Estimation: Sample Averages, Bias, and Concentration Inequalities

Textbook §3.1-3.3

CMPUT 296: Basics of Machine Learning

Logistics

Reminders:

- Thought Question 1 (due Thursday, September 17)
- Assignment 1 (due **Thursday, September 24**)

New:

Group Slack channel: **#cmput296-fall20** (on Amii workspace)

Recap

- Random variables are functions from sample to some value
 - Upshot: A random variable takes different values with some probability
- The value of one variable can be informative about the value of another (because they are both functions of the same sample)
 - Distributions of multiple random variables are described by the **joint** probability distribution (joint PMF or joint PDF)
 - Conditioning on a random variable gives a new distribution over others
- X is **independent** of Y: conditioning on X does **not** give a new distribution over Y
 - X is conditionally independent of Y given Z: $P(Y \mid X, Z) = P(Y \mid Z)$
- The expected value of a random variable is an average over its values, weighted by the probability of each value

Outline

- 1. Recap & Logistics
- 2. Variance and Correlation
- 3. Estimators
- 4. Concentration Inequalities
- 5. Consistency

Variance

Definition: The **variance** of a random variable is

i.e., $\mathbb{E}[f(X)]$ where $f(x) = (x - \mathbb{E}[X])^2$. Equivalently,

 $Var(X) = \mathbb{E} \left[X^2 \right] - \left(\mathbb{E}[X] \right)^2$

(**why?**)

 $\operatorname{Var}(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right].$

Covariance

Definition: The **covariance** of two random variables is

Large Negative Covariance

Question: What is the range of Cov(X, Y)?

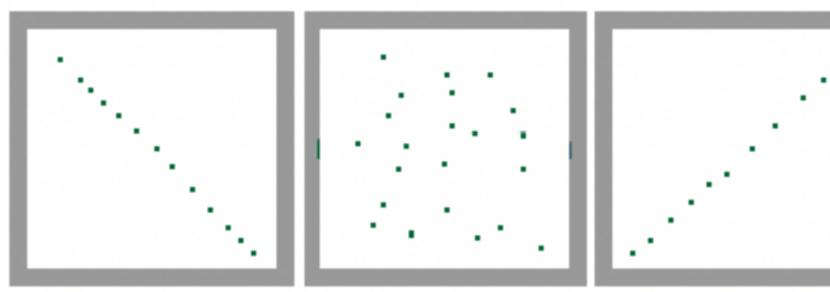
- $Cov(X, Y) = \mathbb{E}\left[(X \mathbb{E}[X])(Y \mathbb{E}[Y])\right]$ $= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$

Near Zero Covariance

Large Positive Covariance

Correlation

Definition: The **correlation** of two random variables is



Large Negative Covariance

Question: What is the range of Corr(X, Y)? hint: Var(X) = Cov(X, X)

 $Corr(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X)Var(Y)}}$

Near Zero Covariance

Large Positive Covariance

- Independent RVs have zero correlation (**why?**) \bullet hint: $Cov[X, Y] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$
- Uncorrelated RVs (i.e., Cov(X, Y) = 0) might be dependent (i.e., $p(x, y) \neq p(x)p(y)$).
 - Correlation (Pearson's correlation coefficient) shows linear relationships; but can miss nonlinear relationships
 - **Example:** $X \sim \text{Uniform}\{-2, -1, 0, 1, 2\}, Y = X^2$ • $\mathbb{E}[XY] = .2(-2 \times 4) + .2(2 \times 4) + .2(-1 \times 1) + .2(1 \times 1) + .2(0 \times 0)$
- - $\mathbb{E}[X] = 0$
 - So $\mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y] = 0 0\mathbb{E}[Y] = 0$

