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Logistics

• Assignment 1 is due TODAY at 11:59pm  

• Assignment 2 will be available tomorrow 

• Thought Questions #2: Ch.4-6 are due October 8



Recap: Parameter Estimation
• We are usually interested in predicting the value of unseen data  based on training data 

 

• Instead, we will want to choose a model  from a hypothesis space  

• Where the data are generated according to some "true" model  

•  is often parametric: its members identified by parameter values 

• So choosing a model is equivalent to choosing a set of parameter values 

• Two approaches to parameter estimation: 

 

Xn+1
𝒟 = {x1, …, xn}

̂f ℱ

f*

ℱ

fMAP = arg max
f∈ℱ

p( f ∣ 𝒟) = arg max
f∈ℱ

p(𝒟 ∣ f )p( f )

fMLE = arg max
f∈ℱ

p(𝒟 ∣ f )
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Point Estimates
• Suppose we have a dataset  that was generated by a model 

 

• A point estimate asks: What is the best single guess for the parameter? 

• MLE:  

• MAP:  

• Estimate of  that has lowest expected error?

𝒟
f( ⋅ ∣ θ*) ∈ ℱ = {f( ⋅ ∣ θ) ∣ θ ∈ ℝ}

arg max
θ

p(𝒟 ∣ θ)

arg max
θ

p(θ ∣ 𝒟)

θ



Bayes Estimator

 

The loss  expresses how "wrong" we are if we estimate  when the 
true answer is .

The Bayes estimator is the point estimate that minimizes the posterior risk 
, where 

 

c( ̂θ)

c( ̂θ) = ∫ℱ
ℓ(θ, ̂θ)p(θ ∣ 𝒟) dθ

ℓ(θ, ̂θ) ̂θ
θ



Bayes Estimator for Squared Loss
When : 

 

 

 

 

ℓ(θ, ̂θ) = (θ − ̂θ)2

c( ̂θ) = ∫ℱ
(θ − ̂θ)2p(θ ∣ 𝒟) dθ

⟺
∂
∂ ̂θ

c( ̂θ) =
∂
∂ ̂θ ∫ℱ

(θ − ̂θ)2p(θ ∣ 𝒟) dθ

= ∫ℱ

∂
∂ ̂θ

(θ − ̂θ)2p(θ ∣ 𝒟) dθ

= 2∫ℱ
( ̂θ − θ)p(θ ∣ 𝒟) dθ

= 2 ̂θ∫ℱ
p(θ ∣ 𝒟) dθ − 2∫ℱ

θp(θ ∣ 𝒟) dθ

 

 

 

 

= 2 ̂θ − 2∫ℱ
θp(θ ∣ 𝒟) dθ ∎

∂
∂ ̂θ

ℓ( ̂θ) = 0

⟺ 0 = 2 ̂θ − 2∫ℱ
θp(θ ∣ 𝒟) dθ

⟺ ̂θ = ∫ℱ
θp(θ ∣ 𝒟) dθ

= 𝔼[θ ∣ 𝒟] ∎



Bayesian Reasoning
Question: How can we answer ? 

1. MLE:  

2. MAP:  

3. Bayes optimal estimator:  

4. Bayesian:  

                  

Pr(a ≤ Xn+1 ≤ b)

F (b ∣ θMLE) − F (a ∣ θMLE)
F (b ∣ θMAP) − F (a ∣ θMAP)

F (b ∣ θB) − F (a ∣ θB)

∫ℱ
[F (b ∣ θ) − F (a ∣ θ)] p(θ ∣ 𝒟) dθ

= 𝔼 [F(b ∣ θ) − F(a ∣ θ) 𝒟]

Question: Does this use of  
make sense?  Why?

θB



Example: Poisson Data  
with Gamma Prior

Example: Suppose dataset  is drawn i.i.d. from an unknown 
Poisson distribution, with parameter .  We have a Gamma prior over ; that is,  

prior  

and likelihood . 

To compute the Bayes estimator, we will need the full posterior , and not just 
the joint . (Why?) 

That means we need to compute the model evidence as well.

𝒟 = {8,4,5,9,5,2}
λ0 λ

p(λ) =
λk−1e− λ

θ

θkΓ(k)

p(𝒟 ∣ λ) =
λ(∑n

i=1 xi)e−nλ

∏n
i=1 xi!

p(λ ∣ 𝒟)
p(𝒟 ∣ λ)p(λ) ∝ p(λ ∣ 𝒟)



Poisson Data with Gamma Prior 2

 

 

p(𝒟) = ∫
∞

0
p(𝒟 ∣ λ)p(λ) dλ

= ∫
∞

0

λ(∑n
i=1 xi)e−nλ

∏n
i=1 xi!

