Estimation: Sample Complexity and the Bias-Variance Tradeoff

Textbook §3.4-3.5

CMPUT 296: Basics of Machine Learning

Logistics

Reminders:

- Thought Question 1 (due Thursday, September 17)
- Assignment 1 (due Thursday, September 24)

day, September 17) eptember 24)

Hecap

- The variance Var[X] of a random variable X is its expected squared distance from the mean
- the value of an unobserved quantity based on observed data
- **Concentration inequalities** let us bound the probability of a given \bullet estimator being at least ϵ from the estimated quantity
- quantity

• An estimator is a random variable representing a procedure for estimating

• An estimator is **consistent** if it **converges in probability** to the estimated

When to Use Chebyshev, When to Use Hoeffding?

Popoviciu's inequality: If $a \leq X_i \leq b$, then $Var[X_i] \leq b$

Hoeffding's inequality: $\epsilon = (b - a) \sqrt{\frac{\ln(2/\delta)}{2n}}$

Chebyshev's inequality: $\epsilon = \sqrt{\frac{\sigma^2}{\delta n}} \le \sqrt{\frac{(b-a)^2}{4\delta n}}$

Hoeffding's inequality gives a tighter bound*, but it can only be used on bounded random variables

* whenever
$$\sqrt{\frac{\ln(2/\delta)}{2}} < \frac{1}{2\sqrt{\delta}}$$

* E.g., if $\operatorname{Var}[X_i] \approx \frac{1}{4}(b-a)^2$, then whenever δ

- Chebyshev's inequality can be applied even for unbounded variables
 - or for bounded variables with known, small σ^2

$$\frac{1}{4}(b-a)^2$$
$$=\sqrt{\frac{\ln(2/\delta)}{2}}(b-a)\sqrt{\frac{1}{n}}$$
$$=\frac{1}{2\sqrt{\delta}}(b-a)\sqrt{\frac{1}{n}}$$

 $\delta < \sim 0.232$

- 1. Recap & Logistics
- 2. Sample Complexity
- 3. Bias-Variance Tradeoff

Outline

Sample Complexity

Definition:

The sample complexity of an estimator is the number of samples required to guarantee an expected error of at most ϵ with probability $1 - \delta$, for given δ and ϵ .

- We want sample complexity to be small (**why?**) lacksquare
- Sample complexity is determined by:
 - 1. The **estimator** itself
 - Smarter estimators can sometimes improve sample complexity
 - 2. Properties of the data generating process
 - \bullet
 - lacksquarecorrect value

If the data are high-variance, we need more samples for an accurate estimate But we can reduce the sample complexity if we can bias our estimate toward the

Convergence Rate via Chebyshev

The **convergence rate** indicates how quickly the error in an estimator decays as the number of samples grows.

Example: Estimating mean of a distribution

• Recall that **Chebyshev's inequality** guarantees

$$\Pr\left(\left|\bar{X} - \mathbb{E}[\bar{X}]\right| \le \sqrt{\frac{\sigma^2}{\delta n}}\right) \ge 1 - \delta$$

• Convergence rate is thus $O\left(1/\sqrt{n}\right)$ (why?)

ion using
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Convergence Rate via Gaussian

Example: Now assume that we know $X_i \stackrel{i.i.d.}{\sim} N(\mu, \sigma^2)$, and we know σ^2 but not μ .

$$\bar{X} \sim N(\mu, \sigma^2/n)$$

Find ϵ such that $\Pr(|\bar{X} - \mu| < \epsilon) = 0.95$ by finding ϵ such that $\int_{-\infty}^{\epsilon} p(x) dx = 0.025$ (why?)

$$\implies \epsilon = 1.96 \frac{\sigma}{\sqrt{n}}$$

main -1.95996398454005450.024997895148220435

Sample Complexity

Definition:

of at most ϵ with probability $1 - \delta$, for given δ and ϵ .

For $\delta = 0.05$, **Chebyshev** gives

$$\epsilon = \sqrt{\frac{\sigma^2}{\delta n}} = \frac{1}{\sqrt{0.05}} \frac{\sigma}{\sqrt{n}}$$
$$\iff \epsilon = 4.47 \frac{\sigma}{\sqrt{n}}$$
$$\iff \sqrt{n} = 4.47 \frac{\sigma}{\epsilon}$$
$$\iff n = 19.98 \frac{\sigma^2}{\epsilon^2}$$

The sample complexity of an estimator is the number of samples required to guarantee an expected error

With Gaussian assumption and $\delta = 0.05$,

$$\epsilon = 1.96 \frac{\sigma}{\sqrt{n}}$$

$$\iff \sqrt{n} = 1.96 \frac{\sigma}{\epsilon}$$

$$\iff n = 3.84 \frac{\sigma^2}{\epsilon^2}$$

Mean-Squared Error

- **Bias:** whether an estimator is correct in expectation
- Consistency: whether an estimator is correct in the limit of infinite data
- Convergence rate: how fast the estimator approaches its own mean
 - For an unbiased estimator, this is also how fast its error bounds shrink
- We don't necessarily care about an estimator's being unbiased.
 - Often, what we care about is our estimator's accuracy in expectation

Definition: Mean squared error of an $MSE(\hat{X}) =$

estimator
$$\hat{X}$$
 of a quantity X :

$$\mathbb{E}\left[(\hat{X} - \mathbb{E}[X])^2\right]$$

different!

