Optimization

CMPUT 296: Basics of Machine Learning

Textbook §4.1-4.4

Logistics

Reminders:

- Thought Question 1 due TODAY, September 17, by 11:59pm
 - To be handed in via eClass
- Assignment 1 (due Thursday, September 24)

Tutorial:

• Python tutorial from yesterday is available on eClass

Recap: Estimators

- An **estimator** is a random variable representing a procedure for estimating the value of an unobserved quantity based on observed data
- Concentration inequalities let us bound the probability of a given estimator being at least ϵ from the estimated quantity
- An estimator is consistent if it converges in probability to the estimated quantity

Recap: Sample Complexity

- Sample complexity is the number of samples needed to attain a desired error bound ϵ at a desired probability $1-\delta$
- The mean squared error of an estimator decomposes into bias (squared) and variance
- Using a biased estimator can have lower error than an unbiased estimator
 - Bias the estimator based some prior information
 - But this only helps if the prior information is correct
 - Cannot reduce error by adding in arbitrary bias

Outline

- 1. Recap & Logistics
- 2. Optimization by Gradient Descent
- 3. Multivariate Gradient Descent
- 4. Adaptive Step Sizes
- 5. Optimization Properties

Optimization

We often want to find the argument w^* that minimizes an objective function c

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} c(\mathbf{w})$$

Example: Using linear regression to fit a dataset $\{(x_i, y_i)\}_{i=1}^n$

- Estimate the targets by $\hat{y} = f(x) = w_0 + w_1 x$
- Each vector ${\bf w}$ specifies a particular f
- Objective is the **total error** $c(\mathbf{w}) = \sum_{i=1}^{n} (f(x_i) y_i)^2$

Stationary Points

- Recall that every minimum of an everywhere-differentiable function c(w) must* occur at a **stationary point**: A point at which c'(w) = 0
 - * Question: What is the exception?

- However, not every stationary point is a minimum
- Every stationary point is either:
 - A local minimum
 - A local maximum
 - A saddlepoint

• The global minimum is either a local minimum, or a boundary point

Numerical Optimization

- So a simple recipe for optimizing a function is to find its stationary points; one of those must be the minimum (as long as domain is unbounded)
 - Question: Why don't we always just do that?
- We will *almost never* be able to **analytically** compute the minimum of the functions that we want to optimize
 - * (Linear regression is an important exception)
- Instead, we must try to find the minimum numerically
- Main techniques: First-order and second-order gradient descent

Taylor Series

Definition: A **Taylor series** is a way of approximating a function c in a small neighbourhood around a point a:

$$c(w) \approx c(a) + c'(a)(w - a) + \frac{c''(a)}{2}(w - a)^2 + \dots + \frac{c^{(k)}(a)}{k!}(w - a)^k$$
$$= c(a) + \sum_{i=1}^k \frac{c^{(i)}(a)}{i!}(w - a)^i$$

- Intuition: Following tangent line of the function approximates how it changes
 - i.e., following a function with the same first derivative
 - Following a function with the same first and second derivatives is a better approximation; with the same first, second, third derivatives is even better; etc.

Second-Order Gradient Descent (Newton-Raphson Method)

1. Approximate the target function with a second-order Taylor series around the current guess w_t :

$$\hat{c}(w) = c(w_t) + c'(w_t)(w - w_t) + \frac{c''(w_t)}{2}(w - w_t)^2$$

2. Find the stationary point of the approximation

$$w_{t+1} \leftarrow w_t - \frac{c'(w_t)}{c''(w_t)}$$

3. If the stationary point of the approximation is a (good enough) stationary point of the objective, then stop. Else, goto 1.

$$0 = \frac{d}{dw} \left[c(a) + c'(a)(w - a) + \frac{c''(a)}{2}(w - a)^2 \right]$$
$$= c'(a) + 2\frac{c''(a)}{2}w - 2\frac{c''(a)}{2}a$$
$$= c'(a) + c''(a)(w - a)$$

$$\iff$$
 $-c'(a) = c''(a)(w - a)$

$$\iff (w - a) = -\frac{c'(a)}{c''(a)}$$

$$\iff w = a - \frac{c'(a)}{c''(a)}$$

(First-Order) Gradient Descent

- We can run Newton-Raphson whenever we have access to both the first and second derivatives of the target function
- Often we want to only use the first derivative (why?)
- First-order gradient descent: Replace the second derivative with a $\frac{1}{\eta}$ (the step size) in the approximation:

$$\hat{c}(w) = c(w_t) + c'(w_t)(w - w_t) + \frac{c''(w_t)}{2}(w - w_t)^2$$

$$\hat{c}(w) = c(w_t) + c'(w_t)(w - w_t) + \frac{1}{2\eta}(w - w_t)^2$$

By exactly the same derivation as before:

$$w_{t+1} \leftarrow w_t - \eta c'(w_t)$$

Partial Derivatives

- So far: Optimizing univariate function $c:\mathbb{R}\to\mathbb{R}$
- But actually: Optimizing multivariate function $c: \mathbb{R}^d
 ightarrow \mathbb{R}$
 - d is typically H U G E ($d \gg 10,000$ is not uncommon)
- First derivative of a multivariate function is a vector of partial derivatives

