Optimization

CMPUT 296: Basics of Machine Learning



| ogistics

Reminders:
 Thought Question 1 due TODAY, September 17, by 11:59pm
* 0 be handed in via eClass
* Assignment 1 (due Thursday, September 24)

Tutorial:
e Python tutorial from yesterday is available on eClass



Recap: estimators

* An estimator is a random variable representing a procedure for estimating
the value of an unobserved quantity based on observed data

* Concentration inequalities let us bound the probability of a given
estimator being at least € from the estimated quantity

* An estimator is consistent if it converges in probability to the estimated
quantity




Recap: Sample Complexity

Sample complexity is the number of samples needed to attain a desired
error bound € at a desired probability 1 — o

The mean squared error of an estimator decomposes into bias (squared)
and variance

Using a biased estimator can have lower error than an unbiased estimator

e Bias the estimator based some prior information
* But this only helps if the prior information is correct

* (Cannot reduce error by adding Iin arbitrary bias



a &~ Wb

. Recap & Logistics

Outline

Optimization by Gradient Descent

Multivariate Gradient Descent

Adaptive Step Sizes

Optimization

Properties



Optimization

We often want to find the argument w™ that minimizes an objective function ¢

wW* = arg min c(w)
W

Example: Using linear regression to fit a dataset {(xl-, yl-)}l,/l |
=

» Estimate the targets by y = f(x) = w, + w;x

» Each vector w specifies a particular f

n
Objective is the total error c(w) = Z (f(x) — yl-)2
i=1




Stationary Points

Recall that every minimum of an everywhere-differentiable function c(w)
must* occur at a stationary point: A point at which ¢'(w) = 0

* Question: \What is the exception? J\

Local Minima
However, not every stationary point iIs a minimum

Saddlepo_int _

—very stationary point Is either:
 Alocal minimum

 Alocal maximum

A saddlepoint

Global Minimum

The global minimum is either a local minimum, or a boundary point



Numerical Optimization

SO a simple recipe for opt'mzmg a function is to find its stationary points;
one of those must be the minimum (as long as domain is unbounded)

e Question: \Why don't we always just do that?

We will almost never be able to analytically compute the minimum of the
functions that we want to optimize

* (Linear regression is an important exception)
Instead, we must try to find the minimum numerically

Main technigues: First-order and second-order gradient descent



Taylor Series

Definition: A Taylor series is a way of approximating a function ¢ in a small
neighbourhood around a point a;:

// (k)
c(w) & c(a) + c@)(w — a) + - ;a) (W= a) + e +— k('“)

D
—c(a)+z ( )(w—a)i

(w—a)'

* [ntuition: Following tangent line of the function approximates how It changes
e |.e., following a function with the same first derivative

e Following a function with the same first and second derivatives is a better
approximation; with the same first, second, third derivatives is even better; etc.




Second-Order Gradient Descent
(Newton-Raphson Method)

1. Approximate the target function with a d , c"(a) 2]
0=— + —a) —
second-order Taylor series around the dw cla) +cla)w —a) 2 W —a)
current guess w. _ @)+ 2 c(a) , c’(a)
C”(Wt) = Cc\ad > w 2 a

cw) =c(w,) + c'(w)(w —w,) + (W — wt)2
2 =c'(a) + c"(a)(w—a)

2. FInd the stationary point of the approximation

<~ ——clla)=c"(a)w—a)

¢'(w, |
Wil T W T c’'(w,) &= (w—a)=— c(a)
[ C”(Cl)
3. If the stationary point of the approximation is B c'(a)
. | = w=a-—
a (good enough) stationary point of the c"(a)

objective, then stop. Else, goto 1.



(First-Order) Gradient Descent

We can run Newton-Raphson whenever we have access to both the
first and second derivatives of the target function

Often we want to only use the first derivative (why?)

First-order gradient descent: Replace the second derivative with a

1
constant — (the step size) in the approximation:
"
X | C”(Wt) ,
c(w) =cw) +c’w)(w — w) > (w—w,)
|
cw) =cw) +c'w)(w — w4 o (W — wt)2

Sy exactly the same derivation as before:

Wi < w,—nc'(wy)




Partial Derivatives

« So far: Optimizing univariate function ¢ : R — |

d

— |

« But actually: Optimizing multivariate function ¢ : |

e distypicalyH U G E (d > 10,000 is not uncommon)

* First derivative of a multivariate function is a vector of partial derivatives

Definiton:

0
he partial derivative a—f(xl, ey X)
Aj

of a function f(xy, ..., x;) at x;, ..., X, with respect to x; is g'(x;), where

g(y) =f(X1, o i 15 Yo Xip 1 ""xa’)




(Gradients

The multivariate analog to a first derivative Is called a gradient.

Definition:

partial derivatives of f at X:

The gradient Vf(x) of a function f : | d |

VAX) = | %

at X € |

d IS a vector of all the




Multivariate Gradient Descent

=irst-order gradient descent for multivariate functions ¢ : R — R is just:

Wit = We 0 Ve(w)

 Notice the tm

» We can choose a different #, for each iteration

* |ndeed, for univariate functions, Newton-Raphson can be understood as first-

1
order gradient descent that chooses a step size of 17, = at each iteration.

C”(Wt)

 (Choosing a good step size is crucial to efficiently using first-order gradient descent



Adaptive Step Sizes

fiw)

w’ w

(a) Step-size too small

f the step size is too small, gradient descent will "work", but take forever

Too big, and we can overshoot the optimum

[deally, we would choose #, = arg min ¢ (Wt /| Vc(wt))
neR™

e But that's another optimization!

There are some heuristics that we can use to adaptively guess good values for 7,



| INne Search

A simple heuristic: line search

1. Try some largest-reasonable step size

0) __
ﬂt( ) = Hmax

2. Isc (wt — nt(S)Vc(wt)) < c(w,)?
f yes, w,, | < w, — nt(S)Vc(wt)

3. OtherWise, try },]t(S-l-l) — T;/]t(s)

(for 7 < 1) and goto 2

Intuition:

e Big step sizes are better so long as
they don't overshoot

* [ry abig step size! If it increases
the objective, try a smaller one.

e Keep trying smaller ones until you
decrease the objective; then start

teration £ + 1 from 1y @gain.

» Typically 7 € [0.5,0.9]



Optimization Properties

1. Maximizing c(w) is the same as minimizing —c(w):

arg max c(w) = arg min — c(w)

2. Convex functions have a global minimum at every stationary point
cis convex <= c(tw; + (1 — HwW,) < te(w;) + (1 — Hc(w,)

3. ldentifiability: Sometimes we want the actual global minimum; other times
we want a good-enough minimizer (i.e., local minimum might be OK).

4, Equivalence under constant shifts: Adding, subtracting, or multiplying by a
positive constant does not change the minimizer of a function:

arg min c(w) = arg min c(w)+k = arg min c(w)—k = arg min kc(w) Vk € RT



Summary

We often want to find the argument w* that minimizes an objective function c:

w* = arg min c(w)
W

—very interior minimum is a stationary point, so check the stationary points
Stationary points usually identified numerically

* Typically, by gradient descent

Choosing the step size is important for efficiency and correctness

o Common approach: Adaptive step size

 E.g., by line search



