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Logistics

Reminders: 
• Thought Question 1 (due Thursday, September 17) 
• Assignment 1 (due Thursday, September 24)



Recap

• The variance  of a random variable  is its expected squared 
distance from the mean 

• An estimator is a random variable representing a procedure for estimating 
the value of an unobserved quantity based on observed data 

• Concentration inequalities let us bound the probability of a given 
estimator being at least  from the estimated quantity 

• An estimator is consistent if it converges in probability to the estimated 
quantity

Var[X] X

ϵ



When to Use Chebyshev, 
When to Use Hoeffding?

Popoviciu's inequality: If , then  

Hoeffding's inequality:   

Chebyshev's inequality:  

• Hoeffding's inequality gives a tighter bound*, but it can only be used on bounded random variables 

✴
whenever  

✴ E.g., if , then whenever  

• Chebyshev's inequality can be applied even for unbounded variables 
• or for bounded variables with known, small 
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Sample Complexity

 

• We want sample complexity to be small (why?) 

• Sample complexity is determined by: 
1. The estimator itself 

• Smarter estimators can sometimes improve sample complexity 
2. Properties of the data generating process 

• If the data are high-variance, we need more samples for an accurate estimate 
• But we can reduce the sample complexity if we can bias our estimate toward the 

correct value

Definition: 
The sample complexity of an estimator is the number of samples required to guarantee an 
expected error of at most  with probability , for given  and . ϵ 1 − δ δ ϵ



Convergence Rate via Chebyshev
The convergence rate indicates how quickly the error in an estimator decays as the 
number of samples grows. 

Example: Estimating mean of a distribution using  

• Recall that Chebyshev's inequality guarantees 

     

• Convergence rate is thus  (why?)
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Convergence Rate via Gaussian 

Example: Now assume that we know , 
and we know  but not .  

  

Find  such that  by finding  

 such that  (why?) 

Xi
i.i.d.∼ N(μ, σ2)

σ2 μ

X̄ ∼ N(μ, σ2/n)

ϵ Pr( | X̄ − μ | < ϵ) = 0.95

ϵ ∫
ϵ

−∞
p(x) dx = 0.025

⟹ ϵ = 1.96
σ

n

Questions: 

1. What is the expected value of 

? 

2. What is the variance of ? 

3. What is the distribution of ?
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Sample Complexity

For , Chebyshev gives 
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Definition: 
The sample complexity of an estimator is the number of samples required to guarantee an expected error 
of at most  with probability , for given  and . ϵ 1 − δ δ ϵ



Mean-Squared Error
• Bias: whether an estimator is correct in expectation 

• Consistency: whether an estimator is correct in the limit of infinite data 

• Convergence rate: how fast the estimator approaches its own mean 
• For an unbiased estimator, this is also how fast its error bounds shrink 

• We don't necessarily care about an estimator's being unbiased. 
• Often, what we care about is our estimator's accuracy in expectation 

Definition: Mean squared error of an estimator  of a quantity : 

 

X̂ X

MSE(X̂) = 𝔼 [(X̂ − 𝔼[X])2]
different!



Bias-Variance Decomposition
 

 

 

 

 

 

 

 

 

                                        

MSE(X̂) = 𝔼[(X̂ − 𝔼[X])2] = 𝔼[(X̂ − μ)2]
= 𝔼[(X̂−𝔼[X̂] + 𝔼[X̂]−μ)2]
= 𝔼[((X̂ − 𝔼[X̂]) + b)2]
= 𝔼[(X̂ − 𝔼[X̂])2 + 2b(X̂ − 𝔼[X̂]) + b2]
= 𝔼[(X̂ − 𝔼[X̂])2] + 𝔼[2b(X̂ − 𝔼[X̂])] + 𝔼[b2]
= 𝔼[(X̂ − 𝔼[X̂])2] + 2b𝔼[(X̂ − 𝔼[X̂])] + b2

= Var[X̂] + 2b𝔼[(X̂ − 𝔼[X̂])] + b2

= Var[X̂] + 2b(𝔼[X̂] − 𝔼[X̂]) + b2

= Var[X̂] + b2

= Var[X̂] + Bias(X̂)2 ∎

−𝔼[X̂] + 𝔼[X̂] = 0

b = Bias(X̂) = 𝔼[X̂] − μ

μ = 𝔼[X]

Sometimes a biased estimator can be closer to the estimated quantity than an unbiased one.

linearity of 𝔼

constants come out of 𝔼

linearity of 𝔼
def. variance



Bias-Variance Tradeoff

 

• If we can decrease bias without increasing variance, error goes down 

• If we can decrease variance without increasing bias, error goes down 

• Question: Would we ever want to increase bias? 

• YES.  If we can increase (squared) bias in a way that decreases variance 
more, then error goes down! 

• Interpretation: Biasing the estimator toward values that are more likely 
to be true (based on prior information)

 MSE(X̂) = Var[X̂] + Bias(X̂)2



Downward-biased Mean Estimation
Example: Let's estimate  given i.i.d  with  using:  μ X1, …, Xn 𝔼[Xi] = μ Y =

1
n+100

n

∑
i=1

Xi

This estimator is biased: 

 

 

 

𝔼[Y] = 𝔼 [ 1
n + 100

n

∑
i=1

Xi]
=

1
n + 100

n

∑
i=1

𝔼[Xi]

=
n

n + 100
μ

Bias(Y) =
n

n + 100
μ − μ =

−100
n + 100

μ

This estimator has low variance: 
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MSE(X̄) = Var(X̄) + Bias(X̄)2

= Var(X̄)

=
1

10

Estimating  Near 0μ
Example: Suppose that , , and σ = 1 n = 10 μ = 0.1

Bias(X̄) = 0

Var(X̄) =
σ2

n
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Prior Information and Bias: 
There's No Free Lunch

Example: Suppose that , , and σ = 1 n = 10 μ = 5

  

 

MSE(X̄) = Var(X̄) + Bias(X̄)2

= Var(X̄)

=
1
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MSE(Y) = Var(Y) + Bias(Y)2

=
n
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2

≈ 20.66 Whoa!  What went wrong?



Summary
• Sample complexity is the number of samples needed to attain a desired 

error bound  at a desired probability  

• The mean squared error of an estimator decomposes into bias (squared) 
and variance 

• Using a biased estimator can have lower error than an unbiased estimator 

• Bias the estimator based some prior information 

• But this only helps if the prior information is correct 

• Cannot reduce error by adding in arbitrary bias

ϵ 1 − δ


