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Concentration Inequalities
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Logistics

Reminders: 
• Thought Question 1 (due Thursday, September 17) 
• Assignment 1 (due Thursday, September 24) 

New: 
• Group Slack channel: #cmput296-fall20 (on Amii workspace)



Recap
• Random variables are functions from sample to some value 

• Upshot: A random variable takes different values with some probability 

• The value of one variable can be informative about the value of another 
(because they are both functions of the same sample) 

• Distributions of multiple random variables are described by the joint 
probability distribution (joint PMF or joint PDF) 

• Conditioning on a random variable gives a new distribution over others 
•  is independent of : conditioning on  does not give a new distribution over  

•  is conditionally independent of  given :    

• The expected value of a random variable is an average over its values, 
weighted by the probability of each value

X Y X Y
X Y Z P(Y ∣ X, Z) = P(Y ∣ Z)
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Variance

 

i.e.,  where . 

Equivalently, 

  

 (why?)

Definition: The variance of a random variable is 

.Var(X) = 𝔼 [(X − 𝔼[X])2]

𝔼[ f(X)] f(x) = (x − 𝔼[X])2

Var(X) = 𝔼 [X2] − (𝔼[X])2



Covariance

 

 
Question: What is the range of ?

Definition: The covariance of two random variables is 

 
Cov(X, Y) = 𝔼 [(X − 𝔼[X])(Y − 𝔼[Y])]

= 𝔼[XY] − 𝔼[X]𝔼[Y] .

Cov(X, Y)



Correlation

 

 
Question: What is the range of ? 
hint: 

Definition: The correlation of two random variables is 

 Corr(X, Y) =
Cov(X, Y)
Var(X)Var(Y)

Corr(X, Y)
Var(X) = Cov(X, X)



Independence and Decorrelation
• Independent RVs have zero correlation (why?) 

        hint:  

• Uncorrelated RVs (i.e., ) might be dependent  
(i.e., ). 
• Correlation (Pearson's correlation coefficient) shows linear relationships; but can 

miss nonlinear relationships 
• Example: ,  

•  
•  
• So 

Cov[X, Y] = 𝔼[XY] − 𝔼[X]𝔼[Y]

Cov(X, Y) = 0
p(x, y) ≠ p(x)p(y)

X ∼ Uniform{−2, − 1,0,1,2} Y = X2

𝔼[XY] = .2(−2 × 4) + .2(2 × 4) + .2(−1 × 1) + .2(1 × 1) + .2(0 × 0)
𝔼[X] = 0

𝔼[XY] − 𝔼[X]𝔼[Y] = 0 − 0𝔼[Y] = 0



Properties of Variances

•  for constant  

•  for constant  

•  

• For independent ,  
 (why?)

Var[c] = 0 c

Var[cX] = c2Var[X] c

Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]

X, Y
Var[X + Y] = Var[X] + Var[Y]



Estimators

Example: Estimating  for r.v. .𝔼[X] X ∈ ℝ
Questions: 

Suppose we can observe a different variable .  Is  a 
good estimator of  in the following cases?  Why or 
why not? 

1.  

2.  

3.  

4.  

5. How would you estimate ?

Y Y
𝔼[X]

Y ∼ Uniform[0,10]

Y = 𝔼[X] + Z,  where Z ∼ Uniform[0,1]

Y = 𝔼[X] + Z,  where Z ∼ N(0,1002)

Y = X

𝔼[X]

Definition: An estimator is a procedure for estimating an unobserved quantity based on data.

random

variable!



Bias

 

• Bias can be positive or negative or zero 

• When , we say that the estimator  is unbiased

Definition: The bias of an estimator  is its expected 
difference from the true value of the estimated quantity : 

X̂
X

Bias(X̂) = 𝔼[X̂ − X]

Bias(X̂) = 0 X̂

Questions: 

What is the bias of the 
following estimators of 

? 

1.  

2. , 
where 

 

3. , 
where  

4.

𝔼[X]

Y ∼ Uniform[0,10]

Y = 𝔼[X] + Z

Z ∼ Uniform[0,1]

Y = 𝔼[X] + Z
Z ∼ N(0,1002)

Y = X



Independent and Identically 
Distributed (i.i.d.) Samples

• We usually won't try to estimate anything about a distribution based on only a single sample 
• Usually, we use multiple samples from the same distribution 

• Multiple samples: This gives us more information  
• Same distribution: We want to learn about a single population 

• One additional condition: the samples must be independent (why?) 

Definition: When a set of random variables are  are all 
independent, and each has the same distribution , we say they are i.i.d. 
(independent and identically distributed), written  

.

X1, X2, …
X ∼ F

X1, X2, … i.i.d.∼ F



Estimating Expected Value  
via the Sample Mean

Example: We have  i.i.d. samples from the same distribution , 

, 

with  and  for each .   

We want to estimate . 

Let's use the sample mean  to estimate . 

Question: Is this estimator unbiased? 
Question: Are more samples better?  Why?

n F

X1, X2, …, Xn
i.i.d∼ F

𝔼[Xi] = μ Var(Xi) = σ2 Xi

μ

X̄ =
1
n

n

∑
i=1

Xi μ

 

 

 

    

𝔼[X̄] = 𝔼 [ 1
n

n

∑
i=1

Xi]
=

1
n

n

∑
i=1

𝔼[Xi]

=
1
n

n

∑
i=1

μ

=
1
n

nμ

= μ . ∎



Variance of the Estimator
• Intuitively, more samples should make the estimator 

"closer" to the estimated quantity 

• We can formalize this intuition partly by characterizing 
the variance  of the estimator itself. 

