Bayesian estimation &
Conditional Models

CMPUT 296: Basics of Machine Learning



| ogistics

 Assignment 1is due TODAY at 11:59pm
* Assignment 2 will be available tomorrow

* Thought Questions #2: Ch.4-6 are due October 8



Recap: Parameter estimation

« We are usually interested in predicting the value of unseen data X »+1 0ased on training data

D= {x,....x,}
e |nstead, we will want to choose a model f from a hypothesis space F#

« Where the data are generated according to some "true" model f*

o F is often parametric: its members identified by parameter values

* S0 choosing a model is equivalent to choosing a set of parameter values

* [wo approaches to parameter estimation:

JMAP = arg I]}laXp(f | &) = argmax p(D | f)p(f)

fes

JMLE = arg I]}laXp(@ | /)
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FPoiNt Estimates

« Suppose we have a dataset & that was generated by a model

fG-10%)eF =1/(-10)| 0 €R]

* A point estimate asks: What is the best single guess for the parameter”

. MLE: arg max p(< | 6)
0

. MAP: arg max p(@ | D)
0

» Estimate of 8 that has lowest expected error?



Bayes £stimator

The Bayes estimator is the point estimate that minimizes the posterior risk
c(6), where

c(0) = j £(0,0)p0 | D)do

F

The loss £(0, é’) expresses how "wrong" we are if we estimate é’ when the
true answer is 6.



Bayes Estimator for Squared Loss

When Z(6, 0) = (0 — 0)*:
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Question: How can we answer Pr(a < X, .| < b)?

1.
2.

3.

Bayesian Reasoning

MLE: F (b | Oig) — F (a | OuiLe)

MAP: F (b | Oa

Bayes optimal estimator: F’ (b | «95) — F (a | &

:>>—F(Cl‘(9|\/|A

)

3) ——

Bayesian: J [F (b|0) —F (a 9)] pO | D)do

F

=—[F(b\9)—F(a\9)

d

Question: Does this use of 0
make sense? \Why"




=xample: Poisson Data
with Gamma Prior

Example: Suppose dataset ¥ = {8,4,5,9,5,2} is drawn i.i.d. from an unknown
Poisson distribution, with parameter 4. We have a Gamma prior over 4; that is,

Ak=le=5
. 7 =
prior p(4) ST
A(Z;;lxi) —nA
and p(D | 4) = -
izlxl'!

To compute the Bayes estimator, we will need the full posterior p(4 | &), and not just

the joint p(D | A)p(4) x p(A | &). (Why?)

That means we need to compute the model evidence as well.



Poisson Data with Gamma Prior 2
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Conjugate Priors

« Gamma is a conjugate prior for the Poisson distribution

o Starting from prior Gamma(k, @) and assuming a Poission ,

n
1
after seeing Xy, ..., X, posterior is Gamma | k + Z o0 1/6
- nt

o Similarly, Beta is a conjugate prior for the Binomial distribution

» Starting from prior Beta(a, b) and assuming a Binomial , after
seeing ny successes and ny. failures, posterior is Beta (a + np, b+ nF)



Poisson Data Example:
Updating

Example: Suppose dataset ¥ = {8,4,5,9,5,2} is drawn i.i.d. from an unknown
Poisson distribution, with parameter 4, with prior Gamma(k = 3, 6 = 1):
D=1{8,4,5,9,5}
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Advanced:
Bayesian Methods with Nonconjugate Priors

e (Conjugate priors are very convenient, and you should use them wherever possible

* Question: \What can we do if the priors are not conjugate?

» In general, the integral to compute p(&J) will be intractable

* The usual technigue is variants of Monte Carlo sampling

» Basic idea: Generate a bunch of random samples ,, ..., 65 < p(@ | D)

1 R
: E,Z‘f(@") = E[f(0)]

* There are multiple technigues for generating random samples from an
unnormalized distribution g(6) « p(6)

« We can use one of these techniques to sample from p(< | 8)p(0) x p(6 | D)



Conditional Models

Question: How can we ask "With what probability Is ‘ an image of a cat” using
the models we have been learning”

 We want a different distribution depending on the image, and

 We want to be able to ask about multiple images
e (Glven an image described by pixels X, we want something like
Pr(Y = cat | X = x)
 Our models can be parameterized families of conditional distributions:

F = {f(y,x;0) | 0 € R¥)




VILE, MAP, Bayesian Prediction
for Conditional Models

Given a hypothesis space & = {p( - | -,0) | 6 € R} and a dataset & = {(X,-, yi)}?_

of opbserved features x; and their corresponding labels .

MLE: p(y | x) = p(y | X, O\ ) where Oy F = arg max Z Inp(y; | x;, 0)

MAP: p(y | x) = p(y | x, Oy_g) where Oyap = arg max In p(0)+ Y’ Inp(y, | x;,0)
v, .

Bayesian: p(y | x) = J p(y | x,0)p@| D)do Question: What
F happened to O57?




Summary

 [he MAP, MLE, and Bayes estimators for a model parameter are all point
estimates

» MAP and MLE can be computed without computing p(&)

 Conjugate priors make it possible to perform Bayesian updates analytically

 But many models don't have conjugate priors

 Conditional models allow us to change predictions based on input features
* MAP, MLE: simply plug the features into the point estimate model

 Bayesian: take posterior expected prediction over all models