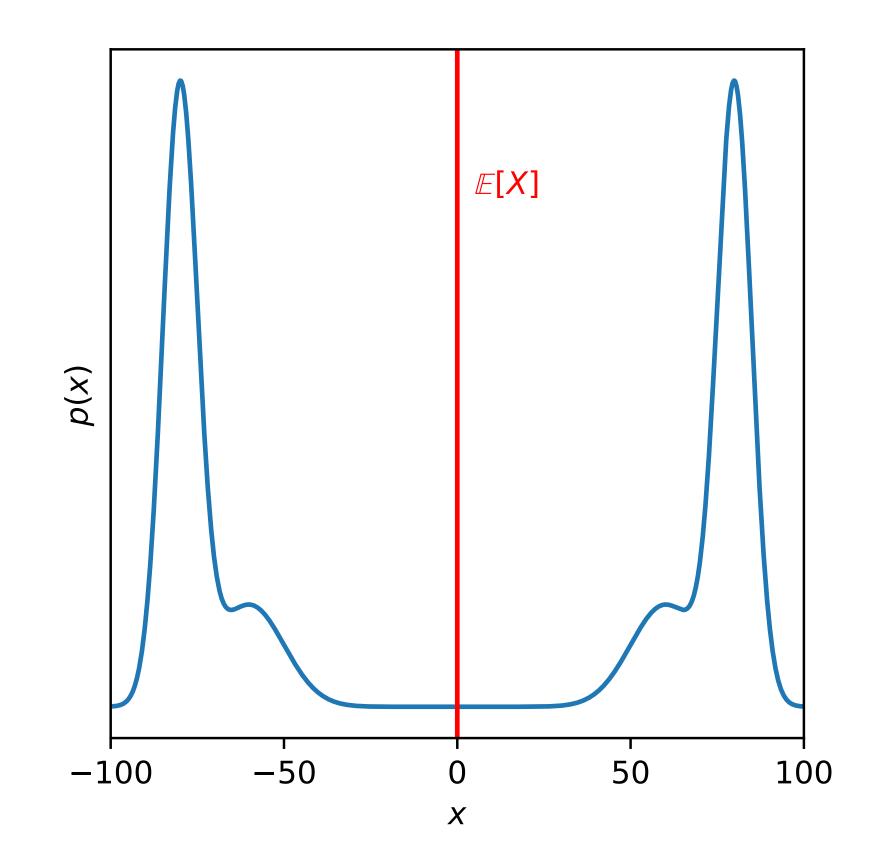
Independence and Decorrelation

- Var[c] = 0 for constant c
- $Var[cX] = c^2 Var[X]$ for constant c
- Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]
- For independent X, Y, Var[X + Y] = Var[X] + Var[Y] (why?)

