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Recap: Bayesian Estimation

p( f ∣ 𝒟) =
p(𝒟 ∣ f )p( f )

p(𝒟)

Posterior

Likelihood
Prior

Evidence

• Bayesian estimation: Estimating models & parameter 
using the posterior distribution 

• Prior and posterior distributions are over models, not 
over data 

• Conjugate priors make it possible to perform 
Bayesian updates analytically 

• But many models don't have conjugate priors 
• Point estimates: MAP, MLE, Bayes estimator 

• Conditional models: Predictions  can depend 
on observations

p(y ∣ x)



Outline

1. Recap & Logistics 

2. Supervised Prediction 

3. Optimal Prediction 

4. Irreducible vs. Reducible Error



Types of  
Machine Learning Problems

1. passive vs. active data collection 

2. i.i.d. vs. non-i.i.d. 

3. complete vs. incomplete observations



Supervised Prediction
In a supervised prediction problem, we learn a model based on a training 
dataset of observations and their corresponding targets, and then use the 
model to make predictions about new targets based on new observations. 

• Dataset:  

•  is the -th observation (or input or instance or sample) 

•  is the corresponding target 

•  is a -dimension vector (i.e., ) 

• The -th value of  is the -th feature

𝒟 = {(x1, y1), …, (xn, yn)}

xi ∈ 𝒳 i

yi ∈ 𝒴

xi = (xi1, xi2, …, xid) d 𝒳 = ℝd

j xi j



Dataset as Matrix

• Typically organize dataset into a 
 matrix  and -vector  

• One row for each observation 
• One column for each feature
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Regression
• A supervised learning problem can typically be classified as either a 

regression problem or a classification problem 

• Regression: Target values are continuous, e.g.  

• Our house price prediction example is a regression problem; we can extend 
it to have multiple features:

𝒴 = ℝ, 𝒴 = [0,∞)prediction problems: classification and regression. Generally speaking, we have a regression
problem when Y is continuous and a classification problem if Y is discrete. In regression
possible target set include Y = R or Y = [0, Œ). An example of a regression problem is
shown in Table 6.1.

size [sqft] age [yr] dist [mi] inc [$] dens [ppl/mi2] y

x1 1250 5 2.85 56,650 12.5 2.35
x2 3200 9 8.21 245,800 3.1 3.95
x3 825 12 0.34 61,050 112.5 5.10

Table 6.1: An example of a regression problem: prediction of the price of a house in a
particular region. Here, features indicate the size of the house (size) in square feet, the age
of the house (age) in years, the distance from the city center (dist) in miles, the average
income in a one square mile radius (inc), and the population density in the same area
(dens). The target indicates the price a house is sold at, e.g. in hundreds of thousands of
dollars.

In classification we construct a function that predicts discrete class labels; this function
is typically called a classifier. The cardinality of Y in classification problems is usually small,
e.g. Y = {healthy, diseased}. An example of a data set for classification with n = 3 data
points and d = 5 features is shown in Table 6.2.

Classification problems can be further subdivided into multi-class and multi-label prob-
lems. A multi-class problem consists of providing the single label for an input. For example,
for (simple) blood-type with Y = {A, B, AB, O}, a patient can only be labeled with one of
these labels. Within multi-class problems, if there are only two classes, it is called binary
classification, such as the example in Table 6.2. In multi-label, an input can be associated
with more than one label. An example of a multi-label problem is the classification of text
documents into categories such as {sports, medicine, travel, politics}. Here, a single docu-
ment may be related to more than one value in the set; e.g. an article on sports medicine.
The learned function can now return multiple outputs.

