Optimal Prediction cont. &
| Inear Regression

CMPUT 296: Basics of Machine Learning



| ogistics

1. "In-class" quiz Thursday Oct 8 (next week!)
e Covers all material through section 7.1
* Juesday class will be a review

* Quiz will be on eClass during a 24 hour period

 Random spot checks scheduled starting the following week

2. Thought questions #2 also due October 8

o TQ#1 will be marked by the end of this week



Recap: Supervised Learning

» Supervised learning problem: Learn a predictor f : & — ¢ from a
dataset D = {(Xl-, yi)}’fl 1
=

» X is the set of observations, and % is the set of targets

* Classification problems have discrete targets
* Regression problems have continuous targets



Recap: Optimal Prediction

Suppose we know the true joint distribution p(X, y), and we want to use it
to make predictions In a classitication problem.

The optimal classification predictor makes the best use of this function.

As with the optimal estimator, we measure the quality of a predictor f(X) by
its expected cost [E| C|. The optimal predictor minimizes E|[C].

-[C] = J Z cost (f(X),y) p(X, V) dx,
L yey

where cost(y, y) is the cost for predicting ¥ when the true value is y,
and C = cost (f(X), Y ) is a random variable.
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Cost Functions: Regression

* [wO most common cost functions for regression:

1. Squared error: cost(y,y) = (y — y)2

2. Absolute error: cost(y,y) = [y —y |

e Squared error penalizes large errors more heavily than absolute error

e Other possibilities that depend on the size of the target

y—y
|y

~.g., percentage error: cost(y,y) =



Deriving Optimal Regressor
for Squared Error

=[] cost (f(x),y) p(x,y) dy dx

J? * Once again, we can directly
J (X) y (X y) dy Ax optimize ‘[C ‘ X = X]:

|
3 3 3

4 J*(x) = argmin g(y)
PeY
= p(X)J (fx) = )" p(y | %) dyldx where
Y
-[C | X =x] g@)=J (?—y)zp(y\X)dy

4

pX)E[C | X =x]dx

|
3



Deriving Optimal Regressor
for Squared Error, cont.

g@) = J (5—y)" p(y | x)dy

Y
(3
i(Ay) = ZJ (¥ —y)p(y | x)dy =0

Y 4 So,

yp(y | X) dy = yp(y | X) dy J*(x) = arg min g(y)

YEY

=ElY | X=Xx|] N
(y\X)cq yp(y\X)dy L] ]
<=>§= yp(y\X)dy = E[Y | X = x]
?




(Generative Models

» The optimal prediction approach depends on (an estimate of) p(y | X)
» Two approaches to learning p(y | X):
1. Discriminative: Learn p(y | X) directly

2. Generative: Learn p(X | y) and p(y),
and exploit p(y | X) & p(X | y)p(y)

* Question: \What are the relative advantages of these two approaches?



rreduciple Error

What is our expected squared error when we use the optimal predictor?

[*x) =E[Y | X =x], so

=[C] = J p(X)J (f*(x) — y)zp(y | X = x)dydx
X /4

= J p(x)
vA

— j p(x)Var[Y | X = x] dx
X




=[C ] X] =

Reducible Error

What is our expected squared error when we use a suboptimal predictor?

| (f0 - v)?

We'll take expectation again at the

end to getto E[C] = E[E[C | X]]

X=4

= |(f0 - ELY | X =x1)"+2

+(E[Y | X=x]-Y)’

(fx0)-

Y | X =x] +

[Y | X =x]-Y)°




Reducible Error: Middle Term i1s O

e

]
=

|
N

f(x)—E[Y | X =x]) (E[Y | X =x] — E[Y|X =x])

)

) - E[Y| X=x]) E |(E[Y | X=x]-¥) [X=x
)
)

o

(x) —E[Y | X = X]

]
=

|
-



Reducible Error

What is our expected squared error when we use a suboptimal predictor?

