Probability, continued

CMPUT 296: Basics of Machine Learning

§2.2-2.4

Recap

- Probabilities are a means of quantifying uncertainty
- A probability distribution is defined on a measurable space consisting of a sample space and an event space.
- Discrete sample spaces (and random variables) are defined in terms of probability mass functions (PMFs)
- Continuous sample spaces (and random variables) are defined in terms of probability density functions (PDFs)

Logistics

Now available on eClass:

- Videos and slides for last week
- Discussion forum!
- Thought Question 1 (due Thursday, September 17)
- Assignment 1 (due Thursday, September 24)

TA office hours:

- Ehsan: Wednesdays 3-4pm
 - or 3-5pm on "tutorial" weeks
- Liam: Fridays 11am-12pm

Outline

- 1. Recap & Logistics
- 2. Random Variables
- 3. Multiple Random Variables
- 4. Independence
- 5. Expectations and Moments

Random Variables

Random variables are a way of reasoning about a complicated underlying probability space in a more straightforward way.

Example: Suppose we observe both a die's number, and where it lands.

$$\Omega = \{(left,1), (right,1), (left,2), (right,2), ..., (right,6)\}$$

We might want to think about the probability that we get a large number, without thinking about where it landed.

We could ask about $P(X \ge 4)$, where X = number that comes up.

Random Variables, Formally

Given a probability space (Ω, \mathcal{E}, P) , a random variable is a function

 $X:\Omega o\Omega_X$ (where Ω_X is some other outcome space), satisfying

$$\{\omega \in \Omega \mid X(\omega) \in A\} \in \mathscr{E} \quad \forall A \in B(\Omega_X).$$

It follows that $P_X(A) = P(\{\omega \in \Omega \mid X(\omega) \in A\})$.

Example: Let Ω be a population of people, and $X(\omega)$ = height, and A = [5'1'',5'2''].

$$P(X \in A) = P(5'1'' \le X \le 5'2'') = P(\{\omega \in \Omega : X(\omega) \in A\}).$$

Random Variables and Events

• A Boolean expression involving random variables defines an event:

E.g.,
$$P(X \ge 4) = P(\{\omega \in \Omega \mid X(\omega) \ge 4\})$$

• Similarly, every event can be understood as a Boolean random variable:

$$Y = \begin{cases} 1 & \text{if event } A \text{ occurred} \\ 0 & \text{otherwise.} \end{cases}$$

• From this point onwards, we will exclusively reason in terms of random variables rather than probability spaces.

Example: Histograms

Consider the continuous commuting example again, with observations 12.345 minutes, 11.78213 minutes, etc.

- Question: What is the random variable?
- Question: How could we turn our observations into a histogram?

What About Multiple Variables?

- So far, we've really been thinking about a single random variable at a time
- Straightforward to define multiple random variables on a single probability space

Example: Suppose we observe both a die's number, and where it lands.

$$\Omega = \{(left,1), (right,1), (left,2), (right,2), ..., (right,6)\}$$

$$X(\omega) = \omega_2 = \text{number}$$

$$Y(\omega) = \begin{cases} 1 & \text{if } \omega_1 = left \\ 0 & \text{otherwise.} \end{cases} = 1 \text{ if landed on left}$$

$$P(Y = 1) = P(\{\omega \mid Y(\omega) = 1\})$$

$$P(X \ge 4 \land Y = 1) = P(\{\omega \mid X(\omega) \ge 4 \land Y(\omega) = 1\})$$

Joint Distribution

We typically be model the interactions of different random variables.

Joint probability mass function: p(x, y) = P(X = x, Y = y)

$$\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) = 1$$

Example: $\mathcal{X} = \{0,1\}$ (young, old) and $\mathcal{Y} = \{0,1\}$ (no arthritis, arthritis)

	Y=0	Y=1
X=0	P(X=0,Y=0) = 1/2	P(X=0, Y=1) = 1/100
X=1	P(X=1, Y=0) = 1/10	P(X=1, Y=1) = 39/100

Questions About Multiple Variables

Example: $\mathcal{X} = \{0,1\}$ (young, old) and $\mathcal{Y} = \{0,1\}$ (no arthritis, arthritis)