Typically, to make the outputs more consistent between these two settings, the output
for both multi-class and multi-label is an indicator vector. For m = |Y|, the prediction for
blood types might be [0 1 0 0] to indicate blood-type B and the prediction for four article
labels could be [1 1 0 0] if it is both an article pertaining to sports and medicine.

wt [kg] ht [m] T [¶C] sbp [mmHg] dbp [mmHg] y

x1 91 1.85 36.6 121 75 ≠1
x2 75 1.80 37.4 128 85 +1
x3 54 1.56 36.6 110 62 ≠1

Table 6.2: An example of a binary classification problem: prediction of a disease state for
a patient. Here, features indicate weight (wt), height (ht), temperature (T), systolic blood
pressure (sbp), and diastolic blood pressure (dbp). The class labels indicate presence of a
particular disease, e.g. diabetes. This data set contains one positive data point (x2) and two
negative data points (x1, x3). The class label shows a disease state, i.e. yi = +1 indicates
the presence while yi = ≠1 indicates absence of disease.
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Classification
Classification: Predict discrete class labels 

• Usually not that many labels, e.g.  
• Multi-label: A single input may be assigned multiple labels, e.g., 

categories from  
• Multi-class: Single label per input 

• Multi-class with two labels: binary classification 
• E.g., predicting disease state for a patient given weight, height, 

temperature, sistolic and diatolic blood pressure

𝒴 = {healthy, diseased}

𝒴 = {sports, politics, travel, medicine}

prediction problems: classification and regression. Generally speaking, we have a regression
problem when Y is continuous and a classification problem if Y is discrete. In regression
possible target set include Y = R or Y = [0, Œ). An example of a regression problem is
shown in Table 6.1.

size [sqft] age [yr] dist [mi] inc [$] dens [ppl/mi2] y

x1 1250 5 2.85 56,650 12.5 2.35
x2 3200 9 8.21 245,800 3.1 3.95
x3 825 12 0.34 61,050 112.5 5.10

Table 6.1: An example of a regression problem: prediction of the price of a house in a
particular region. Here, features indicate the size of the house (size) in square feet, the age
of the house (age) in years, the distance from the city center (dist) in miles, the average
income in a one square mile radius (inc), and the population density in the same area
(dens). The target indicates the price a house is sold at, e.g. in hundreds of thousands of
dollars.

In classification we construct a function that predicts discrete class labels; this function
is typically called a classifier. The cardinality of Y in classification problems is usually small,
e.g. Y = {healthy, diseased}. An example of a data set for classification with n = 3 data
points and d = 5 features is shown in Table 6.2.

Classification problems can be further subdivided into multi-class and multi-label prob-
lems. A multi-class problem consists of providing the single label for an input. For example,
for (simple) blood-type with Y = {A, B, AB, O}, a patient can only be labeled with one of
these labels. Within multi-class problems, if there are only two classes, it is called binary
classification, such as the example in Table 6.2. In multi-label, an input can be associated
with more than one label. An example of a multi-label problem is the classification of text
documents into categories such as {sports, medicine, travel, politics}. Here, a single docu-
ment may be related to more than one value in the set; e.g. an article on sports medicine.
The learned function can now return multiple outputs.

Typically, to make the outputs more consistent between these two settings, the output
for both multi-class and multi-label is an indicator vector. For m = |Y|, the prediction for
blood types might be [0 1 0 0] to indicate blood-type B and the prediction for four article
labels could be [1 1 0 0] if it is both an article pertaining to sports and medicine.

wt [kg] ht [m] T [¶C] sbp [mmHg] dbp [mmHg] y

x1 91 1.85 36.6 121 75 ≠1
x2 75 1.80 37.4 128 85 +1
x3 54 1.56 36.6 110 62 ≠1

Table 6.2: An example of a binary classification problem: prediction of a disease state for
a patient. Here, features indicate weight (wt), height (ht), temperature (T), systolic blood
pressure (sbp), and diastolic blood pressure (dbp). The class labels indicate presence of a
particular disease, e.g. diabetes. This data set contains one positive data point (x2) and two
negative data points (x1, x3). The class label shows a disease state, i.e. yi = +1 indicates
the presence while yi = ≠1 indicates absence of disease.
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Questions 

1. What might be an 
example of a multi-
label disease-state 
classification 
problem? 

2. How could we 
represent that in the 
matrix form?



Which Formulation to Use?
It's not always clear-cut whether to treat a problem as classification or regression. 