Definition:

The partial derivative
$$\frac{\partial f}{\partial x_i}(x_1, ..., x_d)$$

of a function $f(x_1, ..., x_d)$ at $x_1, ..., x_d$ with respect to x_i is $g'(x_i)$, where

$$g(y) = f(x_1, ..., x_{i-1}, y, x_{i+1}, ..., x_d)$$

Gradients

The multivariate analog to a first derivative is called a gradient.

Definition:

The gradient $\nabla f(\mathbf{x})$ of a function $f: \mathbb{R}^d \to \mathbb{R}$ at $\mathbf{x} \in \mathbb{R}^d$ is a vector of all the partial derivatives of f at \mathbf{x} :

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial_{x_1}}(\mathbf{x}) \\ \frac{\partial f}{\partial_{x_2}}(\mathbf{x}) \\ \vdots \\ \frac{\partial f}{\partial_{x_d}}(\mathbf{x}) \end{bmatrix}$$

Multivariate Gradient Descent

First-order gradient descent for multivariate functions $c: \mathbb{R} \to \mathbb{R}$ is just:

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \eta_t \nabla c(\mathbf{w}_t)$$

- Notice the t-subscript on η
- We can choose a different η_t for each iteration
 - Indeed, for univariate functions, Newton-Raphson can be understood as first-order gradient descent that chooses a step size of $\eta_t = \frac{1}{c''(w_t)}$ at each iteration.
- Choosing a good step size is crucial to efficiently using first-order gradient descent

Adaptive Step Sizes

- If the step size is too small, gradient descent will "work", but take forever
- Too big, and we can overshoot the optimum
- . Ideally, we would choose $\eta_t = \arg\min_{\eta \in \mathbb{R}^+} c \left(\mathbf{w}_t \eta \, \nabla c(\mathbf{w}_t)\right)$
 - But that's another optimization!
- There are some heuristics that we can use to **adaptively** guess good values for η_t

Line Search

A simple heuristic: line search

- 1. Try some largest-reasonable step size $\eta_t^{(0)} = \eta_{\text{max}}$
- 2. Is $c\left(w_t \eta_t^{(s)} \nabla c(w_t)\right) < c(w_t)$?

 If yes, $w_{t+1} \leftarrow w_t \eta_t^{(s)} \nabla c(w_t)$
- 3. Otherwise, try $\eta_t^{(s+1)} = \tau \eta_t^{(s)}$ (for $\tau < 1$) and goto 2

Intuition:

- Big step sizes are better so long as they don't overshoot
- Try a big step size! If it increases the objective, try a smaller one.
- Keep trying smaller ones until you decrease the objective; then start iteration t+1 from η_{\max} again.
- Typically $\tau \in [0.5,0.9]$

Optimization Properties

1. Maximizing c(w) is the same as minimizing -c(w):

$$\operatorname{arg\,max} c(w) = \operatorname{arg\,min} - c(w)$$

2. Convex functions have a global minimum at every stationary point

$$c$$
 is convex $\iff c(t\mathbf{w}_1 + (1-t)\mathbf{w}_2) \le tc(\mathbf{w}_1) + (1-t)c(\mathbf{w}_2)$

- 3. **Identifiability:** Sometimes we want the actual **global minimum**; other times we want a good-enough minimizer (i.e., **local minimum** might be OK).
- 4. **Equivalence under constant shifts:** Adding, subtracting, or multiplying by a positive constant **does not change** the minimizer of a function:

$$\arg\min_{w} c(w) = \arg\min_{w} c(w) + k = \arg\min_{w} c(w) - k = \arg\min_{w} kc(w) \quad \forall k \in \mathbb{R}^{+}$$

Summary

• We often want to find the argument w^* that minimizes an objective function c:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} c(\mathbf{w})$$

- Every interior minimum is a stationary point, so check the stationary points
- Stationary points usually identified numerically
 - Typically, by gradient descent
- Choosing the step size is important for efficiency and correctness
 - Common approach: Adaptive step size
 - E.g., by line search