	Y=0	Y=1
X=0	P(X=0,Y=0) = 1/2	P(X=0, Y=1) = 1/100
X=1	P(X=1, Y=0) = 1/10	P(X=1, Y=1) = 39/100

- Are these two variables related at all? Or do they change independently?
- Given this distribution, can we determine the distribution over just Y? I.e., what is P(Y=1)? (marginal distribution)
- If we knew something about one variable, does that tell us something about the distribution over the other? E.g., if I know X=0 (person is young), does that tell me the **conditional probability** $P(Y=1 \mid X=1)$? (Prob. that person we know is young has arthritis)

Conditional Distribution

Definition: Conditional probability distribution

$$P(Y = y \mid X = x) = \frac{P(X = x, Y = y)}{P(X = x)}$$

This same equation will hold for the corresponding PDF or PMF:

$$p(y \mid x) = \frac{p(x, y)}{p(x)}$$

Question: if p(x, y) is small, does that imply that $p(y \mid x)$ is small?

PMFs and PDFs of Many Variables

In general, we can consider a d-dimensional random variable $\overrightarrow{X} = (X_1, ..., X_d)$ with vector-valued outcomes $\overrightarrow{x} = (x_1, ..., x_d)$, with each x_i chosen from some \mathcal{X}_i . Then,

Discrete case:

 $p:\mathcal{X}_1\times\mathcal{X}_2\times\ldots\times\mathcal{X}_d\to[0,1]$ is a (joint) probability mass function if

$$\sum_{x_1 \in \mathcal{X}_1} \sum_{x_2 \in \mathcal{X}_2} \cdots \sum_{x_d \in \mathcal{X}_d} p(x_1, x_2, \dots, x_d) = 1$$

Continuous case:

 $p:\mathcal{X}_1\times\mathcal{X}_2\times\ldots\times\mathcal{X}_d\to[0,\infty)$ is a (joint) probability density function if

$$\int_{\mathcal{X}_1} \int_{\mathcal{X}_2} \cdots \int_{\mathcal{X}_d} p(x_1, x_2, \dots, x_d) \, dx_1 dx_2 \dots dx_d = 1$$

Marginal Distributions

A marginal distribution is defined for a subset of X by summing or integrating out the remaining variables. (We will often say that we are "marginalizing over" or "marginalizing out" the remaining variables).

Discrete case:
$$p(x_i) = \sum_{x_1 \in \mathcal{X}_1} \cdots \sum_{x_{i-1} \in \mathcal{X}_{i-1}} \sum_{x_{i+1} \in \mathcal{X}_{i+1}} \cdots \sum_{x_d \in \mathcal{X}_d} p(x_1, ..., x_{i-1}, x_{i+1}, ..., x_d)$$

Continuous:
$$p(x_i) = \int_{\mathcal{X}_1} \cdots \int_{\mathcal{X}_{i-1}} \int_{\mathcal{X}_{i+1}} \cdots \int_{\mathcal{X}_d} p(x_1, ..., x_{i-1}, x_{i+1}, ..., x_d) dx_1 ... dx_{i-1} dx_{i+1} ... dx_d$$

Question: Can a marginal distribution also be a joint distribution?

Question: Why p for $p(x_i)$ and $p(x_1, ..., x_d)$?

• They can't be the same function, they have different domains!

Are these really the same function?

- No. They're not the same function.
- But they are derived from the same joint distribution.
- So for brevity we will write

$$p(y \mid x) = \frac{p(x, y)}{p(x)}$$

Even though it would be more precise to write something like

$$p_{Y|X}(y \mid x) = \frac{p(x,y)}{p_X(x)}$$

• We tell which function we're talking about from context (i.e., arguments)

Chain Rule

From the definition of conditional probability:

$$p(y \mid x) = \frac{p(x, y)}{p(x)}$$

$$\iff p(y \mid x)p(x) = \frac{p(x, y)}{p(x)}p(x)$$

$$\iff p(y \mid x)p(x) = p(x, y)$$

This is called the Chain Rule.