E.g., output space  
• Could be classification with three classes 
• Could be regression on  

Question: What considerations would make us choose one category or another? 
• Regression functions are often easier to learn (even for classification!) 
• If classes have no order (e.g., ), 

then regression will be based on faulty assumptions 
• If classes do have order (e.g., ) then classification will not 

be able to exploit that structure

𝒴 = {0,1,2}

[0,2]

{likes apples, likes bananas, likes oranges}

{Good, Better, Best}



Optimal Prediction
Suppose we know the true joint distribution , and we want to use it 
to make predictions in a classification problem. 

The optimal classification predictor makes the best use of this function. 

As with the optimal estimator, we measure the quality of a predictor  
by its expected cost . The optimal predictor minimizes . 

, 

where  is the cost for predicting  when the true value is , 
and  is a random variable.

p(x, y)

f(x)
𝔼[C] 𝔼[C]

𝔼[C] = ∫𝒳
∑
y∈𝒴

cost (f(x), y) p(x, y) dx

cost( ̂y, y) ̂y y
C = cost (f(X), Y)

Questions 

1. What could we 
mean by "best"? 

2. Why aren't we 
using MAP or 
MLE instead of 
expected cost?



Cost Functions: Classification
• A very common cost function for classification: 0-1 cost 

  

• No cost for the right answer; same cost for every wrong answer 
• Question: when might this be inappropriate? 

• Some wrong answers can be much more costly than others 
• E.g., in medical domain: 

• false positive: leads to an unnecessary test 
• false negative: leads to an untreated disease

cost( ̂y, y) = {0 if  ̂y = y,
1 if  ̂y ≠ y .

Y

-1

(No disease)

1 
(Has disease)

Ŷ

-1 
(No disease) 0 999

1 
(Has disease) 1 0



Optimal Classifier
  

• Can't actually achieve zero cost when doing multi-class classification 

•  has to output a single label for observation  

• But there might be instances with the same observations but 
different labels 

• i.e., in general  

• Question: Is this also true for multi-label classification?

𝔼[C] = ∫𝒳
∑
y∈𝒴

cost (f(x), y) p(x, y) dx

f(x) x

∀x : p(y ∣ x) ≠ 1

Multi-class: Single label per input

Multi-label: Set of labels per input



Deriving Optimal Classifier
 

 

 

𝔼[C] = ∫𝒳
∑
y∈𝒴

cost (f(x), y) p(x, y) dx

= ∫𝒳
∑
y∈𝒴

cost (f(x), y) p(y ∣ x)p(x) dx

= ∫𝒳
p(x) ∑

y∈𝒴

cost (f(x), y) p(y ∣ x) dx

= ∫𝒳
p(x)𝔼[C ∣ X = x] dx

• We can minimize 

  

    separately for each  (why?) 

• Proof: Suppose  is not optimal for a 
specific value  

• Then let

 

•  has lower expected cost at  and same 
expected cost at all other 

𝔼[C ∣ X = x] = ∑
y∈𝒴

cost (f(x), y) p(y ∣ x)

x

f †(x)
x0

f*(x) = {
f †(x) if x ≠ x0,
arg min ̂y∈𝒴 ∑y∈𝒴 cost( ̂y, y)p(y ∣ x0) if x = x0 .

f* x0
x

𝔼[C ∣ X = x]



Deriving Optimal Classifier 
for 0-1 Cost

   

 

 

 

   This is the Bayes risk classifier

f*(x) = arg min
̂y∈𝒴 ∑

y∈𝒴

cost( ̂y, y)p(y ∣ x) = arg min
̂y∈𝒴 ∑

y∈𝒴

cost( ̂y, y)p(y ∣ x)−1

= arg max
̂y∈𝒴

1 − ∑
y∈𝒴

cost( ̂y, y)p(y ∣ x)

= arg max
̂y∈𝒴 ∑

y∈𝒴
(1 − cost( ̂y, y)) p(y ∣ x)

= arg max
̂y∈𝒴 ∑

y∈𝒴,y≠ ̂y

0 ⋅ p(y ∣ x) + ∑
y∈𝒴,y= ̂y

1 ⋅ p(y ∣ x)

= arg max
̂y∈𝒴

p(y ∣ x) ∎