⋅
λk−1e− λ

θ

θkΓ(k)
dλ

=
Γ (k + ∑n

i=1 xi)
θkΓ(k)∏n

i=1 xi!(n + 1
θ )(k+∑n

i=1 xi)

Fun fact: ∫
∞

0
xα−1e−βx dx =

Γ(α)
βα

 

 

 

i.e., a Gamma distribution with  

 and 

p(λ ∣ 𝒟) =
λ(∑n

i=1 xi)e−nλ

∏n
i=1 xi!

⋅
λk−1e− λ

θ

θkΓ(k)
⋅

θkΓ(k)∏n
i=1 xi!(n + 1

θ )(k+∑n
i=1 xi)

Γ (k + ∑n
i=1 xi)

=
λ((k+∑n

i=1 xi)−1) ⋅ e−λ(n+1/θ) ⋅ (n + 1
θ )(k+∑n

i=1 xi)

Γ (k + ∑n
i=1 xi)

=
λ((k+∑n

i=1 xi)−1) ⋅ e−λ(n+1/θ)

( 1
n + 1

θ )
(k+∑n

i=1 xi)
⋅ Γ (k + ∑n

i=1 xi)

k′ = k +
n

∑
i=1

xi θ′ =
θ

nθ + 1
=

1
n + 1/θ



Conjugate Priors
• Gamma is a conjugate prior for the Poisson distribution 

• Starting from prior  and assuming a Poission likelihood, 

after seeing , posterior is  

• Similarly, Beta is a conjugate prior for the Binomial distribution 

• Starting from prior  and assuming a Binomial likelihood, after 
seeing  successes and  failures, posterior is .

Gamma(k, θ)

x1, …, xn Gamma (k +
n

∑
i=1

si,
1

n + 1/θ )

Beta(a, b)
nT nF Beta (a + nT, b + nF)



Poisson Data Example: 
Updating

Example: Suppose dataset  is drawn i.i.d. from an unknown 
Poisson distribution, with parameter  with prior :

𝒟 = {8,4,5,9,5,2}
λ0 Gamma(k = 3, θ = 1)



Advanced: 
Bayesian Methods with Nonconjugate Priors

• Conjugate priors are very convenient, and you should use them wherever possible 

• Question: What can we do if the priors are not conjugate? 

• In general, the integral to compute  will be intractable 

• The usual technique is variants of Monte Carlo sampling 

• Basic idea: Generate a bunch of random samples  

  

• There are multiple techniques for generating random samples from an 
unnormalized distribution   

• We can use one of these techniques to sample from 

p(𝒟)

θ1, …, θR
i.i.d∼ p(θ ∣ 𝒟)

𝔼 [ 1
R

R

∑
r=1

f(θr)] = 𝔼[ f(θ)]

q(θ) ∝ p(θ)

p(𝒟 ∣ θ)p(θ) ∝ p(θ ∣ 𝒟)



Conditional Models
Question: How can we ask "With what probability is  an image of a cat" using 
the models we have been learning? 

• We want a different distribution depending on the image, and 

• We want to be able to ask about multiple images 

• Given an image described by pixels , we want something like 

 

• Our models can be parameterized families of conditional distributions: 

 

x

Pr(Y = cat ∣ X = x)

ℱ = {f(y, x; θ) ∣ θ ∈ ℝk}



MLE, MAP, Bayesian Prediction 
for Conditional Models

Given a hypothesis space  and a dataset  

of observed features  and their corresponding labels : 

MLE:  where  

MAP:  where  

Bayesian: 

ℱ = {p( ⋅ ∣ ⋅ , θ) ∣ θ ∈ ℝ} 𝒟 = {(xi, yi)}n
i=1

xi yi

p(y |x) = p(y ∣ x, θMLE) θMLE = arg max
θ ∑

i

ln p(yi ∣ xi, θ)

p(y |x) = p(y ∣ x, θMLE) θMAP = arg max
θ

ln p(θ)+∑
i

ln p(yi ∣ xi, θ)

p(y ∣ x) = ∫ℱ
p(y ∣ x, θ)p(θ ∣ 𝒟) dθ Question: What 

happened to ?θB



Summary
• The MAP, MLE, and Bayes estimators for a model parameter are all point 

estimates 

• MAP and MLE can be computed without computing  

• Conjugate priors make it possible to perform Bayesian updates analytically 

• But many models don't have conjugate priors 

• Conditional models allow us to change predictions based on input features 

• MAP, MLE: simply plug the features into the point estimate model 

• Bayesian: take posterior expected prediction over all models 

p(𝒟)