Multiple Variable Chain Rule

The chain rule generalizes to multiple variables:

$$p(x, y, z) = p(x, y \mid z)p(z) = p(x \mid y, z)p(y \mid z)p(z)$$

$$p(y, z) = p(x, y \mid z)p(z) = p(x \mid y, z)p(y \mid z)p(z)$$

Definition: Chain rule

$$p(x_1, ..., x_d) = p(x_d) \prod_{i=1}^{d-1} p(x_i \mid x_{i+1}, ... x_d)$$
$$= p(x_1) \prod_{i=2}^{d} p(x_i \mid x_i, ... x_{i-1})$$

Bayes' Rule

From the chain rule, we have:

$$p(x, y) = p(y \mid x)p(x)$$
$$= p(x \mid y)p(y)$$

- Often, $p(x \mid y)$ is easier to compute than $p(y \mid x)$
 - e.g., where x is features and y is label

Example: Drug Test

Example:

$$p(Test = pos \mid User = T) = 0.99$$

$$p(Test = pos \mid User = F) = 0.01$$

$$p(User = True) = 0.005$$

Questions:

- 1. What is the likelihood?
- 2. What is the prior?
- 3. What is $p(User = T \mid Test = pos)$?

Independence of Random Variables

Definition: X and Y are independent if:

$$p(x, y) = p(x)p(y)$$

X and Y are conditionally independent given Z if:

$$p(x, y \mid z) = p(x \mid z)p(y \mid z)$$

Example: Coins (Ex.7 in the course text)

- Suppose you have a biased coin: It does not come up heads with probability 0.5.
 Instead, it is more likely to come up heads.
- Let Z be the bias of the coin, with $\mathcal{Z} = \{0.3, 0.5, 0.8\}$ and probabilities P(Z=0.3) = 0.7, P(Z=0.5) = 0.2 and P(Z=0.8) = 0.1.
 - Question: What other outcome space could we consider?
 - Question: What kind of distribution is this?
 - Question: What other kinds of distribution could we consider?
- Let X and Y be two consecutive flips of the coin
- Question: Are X and Y independent?
- Question: Are X and Y conditionally independent given Z?

Conditional Independence Is a Property of the Distribution

- Conditional independence is a property of the (joint) distribution
 - It is not somehow objective for all possible distributions

X	Y	Z	р
0	0	0.3	0.245
0	0	8.0	0.02
0	1	0.3	0.105
0	1	8.0	0.08
1	0	0.3	0.105
1	0	8.0	0.08
1	1	0.3	0.045
1	1	8.0	0.32

X	Y	Z	р
0	0	0.3	0.08
0	0	8.0	0.08
0	1	0.3	0.12
0	1	8.0	0.12
1	0	0.3	0.12
1	0	8.0	0.12
1	1	0.3	0.18
1	1	0.8	0.18

Expected Value

The expected value of a random variable is the **weighted average** of that variable over its domain.

Definition: Expected value of a random variable

$$\mathbb{E}[X] = \begin{cases} \sum_{x \in \mathcal{X}} xp(x) & \text{if } X \text{ is discrete} \\ \int_{\mathcal{X}} xp(x) \, dx & \text{if } X \text{ is continuous.} \end{cases}$$

Expected Value with Functions

The expected value of a function $f: \mathcal{X} \to \mathbb{R}$ of a random variable is the weighted average of that function's value over the domain of the variable.

Definition: Expected value of a function of a random variable

$$\mathbb{E}[f(X)] = \begin{cases} \sum_{x \in \mathcal{X}} f(x)p(x) & \text{if } X \text{ is discrete} \\ \int_{\mathcal{X}} f(x)p(x) \, dx & \text{if } X \text{ is continuous.} \end{cases}$$

Example:

Suppose you get \$10 if heads is flipped, or lose \$3 if tails is flipped. What are your winnings on expectation?

Conditional Expectations

Definition:

The expected value of Y conditional on X = x is

$$\mathbb{E}[Y \mid X = x] = \begin{cases} \sum_{y \in \mathcal{Y}} yp(y \mid x) & \text{if } Y \text{ is discrete,} \\ \int_{\mathcal{Y}} yp(y \mid x) \, dy & \text{if } Y \text{ is continuous.} \end{cases}$$

Question: What is $\mathbb{E}[Y \mid X]$?