• The variance of the estimator should decrease as 
the number of samples increases 

• Example:  for estimating : 
• The variance of the estimator shrinks linearly as 

the number of samples grows.

Var[X̂]

X̄ μ

 

 

 

 

  .

Var[X̄] = Var [ 1
n

n

∑
i=1

Xi]
=

1
n2

Var [
n

∑
i=1

Xi]
=

1
n2

n

∑
i=1

Var[Xi]

=
1
n2

n

∑
i=1

σ2

=
1
n2

nσ2 =
1
n

σ2



Concentration Inequalities
• We would like to be able to claim   

for some  

•  means that with "enough" data, 

 for any  that we pick  (why?) 

• Suppose we have  samples, and we know ; so . 

• Question: What is ?

Pr ( X̄ − μ < ϵ) > 1 − δ

δ, ϵ > 0

Var[X̄] =
1
n

σ2

Pr ( X̄ − μ < ϵ) > 1 − δ δ, ϵ > 0

n = 10 σ2 = 81 Var[X̄] = 8.1

Pr ( X̄ − μ < 2)



Variance Is Not Enough
Knowing  is not enough to compute ! 

Examples: 

 

 

Var[X̄] = 8.1 Pr( | X̄ − μ | < 2)

p(x̄) = {0.9 if x̄ = μ
0.05 if x̄ = μ ± 9

⟹ Var[X̄] = 8.1 and  Pr( | X̄ − μ | < 2) = 0.9

p(x̄) = {0.999 if x̄ = μ
0.0005 if x̄ = μ ± 90

⟹ Var[X̄] = 8.1 and  Pr( | X̄ − μ | < 2) = 0.999

p(x̄) = {0.1 if x̄ = μ
0.45 if x̄ = μ ± 3

⟹ Var[X̄] = 8.1 and  Pr( | X̄ − μ | < 2) = 0.1



Hoeffding's Inequality
Theorem: Hoeffding's Inequality 

Suppose that  are distributed i.i.d, with . 
Then for any  , 

. 

Equivalently, .

X1, …, Xn a ≤ Xi ≤ b
ϵ > 0

Pr ( X̄ − 𝔼[X̄] ≥ ϵ) ≤ 2 exp (−
2nϵ2

(b − a)2 )
Pr ( X̄ − 𝔼[X̄] ≤ (b − a)

ln(2/δ)
2n ) ≥ 1 − δ



Chebyshev's Inequality
Theorem: Chebyshev's Inequality 

Suppose that  are distributed i.i.d. with variance .  
Then for any , 

. 

Equivalently, .

X1, …, Xn σ2

ϵ > 0

Pr ( X̄ − 𝔼[X̄] ≥ ϵ) ≤
σ2

nϵ2

Pr X̄ − 𝔼[X̄] ≤
σ2

δn
≥ 1 − δ



When to Use Chebyshev, 
When to Use Hoeffding?

• If , then  

• Hoeffding's inequality gives ; 

Chebyshev's inequality gives  

• Hoeffding's inequality gives a tighter bound*, but it can only be used on bounded random 
variables 

✴
whenever  

• Chebyshev's inequality can be applied even for unbounded variables

a ≤ Xi ≤ b Var[Xi] ≤
1
4

(b − a)2

ϵ = (b − a)
ln(2/δ)

2n
=

ln(2/δ)
2

(b − a)
1
n

ϵ =
σ2

δn
≤

(b − a)2

4δn
=

1

2 δ
(b − a)

1
n

ln(2/δ)
2

<
1

2 δ
⟺ δ < ∼ 0.232



Consistency

 

Definition: A sequence of random variables  converges in probability 
to a random variable  (written ) if for all , 

.

Xn
X Xn

p
→ X ϵ > 0

lim
n→∞

Pr( |Xn − X | > ϵ) = 0

Definition: An estimator  for a quantity  is consistent if .X̂ X X̂
p

→ X



Weak Law of Large Numbers

 

Theorem: Weak Law of Large Numbers 

Let  be distributed i.i.d. with 
 and .  

Then the sample mean 

  

is a consistent estimator for .

X1, …, Xn
𝔼[Xi] = μ Var[Xi] = σ2

X̄ =
1
n

n

∑
i=1

Xi

μ

Proof: 

1. We have already shown that  
2. By Chebyshev, 

 

for arbitrary  

3. Hence  

for any  

4. Hence .  

𝔼[X̄] = μ

Pr ( X̄ − 𝔼[X̄] ≥ ϵ) ≤
σ2

nϵ2

ϵ > 0

lim
n→∞

Pr ( X̄ − μ ≥ ϵ) = 0

ϵ > 0
X̄

p
→ μ ∎



Summary

• The variance  of a random variable  is its expected squared 
distance from the mean 

• An estimator is a random variable representing a procedure for estimating 
the value of an unobserved quantity based on observed data 

• Concentration inequalities let us bound the probability of a given 
estimator being at least  from the estimated quantity 

• An estimator is consistent if it converges in probability to the estimated 
quantity

Var[X] X

ϵ


