + 2 (f(x) − 𝔼[Y ∣ X = x]) (𝔼[Y ∣ X = x] − Y)

+(𝔼[Y ∣ X = x] − Y)2 X = x]
= 𝔼 [(f(x) − 𝔼[Y ∣ X = x])2 + (𝔼[Y ∣ X = x] − Y)2 X = x]

𝔼 [𝔼[C |X]] = 𝔼 [(f(X) − 𝔼[Y ∣ X])2] + 𝔼 [(𝔼[Y ∣ X] − Y)2]
𝔼[C] = 𝔼 [(f(X) − f*(X))2] + 𝔼 [(f*(X) − Y)2]

Reducible error Irreducible error

= 0



Summary
• Supervised learning problem: Learn a predictor  from a dataset 

 

•  is the set of observations, and  is the set of targets 
• Classification problems have discrete targets 
• Regression problems have continuous targets 
• Predictor performance is measured by the expected  of predicting  

when the true value is  
• An optimal predictor for a given distribution minimizes the expected cost 
• Even an optimal predictor has some irreducible error. 

Suboptimal predictors have additional, reducible error

f : 𝒳 → 𝒴
𝒟 = {(xi, yi)}n

i=1

𝒳 𝒴

cost( ̂y, y) ̂y
y



Linear Predictors

A linear predictor is a function of the form 

  

• Predict a linear combination of weights  and features  

• Linear regression: finding the best parameters  

• Question: What criterion should we use to pick ?

f(x) = w0 + w1x1 + … + wdxd =
d

∑
j=0

wjxj = wTx

w x

w ∈ ℝd+1

w

Intercept feature x0 = 1



Suppose that our dataset  was drawn as follows: 

1.  

2.  

3.

𝒟 = {(xi, yi)}n
i=1

xi
i.i.d.∼ p(x)

ϵi
i.i.d.∼ 𝒩(0,σ2)

yi =
d

∑
j=0

ωjxij + ϵi

Gaussian Error Model


Y =
n

∑
j=0

ωjxij + ϵ

Y ∼ 𝒩(ωTx, σ2)

Question: what is the distribution of ?
Y



Linear Regression as 
Model Estimation

• We now have a parametric family of conditional models to select from: 

.  

• (Equivalently, need to select a parameter vector  that identifies 
a conditional model in the family) 

• Once we have selected a model, we can use it to make predictions 

• Question: How should we use an estimated model   for 
prediction?

ℱ = {p( ⋅ ∣ x) = 𝒩(wTx, σ2) ∣ w ∈ ℝd+1}
w ∈ ℝd+1

p(y ∣ x, w)



MLE for Linear Regression
 

 

 

wMLE = arg max
w∈ℝd+1

p(𝒟 ∣ w)

= arg max
w∈ℝd+1

n

∏
i=1

p(yi ∣ xi, w)

= arg max
w∈ℝd+1

ln (
n

∏
i=1

p(yi ∣ xi, w))
= arg max

w∈ℝd+1

n

∑
i=1

ln p(yi ∣ xi, w)

 

 

= arg min
w∈ℝd+1

−
n

∑
i=1

ln p(yi ∣ xi, w)

= arg min
w∈ℝd+1

−
n

∑
i=1

ln
1

2πσ2
exp (−

(yi − wTx)2

2σ2 )
𝒩(wTxi, σ2)(yi)

exp(a) = ea



MLE for Linear Regression cont.

 

 

 

wMLE = arg min
w∈ℝd+1

−
n

∑
i=1

ln
1

2πσ2
exp (−

(yi − wTx)2

2σ2 )
= arg min

w∈ℝd+1
−

n

∑
i=1 [−ln 2πσ2 −

(yi − wTx)2

2σ2 ]
= arg min

w∈ℝd+1

n

∑
i=1

ln 2πσ2 +
n

∑
i=1

(yi − wTx)2

2σ2

= arg min
w∈ℝd+1

n

∑
i=1

(yi − wTx)2

2σ2 Constant w.r.t. w

 = arg min
w∈ℝd+1

1
2σ2

n

∑
i=1

(yi − wTx)2

= arg min
w∈ℝd+1

n

∑
i=1

(yi − wTx)2 ∎

Constant w.r.t. w



Prediction with MLE Model
We have an estimated model of the process: ,  

where  

Question: How should we use this estimated model for prediction? 

• Use the optimal regression predictor assuming this is the correct model: 

  

Question: What is the expected value of  conditional on ?

Y ∼ 𝒩 (wT
MLEx, σ2)

wMLE = arg min
w∈ℝd+1

n

∑
i=1

(yi − wTx)2

f(x) = 𝔼[Y ∣ X = x]

Y X = x



Ordinary Least Squares

1. It makes the assumptions behind the process clear: 
• underlying linear relationship between  and  

• i.i.d. errors in  

• no errors in  

• noise (error term)  is a zero-mean Gaussian 

• noise  is independent of the features 

yi xi

yi

xi

ϵi

ϵi xi

2. It is a general approach: 

• A good objective for other 
distributions of  is 
not as obvious 

• But the MLE approach will 
work for any distribution

p(y ∣ x)

  

We just minimize the sum of squared errors on our dataset ! 

wMLE = arg min
w∈ℝd+1

n

∑
i=1

(yi − wTx)2

𝒟

Question: What are the advantages of doing the MLE derivation rather than just directly 
minimizing error on the dataset?



Summary
A linear predictor has the form  

Traditional approach: Find the linear predictor that minimizes squared error on the 
dataset (aka Ordinary Least Squares) 

Probabilistic approach:  
1. Assume i.i.d. Gaussian noise:  
2. Use MLE to estimate model from resulting parametric family 

 

3. Use the optimal predictor for the estimated model : 
 

f(x) = w0 + w1x1 + … + wdxd =
d

∑
j=0

wjxj = wTx

Y ∼ 𝒩(ωTx, σ2)

ℱ = {p( ⋅ ∣ x) = 𝒩(wTx, σ2) ∣ w ∈ ℝd+1}
w*

f*(x) = 𝔼[Y ∣ X = x] = wTx