Properties of Expectations

- Linearity of expectation:
 - $\mathbb{E}[cX] = c\mathbb{E}[X]$ for all constant c
 - $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$
- Products of expectations of independent random variables X, Y:
 - $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$
- Law of Total Expectation:

•
$$\mathbb{E}\left[\mathbb{E}\left[Y\mid X\right]\right] = \mathbb{E}[Y]$$

Question: How would you prove these?

$$\begin{split} \mathbb{E}[Y] &= \sum_{y \in \mathcal{Y}} y p(y) & \text{def. E[Y]} \\ &= \sum_{y \in \mathcal{X}} y \sum_{x \in \mathcal{X}} p(x,y) & \text{def. marginal distribution} \\ &= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} y p(x,y) & \text{rearrange sums} \\ &= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} y p(y \mid x) p(x) & \text{Chain rule} \\ &= \sum_{x \in \mathcal{X}} \left(\sum_{y \in \mathcal{Y}} y p(y \mid x) \right) p(x) & \text{def. E[Y \mid X = x]} \\ &= \sum_{x \in \mathcal{X}} \left(\mathbb{E}[Y \mid X = x] \right) p(x) & \text{def. E[Y \mid X = x]} \\ &= \sum_{x \in \mathcal{X}} \left(\mathbb{E}[Y \mid X = x] \right) p(x) & \text{def. E[Y \mid X = x]} \end{split}$$

 $= \mathbb{E}(\mathbb{E}[Y \mid X]) \blacksquare$ def. expected value of function

Expected Value is a Lossy Summary

$$\mathbb{E}[X] = 3$$

$$\mathbb{E}[X^2] \simeq 10$$

$$\mathbb{E}[X] = 3$$

$$\mathbb{E}[X^2] \simeq 12$$

Variance

Definition: The variance of a random variable is

$$Var(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2\right].$$

i.e., $\mathbb{E}[f(X)]$ where $f(x) = (x - \mathbb{E}[X])^2$.

Equivalently,

$$Var(X) = \mathbb{E}\left[X^2\right] - (\mathbb{E}[X])^2$$

(why?)

Covariance

Definition: The covariance of two random variables is

$$Cov(X, Y) = \mathbb{E}\left[(X - \mathbb{E}[X])^2\right]$$
$$= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$$

Question: What is the range of Cov(X, Y)?

Correlation

Definition: The correlation of two random variables is

$$Corr(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X)Var(Y)}}$$

Question: What is the range of Corr(X, Y)?

hint: Var(X) = Cov(X, X)

Properties of Variances

- Var[c] = 0 for constant c
- $Var[cX] = c^2 Var[X]$ for constant c
- Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]
- For independent X, Y, Var[X + Y] = Var[X] + Var[Y] (why?)

Independence and Decorrelation

Independent RVs have zero correlation (why?)

hint:
$$Cov[X, Y] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

- Uncorrelated RVs (i.e., Cov(X, Y) = 0) might be dependent (i.e., $p(x, y) \neq p(x)p(y)$).
 - Correlation (Pearson's correlation coefficient) shows linear relationships; but can miss nonlinear relationships
 - Example: $X \sim \text{Uniform}\{-2, -1, 0, 1, 2\}, Y = X^2$
 - $\mathbb{E}[XY] = .2(-2 \times 4) + .2(2 \times 4) + .2(-1 \times 1) + .2(1 \times 1) + .2(0 \times 0)$
 - $\mathbb{E}[X] = 0$
 - So $\mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y] = 0 0\mathbb{E}[Y] = 0$

Summary

- Random variables are functions from sample to some value
 - Upshot: A random variable takes different values with some probability
- The value of one variable can be informative about the value of another (because they are both functions of the same sample)
 - Distributions of multiple random variables are described by the **joint** probability distribution (joint PMF or joint PDF)
 - You can have a new distribution over one variable when you condition on the other
- The **expected value** of a random variable is an **average** over its values, **weighted** by the probability of each value
- The variance of a random variable is the expected squared distance from the mean
- The **covariance** and **correlation** of two random variables can summarize how changes in one are informative about changes in the other.