Bias-Variance Decomposition

- - $MSE(\hat{X}) = \mathbb{E}[(\hat{X} \mathbb{E}[X])^2] = \mathbb{E}[(\hat{X} \mu)^2]$ $= \mathbb{E}[(\hat{X} - \mathbb{E}[\hat{X}] + \mathbb{E}[\hat{X}] - \mu)^2]$ $-\mathbb{E}[\hat{X}] + \mathbb{E}[\hat{X}] = 0$ $= \mathbb{E}[(\hat{X} - \mathbb{E}[\hat{X}]) + b)^2]$ $b = \text{Bias}(\hat{X}) = \mathbb{E}[\hat{X}] - \mu$ $= \mathbb{E}[(\hat{X} - \mathbb{E}[\hat{X}])^{2} + 2b(\hat{X} - \mathbb{E}[\hat{X}]) + b^{2}]$ $= \mathbb{E}[(\hat{X} - \mathbb{E}[\hat{X}])^2] + \mathbb{E}[2b(\hat{X} - \mathbb{E}[\hat{X}])] + \mathbb{E}[b^2]$ linearity of \mathbb{E} $= \mathbb{E}[(\hat{X} - \mathbb{E}[\hat{X}])^2] + 2b\mathbb{E}[(\hat{X} - \mathbb{E}[\hat{X}])] + b^2$ constants come out of \mathbb{E} $= \operatorname{Var}[\hat{X}] + 2b\mathbb{E}[(\hat{X} - \mathbb{E}[\hat{X}])] + b^2$ def. variance $= \operatorname{Var}[\hat{X}] + 2b(\mathbb{E}[\hat{X}] - \mathbb{E}[\hat{X}]) + b^2$ linearity of \mathbb{E}

 - = Var $[\hat{X}] + b^2$
 - $= \operatorname{Var}[\hat{X}] + \operatorname{Bias}(\hat{X})^2$

Sometimes a biased estimator can be closer to the estimated quantity than an unbiased one.

Bias-Variance Tradeoff

$MSE(\hat{X}) = Var[\hat{X}] + Bias(\hat{X})^2$

- If we can decrease bias without increasing variance, error goes down
- If we can decrease variance without increasing bias, error goes down
- Question: Would we ever want to increase bias?
- YES. If we can increase (squared) bias in a way that decreases variance more, then error goes down!
 - Interpretation: Biasing the estimator toward values that are more likely to be true (based on prior information)

Downward-biased Mean Estimation **Example:** Let's estimate μ given i.i.d X_1, \ldots, X_n with $\mathbb{E}[X_i] = \mu$ using: $Y = \frac{1}{n+100} \sum_{i=1}^n X_i$ This estimator has **low variance**: $\operatorname{Var}(Y) = \operatorname{Var} \left[\frac{1}{n+100} \sum_{i=1}^{n} X_i \right]$ $= \frac{1}{n+100} \sum_{i=1}^{n} \mathbb{E}[X_i]$ $= \frac{1}{(n+100)^2} \operatorname{Var} \left| \sum_{i=1}^{n} X_i \right|$ $= \frac{1}{(n+100)^2} \sum_{i=1}^{n} \text{Var}[X_i]$ $= \frac{1}{n+100} \mu$ Bias(Y) = $\frac{n}{n+100}\mu - \mu = \frac{-100}{n+100}\mu$ $=\frac{n}{(n+100)^2}\sigma^2$

This estimator is **biased**:

Estimating µ Near 0

Example: Suppose that $\sigma = 1$, n = 10, and $\mu = 0.1$

 $\operatorname{Bias}(\bar{X}) = 0$

$$MSE(\bar{X}) = Var(\bar{X}) + Bias(\bar{X})^{2}$$
$$= Var(\bar{X}) \quad Var(\bar{X}) = \frac{\sigma^{2}}{n}$$
$$= \frac{1}{10}$$

 $MSE(Y) = Var(Y) + Bias(Y)^2$

$$= \frac{n}{(n+100)^2} \sigma^2 + \left(\frac{100}{n+100}\mu\right)^2$$
$$= \frac{10}{110^2} + \left(\frac{100}{110}0.1\right)^2$$
$$\approx 9 \times 10^{-4}$$

Prior Information and Bias: There's No Free Lunch

Example: Suppose that $\sigma = 1$, n = 10, and $\mu = 5$

$$= \frac{n}{(n+100)^2} \sigma^2 + \left(\frac{-100}{n+100}\mu\right)^2$$
$$= \frac{10}{110^2} + \left(-\frac{100}{110}5\right)^2$$
$$\approx 20.66$$
Whoa! What went wrong?

Summary

- Sample complexity is the number of samples needed to attain a desired error bound ϵ at a desired probability $1-\delta$
- The mean squared error of an estimator decomposes into bias (squared) and variance
- Using a biased estimator can have lower error than an unbiased estimator
 - Bias the estimator based some prior information
 - But this only helps if the prior information is correct
 - Cannot reduce error by adding in arbitrary bias