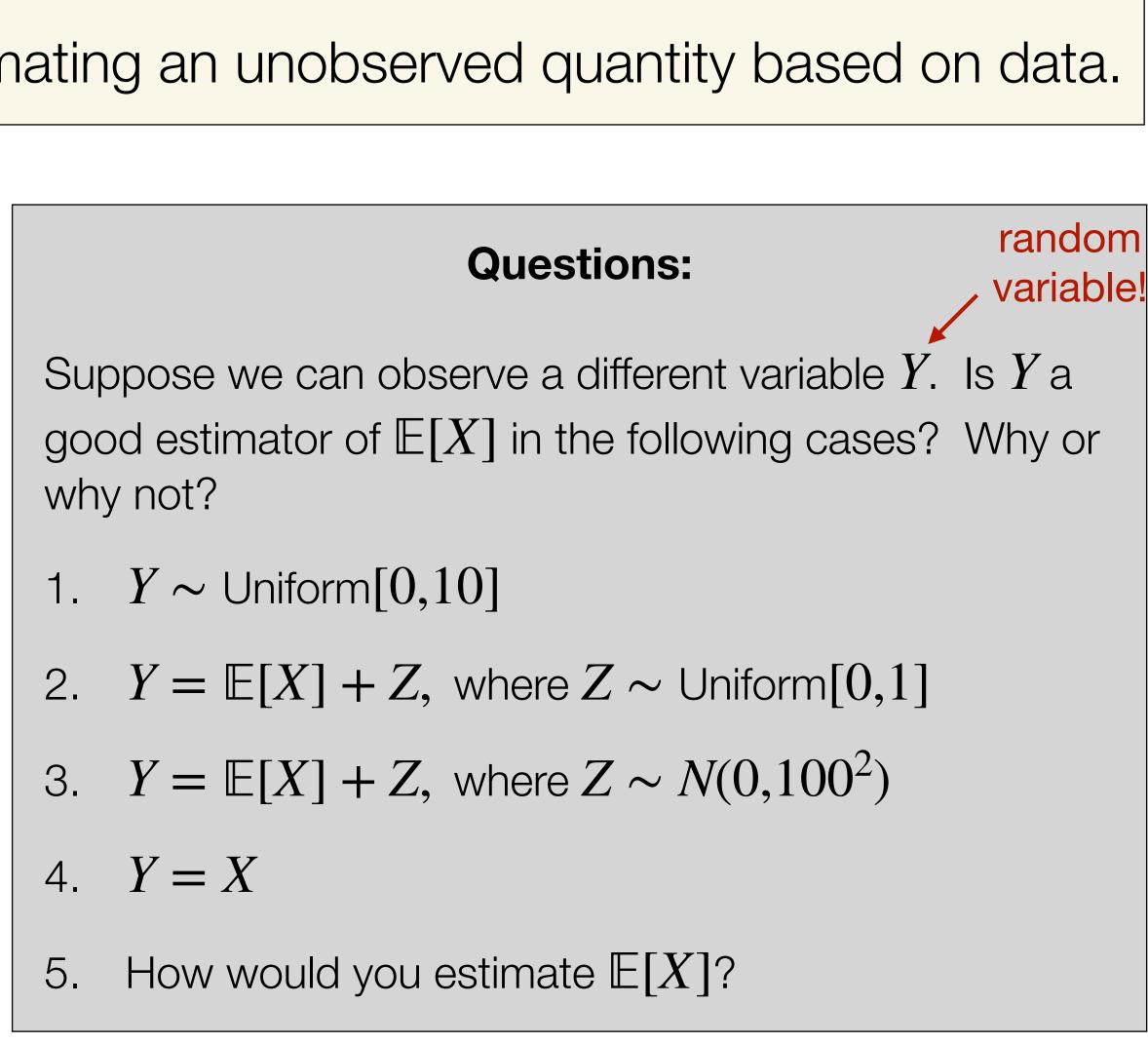
Properties of Variances

Estimators

Example: Estimating $\mathbb{E}[X]$ for r.v. $X \in \mathbb{R}$.



Definition: An estimator is a procedure for estimating an unobserved quantity based on data.



Bias

Definition: The **bias** of an estimator X is its expected difference from the true value of the estimated quantity X: $\operatorname{Bias}(\hat{X}) = \mathbb{E}[\hat{X} - X]$

- Bias can be positive or negative or zero \bullet
- When $Bias(\hat{X}) = 0$, we say that the estimator \hat{X} is **unbiased**

Questions:

What is the **bias** of the following estimators of $\mathbb{E}[X]?$

- 1. $Y \sim \text{Uniform}[0, 10]$
- 2. $Y = \mathbb{E}[X] + Z,$ where $Z \sim \text{Uniform}[0,1]$
- 3. $Y = \mathbb{E}[X] + Z,$ where $Z \sim N(0, 100^2)$

$$4. \quad Y = X$$

Independent and Identically Distributed (i.i.d.) Samples

- We usually won't try to estimate anything about a distribution based on only a single sample
- Usually, we use multiple samples from the same distribution •
 - *Multiple samples:* This gives us more information
 - Same distribution: We want to learn about a single population
- One additional condition: the samples must be **independent** (**why?**)

Definition: When a set of random variables are X_1, X_2, \ldots are all independent, and each has the same distribution $X \sim F$, we say they are i.i.d. (independent and identically distributed), written

