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Logistics

Reminders: 
• Thought Question 1 due TODAY, September 17, by 11:59pm 

• To be handed in via eClass 
• Assignment 1 (due Thursday, September 24) 

Tutorial: 
• Python tutorial from yesterday is available on eClass



Recap: Estimators

• An estimator is a random variable representing a procedure for estimating 
the value of an unobserved quantity based on observed data 

• Concentration inequalities let us bound the probability of a given 
estimator being at least  from the estimated quantity 

• An estimator is consistent if it converges in probability to the estimated 
quantity
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Recap: Sample Complexity
• Sample complexity is the number of samples needed to attain a desired 

error bound  at a desired probability  

• The mean squared error of an estimator decomposes into bias (squared) 
and variance 

• Using a biased estimator can have lower error than an unbiased estimator 

• Bias the estimator based some prior information 

• But this only helps if the prior information is correct 

• Cannot reduce error by adding in arbitrary bias

ϵ 1 − δ



Outline

1. Recap & Logistics 

2. Optimization by Gradient Descent 

3. Multivariate Gradient Descent 

4. Adaptive Step Sizes 

5. Optimization Properties



Optimization
We often want to find the argument  that minimizes an objective function   

  

Example: Using linear regression to fit a dataset  

• Estimate the targets by  

• Each vector  specifies a particular  

•
Objective is the total error 
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Stationary Points
• Recall that every minimum of an everywhere-differentiable function  

must* occur at a stationary point:  A point at which  

✴ Question: What is the exception? 

• However, not every stationary point is a minimum 

• Every stationary point is either: 
• A local minimum 
• A local maximum 
• A saddlepoint 

• The global minimum is either a local minimum, or a boundary point

c(w)
c′ (w) = 0

Local Minima

Global Minima

Saddlepoint

Global Minimum



Numerical Optimization
• So a simple recipe for optimizing a function is to find its stationary points; 

one of those must be the minimum (as long as domain is unbounded) 

• Question: Why don't we always just do that? 

• We will almost never be able to analytically compute the minimum of the 
functions that we want to optimize 

✴ (Linear regression is an important exception) 

• Instead, we must try to find the minimum numerically 

• Main techniques: First-order and second-order gradient descent



Taylor Series

 
• Intuition: Following tangent line of the function approximates how it changes 

• i.e., following a function with the same first derivative 
• Following a function with the same first and second derivatives is a better 

approximation; with the same first, second, third derivatives is even better; etc.

Definition: A Taylor series is a way of approximating a function  in a small 
neighbourhood around a point : 
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Second-Order Gradient Descent 
(Newton-Raphson Method)

1. Approximate the target function with a 
second-order Taylor series around the 
current guess : 

 

2. Find the stationary point of the approximation 

  
3. If the stationary point of the approximation is 

a (good enough) stationary point of the 
objective, then stop.  Else, goto 1.
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(First-Order) Gradient Descent
• We can run Newton-Raphson whenever we have access to both the 

first and second derivatives of the target function 
• Often we want to only use the first derivative (why?) 
• First-order gradient descent: Replace the second derivative with a 

constant  (the step size) in the approximation: 

  

  

• By exactly the same derivation as before: 
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Partial Derivatives
• So far: Optimizing univariate function  
• But actually: Optimizing multivariate function  

•  is typically h u g e  (  is not uncommon) 
• First derivative of a multivariate function is a vector of partial derivatives 

c : ℝ → ℝ
c : ℝd → ℝ

d d ≫ 10,000

Definiton:  

The partial derivative   

of a function  at  with respect to  is , where 
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Gradients
The multivariate analog to a first derivative is called a gradient. 

Definition: 
The gradient  of a function  at  is a vector of all the 
partial derivatives of  at : 
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Multivariate Gradient Descent

 

• Notice the  subscript on  

• We can choose a different  for each iteration 

• Indeed, for univariate functions, Newton-Raphson can be understood as first-

order gradient descent that chooses a step size of  at each iteration. 

• Choosing a good step size is crucial to efficiently using first-order gradient descent

First-order gradient descent for multivariate functions  is just: 
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t η
ηt

ηt =
1

c′ ′ (wt)



(a) Step-size too small (b) Step-size too big (c) Adaptive step-size

Adaptive Step Sizes

• If the step size is too small, gradient descent will "work", but take forever 
• Too big, and we can overshoot the optimum 

• Ideally, we would choose  

• But that's another optimization! 

• There are some heuristics that we can use to adaptively guess good values for 

ηt = arg min
η∈ℝ+

c (wt − η∇c(wt))

ηt



Line Search
A simple heuristic: line search 

1. Try some largest-reasonable step size 
 

2. Is ? 
If yes,  

3. Otherwise, try    
(for ) and goto 2

η(0)
t = ηmax

c (wt − η(s)
t ∇c(wt)) < c(wt)

wt+1 ← wt − η(s)
t ∇c(wt)

η(s+1)
t = τη(s)

t
τ < 1

Intuition: 

• Big step sizes are better so long as 
they don't overshoot 

• Try a big step size!  If it increases 
the objective, try a smaller one. 

• Keep trying smaller ones until you 
decrease the objective; then start 
iteration  from  again. 

• Typically 

t + 1 ηmax

τ ∈ [0.5,0.9]



Optimization Properties
1. Maximizing  is the same as minimizing :  

  

2. Convex functions have a global minimum at every stationary point 

 

3. Identifiability: Sometimes we want the actual global minimum; other times 
we want a good-enough minimizer (i.e., local minimum might be OK). 

4. Equivalence under constant shifts: Adding, subtracting, or multiplying by a 
positive constant does not change the minimizer of a function: 

c(w) −c(w)
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Summary
• We often want to find the argument  that minimizes an objective function  : 

  

• Every interior minimum is a stationary point, so check the stationary points 
• Stationary points usually identified numerically 

• Typically, by gradient descent 
• Choosing the step size is important for efficiency and correctness 

• Common approach: Adaptive step size 
• E.g., by line search

w* c
w* = arg min

w
c(w)