[C1XI=E|(fx) - ¥)" [ X =x| = E | (fo-E[Y | X = x] + E[Y | X =x]-¥)" [x =x

fx) —E[Y | X =x])" +2|(fx) — E[Y | X =x]) (E[Y | X =x] - )

=0

3l
+(E[Y | X=x]-Y) X=X]
il

/() — ELY | X =x1)"+ (E[Y | X =x] - V)" | X =x]

- [E[C|X]|

= |(f00 - By 1 x1)°| + E | (ELY 1 X1 - )

101 =|E l(f(X) _f*(X))Z] = l(f*(X) — Y>2]

Reducible error lrreducible error



Summary

Supervised learning problem: Learn a predictor f : & — % from a dataset

D = {2},

» X is the set of observations, and % is the set of targets

Classification problems have discrete targets
Regression problems have continuous targets

Predictor performance is measured by the expected cost(y, y) of predicting y
when the true value is y

An optimal predictor for a given distribution minimizes the expected cost

—ven an optimal predictor has some irreducible error.
Suboptimal predictors have additional, reducible error




| Inear Predictors

A linear predictor Is a function of the form

d
_ _ B
fX)=wyg+wx; + ... + wix,; = ; Wix; = W' X
J

- Intercept feature x, = 1

 Predict a linear combination of weights w and features X

d+1

* Linear regression: finding the best parameters w € |

* Question: \What criterion should we use to pick w?



(Gaussian Error Model

Suppose that our dataset I = {(Xi, yl-)}r,l , was drawn as follows:
]=

1.1.d.

1. X; ~ p(x)
Question: what is the distribution of Y?

2. ¢, "% (0,67

Q

o
Q



| Inear Regression as
\Vlodel Estimation

 We now have a parametric family of conditional models to select from:

F = {p(- | x) = N (WX, 6%) |wel d“}.

o (Equivalently, need to select a parameter vector w € | 4+1 that identifies
a conditional model in the family)

 Once we have selected a model, we can use it to make predictions

 Question: How should we use an estimated model p(y | X, w) for
orediction’?



VILE for Linear Regression

W\ E = arg max p(< | w) = arg min — Z Inp(y; | x;, w)
i=1

n
= arg max H p(y; | X;, w)
=1

n
= are max In | X, W
g max, (gp(yll , )>

= arg max Z Inp(y; | x;, W)
=1

n
= arg min — Zln
i=1

exp(a) = e



VILE for Linear Regression cont.

L 1 (y; — wix)?2 Constant w.r.t. w
- = arg min — Z In exp| —— >
weR*" ‘1 \/271-02 20
e [ ]y
. - (y; — W' X) _ S Z TN
_ _ _ 2 _ Vi = arg min (y: — W' X)
arg wglualzg | 21 [ In\/ 276 > weRdH 252 - z
| n n (y . WTX)2 . n
= arg min In\/ 270° l = arg min Z —wix)’ B
5 weRH! Z} \/ ZIJ 207 2 weRd+! 1 (yl )
1= 1= j—

n

= arg min
d+1
weR*T i1

(; - wa>\

20%

Constant w.r.t. w



Prediction with MLE Modael

\We have an estimated model of the process: Y ~ A (WK/”_EX, 62),

n
where WML E = aIg min 2 (yi — WTX)2
=1

Question: How should we use this estimated model for prediction?

 Use the optimal regression predictor assuming this is the correct model.

Jx) =E[Y | X =X]

Question: \What is the expected value of Y conditional on X = X7



Ordinary Least squares

WM E = alg min Z (yi — WTX)2
=1

We just minimize the sum of squared errors on our dataset !

Question: \What are the advantages of doing the MLE derivation rather than just directly
minimizing error on the dataset?
1. It makes the assumptions behind the process clear: 2. ltis a general approach:

 underlying linear relationship between y; and X

 Ii.d. errorsiny;

e NO errors in X;

* A good objective for other

distributions of p(y | X) is
not as obvious

* But the ML

= approach will

* noise (error term) €; is a zero-mean Gaussian work for any distribution

* Noise €; Is iIndependent of the features X;




Summary

d
A linear predictor has the form f(X) = wy + wix; + ... + w x,;, = Z WiX; = w!x
J=0

Traditional approach: Find the linear predictor that minimizes squared error on the
dataset (aka Ordinary Least Squares)

Probabilistic approach:

1. Assume i.i.d. Gaussian noise: Y ~ (a)TX, 62)
2. Use MLE to estimate model from resulting parametric family
F = {p(- | x) = (WX, 6%) | W€ IRd“}

3. Use the optimal predictor for the estimated model w™*:
X =E[Y|X=x]=wxX