 X_1, X

$$_{2},\ldots \overset{i.i.d.}{\sim} F.$$

Estimating Expected Value via the Sample Mean

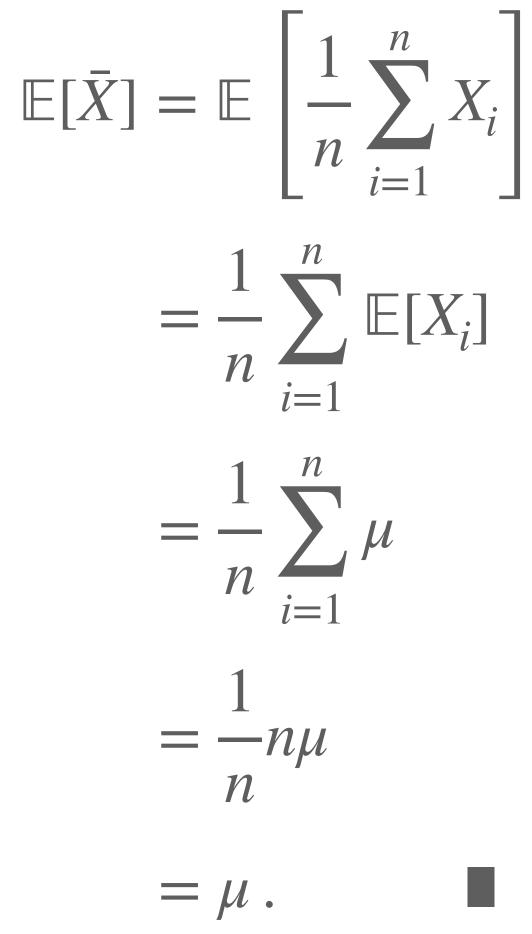
Example: We have n i.i.d. samples from the same distribution F, $X_1, X_2, \ldots, X_n \stackrel{i.i.d}{\sim} F,$

with $\mathbb{E}[X_i] = \mu$ and $\operatorname{Var}(X_i) = \sigma^2$ for each X_i .

We want to estimate μ .

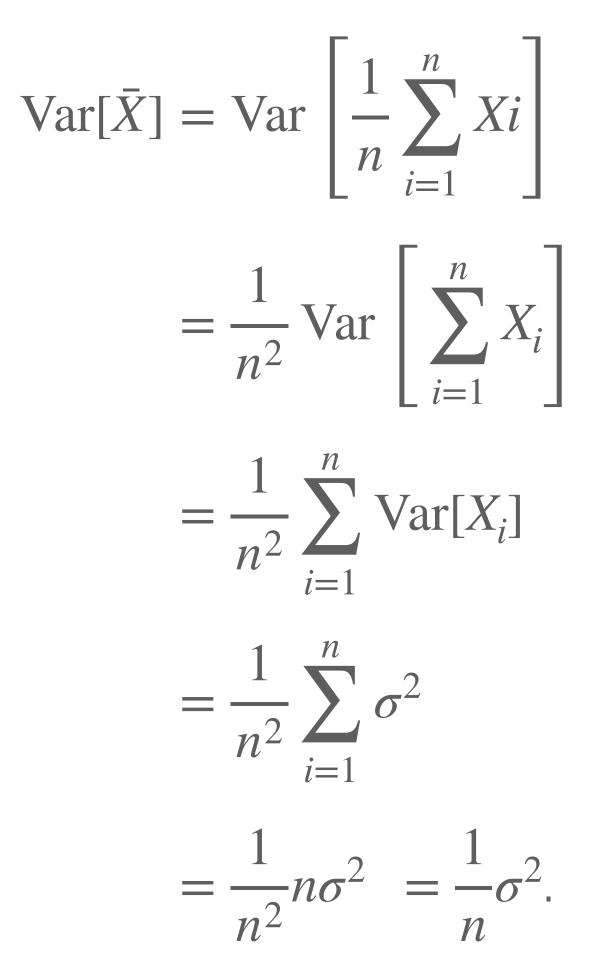
Let's use the sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ to estimate μ .

