Estimation:
Sample Complexity ano
the Bias-Variance lradeoft

CMPUT 296: Basics of Machine Learning
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Reminders:
* Thought Question 1 (due Thursday, September 17)
* Assignment 1 (due Thursday, September 24)



Recap

The variance Var| X | of a random variable X is its expected squared
distance from the mean

An estimator is a random variable representing a procedure for estimating
the value of an unobserved guantity based on observed data

Concentration inequalities let us bound the probability of a given
estimator being at least € from the estimated quantity

An estimator is consistent if it converges in probability to the estimated
guantity




When to Use Chebyshey,
When to Use Hoeffding”

1
Popoviciu's inequality: If a < X, < b, then Var[X,] < Z(b —a)’

In(2/6 In(2/6 |
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* Hoeffding's inequality gives a tighter bound®, but it can only be used on bounded random variables
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« E.g., if Var[X.] ~ Z(b — a)?, then whenever § < ~ 0.232

 Chebyshev's inequality can be applied even for unbounded variables

e Or for bounded variables with known, small 02
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Sample Complexity

Definition:
The sample complexity of an estimator is the number of samples required to guarantee an
expected error of at most € with probability 1 — o, for given ¢ and €.

* \We want sample complexity to be small (why?)

o Sample complexity is determined by:

1. The estimator itself
e Smarter estimators can sometimes improve sample complexity

2. Properties of the data generating process
e |f the data are high-variance, we need more samples for an accurate estimate

 But we can reduce the sample complexity if we can bias our estimate toward the
correct value




Convergence Rate via Chebyshev

The convergence rate indicates how quickly the error in an estimator decays as the
number of samples grows.

_ 1
Example: Estimating mean of a distribution using X = — Z X;
n
i=1

* Recall that Chebyshev's inequality guarantees

Pr| [ X-E[X]| <1/—|>1-6

. Convergence rate is thus O (1/\/%) (why?)



Convergence Rate via Gaussian

)_(~ N(U: 02/”)
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Example: Now assume that we know X; N(u, 6°),
and we know ¢ but not u. _
X ~ N(u,c%/n)
Find € such that Pr(| X — u| < €) = 0.95 by finding
€ U-1.962 Ny U+1.962
€ such that p(x)dx = 0.025 (why?) _
Questions:
— Q0 Inverse
o CDF  |1. What is the expected value of
—> € = 196_ 1mport scipy.stats X = lZXf)
n _main__> sc1py stats norm.ppf(0.025) n A ’
S(H:lpy Stats norm.cdf(-1.96) 2. \What is the variance of X?
3. What is the distribution of X?




Sample Complexity

Definition:
The sample complexity of an estimator is the number of samples required to guarantee an expected error
of at most € with probability 1 — o, for given 6 and €.

For 6 = 0.05, Chebyshev gives With Gaussian assumption and 6 = 0.03,
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Mean-Squared Error

* Bias: whether an estimator is correct in expectation
 Consistency: whether an estimator is correct in the limit of infinite data

 Convergence rate: how fast the estimator approaches its own mean

e For an unbiased estimator, this Is also how fast its error bounds shrink

 We don't necessarily care about an estimator's being unbiased.

o Often, what we care about is our estimator's accuracy in expectation

Definition: Mean squared error of an estimator X of a quantity X:

MSE(®) = E |(X - ELX])|
N/

\ 7
different!




Blas-Variance becomposition

Sometimes a biased estimator can be closer to the estimated quantity than an unbiased one.

MSE(X) =

E[(X — EIX])?] = E[(X — )] u = ELX

E[(X-E[X] + E[X]-p)°] LX)+ ELX) = 0

“[((X = E[X]) + b)?] b = Bias(R) = E[X] — 4

E[(X — E[X])? + 2b(X — E[X]) + b7]

C[(X — E[X])?] + E[2b(X — E[X])] + E[b?] inearity of

-[()A( — -[)A(])z] + 2b -[()A( — -[)A(])] + b?  constants come out of E
= Var[X] + 2bE[(X — E[X])] + b? def. variance
= Var[X] + 2b(E[X] — E[X]) + b? inearity of &

= Var[)A(] + b?
= Var[X] + Bias(f()2 B



Blas-Variance [radeoft

MSE(X) = Var[X] + Bias(X)?

If we can decrease bias without increasing variance, error goes down
If we can decrease variance without increasing bias, error goes down
Question: Would we ever want to increase bias?

YES. If we can increase (squared) bias in a way that decreases variance
more, then error goes down!

* Interpretation: Biasing the estimator toward values that are more likely
to be true (based on prior information)



Downward-plased Mean Estimation

1 n
Example: Let's estimate p given i.i.d Xy, ..., X, with E|X;] = p using: ¥ = X
p "9 ] [ X | = p 9 22100 ,221
This estimator Is biased: his estimator has low variance:
| L | L
-|1Y | = [ X. Var(Y) = Var X.
7] [n+100i=21 l] ) [n+100i_21 l]
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— - [ X ] X.
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n
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n+ 100 ~ (n+ 100)2 Z vand
Bias(Y) n —100 ; =1
148 — — U =
i+ 1000 T Ly 100” =’

 (n+ 100)2



=stimating (¢ Near O

Example: Supposethato =1, n = 10, and u = 0.1

MSE(X) = Var(X) + Bias(X)? MSE(Y) = Var(Y) + Bias(Y)?
= Var(X) vart) =~ " i ( 100 )2
¢ =—— 0"+ 17
1 (n + 100)2 n+ 100
10 10 100\’
= + ( —0.1
1102 110

~9x 10~



Prior Information and Blas;:
There's No Free Lunch

Example: Supposethate = 1, n = 10,and u = 5

MSE(X) = Var(X) + Bias(X)? MSE(Y) = Var(Y) + Bias(Y)?

= Var(X) n , — 100 -
- 0“4+ U
| (n + 100)2 n+ 100
10 10 100 \°
= + [ ——=5
1102 110

~ 20.66 | whoa! What went wrong?




Summary

Sample complexity is the number of samples needed to attain a desired
error bound € at a desired probability 1 — o

The mean squared error of an estimator decomposes into bias (squared)
and variance

Using a biased estimator can have lower error than an unbiased estimator

e Bias the estimator based some prior information
* But this only helps if the prior information is correct

* (Cannot reduce error by adding Iin arbitrary bias