Question: Is this estimator **unbiased**? **Question:** Are **more samples** better? Why?



Variance of the Estimator

- Intuitively, more samples should make the estimator "closer" to the estimated quantity
- We can formalize this intuition partly by characterizing the variance $Var[\hat{X}]$ of the estimator itself.
 - The variance of the estimator should decrease as the number of samples increases
- **Example:** \overline{X} for estimating μ :
 - The variance of the estimator shrinks linearly as the number of samples grows.



Concentration Inequalities

- We would like to be able to claim Pr for some $\delta, \epsilon > 0$
- $\operatorname{Var}[\bar{X}] = \frac{1}{n} \sigma^2$ means that with "enough" data, $\operatorname{Pr}\left(\left|\bar{X} \mu\right| < \epsilon\right) > 1 \delta$ for any $\delta, \epsilon > 0$ that we pick (why?)

• Question: What is
$$\Pr\left(\left|\bar{X}-\mu\right|<$$

$$\left(\left|\bar{X}-\mu\right| < \epsilon\right) > 1 - \delta$$

• Suppose we have n = 10 samples, and we know $\sigma^2 = 81$; so $Var[\bar{X}] = 8.1$.

Variance Is Not Enough

Knowing $\operatorname{Var}[\overline{X}] = 8.1$ is **not enough** to compute $\Pr(|\overline{X} - \mu| < 2)!$ **Examples:**

$$p(\bar{x}) = \begin{cases} 0.9 & \text{if } \bar{x} = \mu \\ 0.05 & \text{if } \bar{x} = \mu \pm 9 \end{cases} \Longrightarrow$$
$$p(\bar{x}) = \begin{cases} 0.999 & \text{if } \bar{x} = \mu \\ 0.0005 & \text{if } \bar{x} = \mu \pm 90 \end{cases} \Longrightarrow$$
$$p(\bar{x}) = \begin{cases} 0.1 & \text{if } \bar{x} = \mu \\ 0.45 & \text{if } \bar{x} = \mu \pm 3 \end{cases} \Longrightarrow$$

- $Var[\bar{X}] = 8.1$ and $Pr(|\bar{X} \mu| < 2) = 0.9$
- Var $[\bar{X}] = 8.1$ and Pr $(|\bar{X} \mu| < 2) = 0.999$
- $Var[\bar{X}] = 8.1$ and $Pr(|\bar{X} \mu| < 2) = 0.1$

Hoeffding's Inequality

Theorem: Hoeffding's Inequality

Suppose that X_1, \ldots, X_n are distributed i.i.d, with $a \leq X_i \leq b$. Then for any $\epsilon > 0$,

 $\Pr\left(\left|\bar{X} - \mathbb{E}[\bar{X}]\right| \ge \epsilon\right)$

Equivalently, $\Pr\left(\left|\bar{X} - \mathbb{E}[\bar{X}]\right| \le (h)\right)$

$$b(x) \le 2 \exp\left(-\frac{2n\epsilon^2}{(b-a)^2}\right).$$
$$b(x) = b - a \sqrt{\frac{\ln(2/\delta)}{2n}} \ge 1 - \delta$$

Chebyshev's Inequality

Theorem: Chebyshev's Inequality Suppose that X_1, \ldots, X_n are distributed i.i.d. with variance σ^2 . Then for any $\epsilon > 0$, $\Pr\left(\left|\bar{X}-\mathbb{E}\right|\right)$ Equivalently, $\Pr\left|\left|\bar{X} - \mathbb{E}[\bar{X}]\right| \le \sqrt{1}$

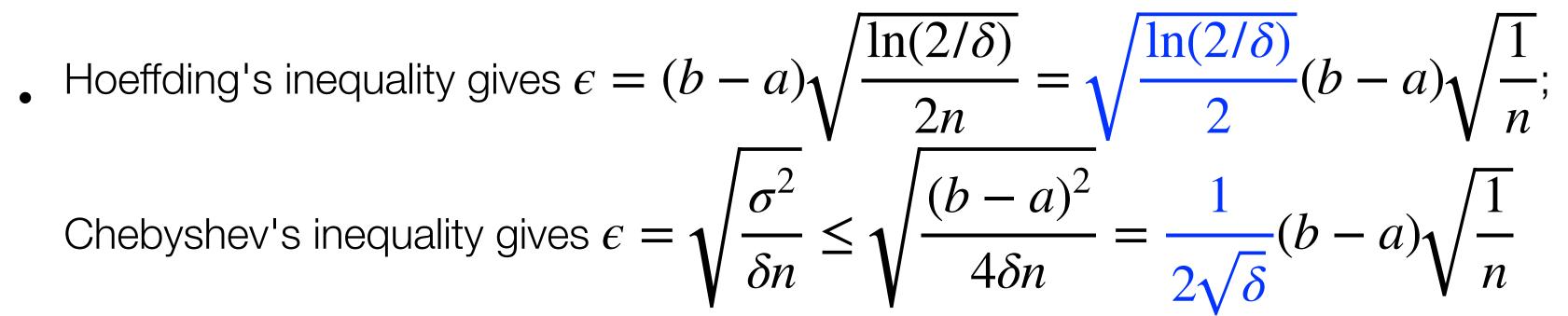
$$\left[\bar{X} \right] \left| \geq \epsilon \right) \leq \frac{\sigma^2}{n\epsilon^2}$$
$$\left[\frac{\sigma^2}{\delta n} \right] \geq 1 - \delta.$$

When to Use Chebyshev, When to Use Hoeffding?

- If $a \le X_i \le b$, then $\operatorname{Var}[X_i] \le \frac{1}{4}(b-a)^2$
- Chebyshev's inequality gives $\epsilon = \sqrt{\frac{\sigma^2}{\delta n}} \le \sqrt{\frac{(b-a)^2}{4\delta n}} = \frac{1}{2\sqrt{\delta}}(b-a)\sqrt{\frac{1}{n}}$
- variables

* whenever
$$\sqrt{\frac{\ln(2/\delta)}{2}} < \frac{1}{2\sqrt{\delta}} \iff$$

• Chebyshev's inequality can be applied even for unbounded variables



Hoeffding's inequality gives a tighter bound*, but it can only be used on bounded random

 $\delta < \sim 0.232$

Consistency

Definition: A sequence of random variables X_n converges in probability to a random variable X (written $X_n \xrightarrow{p} X$) if for all $\epsilon > 0$, lim $Pr(|X_n|)$

 $n \rightarrow \infty$

Definition: An estimator \hat{X} for a quantity X is **consistent** if $\hat{X} \xrightarrow{p} X$.

$$|-X| > \epsilon) = 0.$$

Theorem: Weak Law of Large Numbers

Let X_1, \ldots, X_n be distributed i.i.d. with $\mathbb{E}[X_i] = \mu$ and $\operatorname{Var}[X_i] = \sigma^2$.

Then the **sample mean**

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

is a **consistent estimator** for μ .

Weak Law of Large Numbers

Proof:

- 1. We have already shown that $\mathbb{E}[X] = \mu$
- 2. By Chebyshev, $\Pr\left(\left|\bar{X} - \mathbb{E}[\bar{X}]\right| \ge \epsilon\right) \le \frac{\sigma^2}{nc^2}$ for arbitrary $\epsilon > 0$
- 3. Hence $\lim_{n \to \infty} \Pr\left(\left|\bar{X} \mu\right| \ge \epsilon\right) = 0$ for any $\epsilon > 0$
- 4. Hence $\bar{X} \xrightarrow{p} \mu$.

Summary

- The variance Var[X] of a random variable X is its expected squared distance from the mean
- the value of an unobserved quantity based on observed data
- **Concentration inequalities** let us bound the probability of a given estimator being at least ϵ from the estimated quantity
- quantity

• An estimator is a random variable representing a procedure for estimating

• An estimator is **consistent** if it **converges in probability** to the estimated