Probabllity, continued

CMPUT 296: Basics of Machine Learning



Recap

Probabillities are a means of quantifying uncertainty

A probabillity distribution is defined on a measurable space consisting of a
sample space and an event space.

Discrete sample spaces (and random variables) are defined in terms of
probability mass functions (PMFs)

Continuous sample spaces (and random variables) are defined in terms of
probability density functions (PDFs)




| ogistics

Now available on eClass:
* Videos and slides for last week
* Discussion forum!
* Thought Question 1 (due Thursday, September 17)
* Assignment 1 (due Thursday, September 24)

TA office hours:
 Ehsan: Wednesdays 3-4pm
e Or 3-5pm on "tutorial” weeks
* Liam: Fridays 11am-12pm
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Random Variables

Random variables are a way of reasoning about a complicated underlying
probabillity space in a more straightforward way.

Example: Suppose we observe both a die's number, and where it lands.
Q = {(left,1), (right,1), (left,2), (right,2), ..., (right,6)}

We might want to think about the probability that we get a large number,
without thinking albout where it landeq.

We could ask about P(X > 4), where X = number that comes up.



Random Variables, rormally

Given a probability space (€2, &, P), a random variable is a function
X : Q= Ly (where 2y is some other outcome space), satisfying

iwe Q| X(w)eA}l €& VA e B(y).
t follows that Py(A) = P({w € Q | X(w) € A}).

Example: Let 2 be a population of people, and X(w) = height, and
A =1[51",572"]

PXeEA) =P51"<X<52)=PlweQ: X cA)



Random Variables and Events

* A Boolean expression involving random variables defines an event:
E.g., PX 2 4) = P(low € Q| X(w) 2 4})

e Similarly, every event can be understood as a Boolean random variable:

y — 1 if event A occurred
0 otherwise.

* From this point onwards, we will exclusively reason in terms of random
variables rather than probability spaces.




Example: Ristograms

Consider the continuous commuting example again, with observations 12.345
minutes, 11.78213 minutes, etc.

25

.20 o|©
15
.10 °
.05 ©
° W

4 6 &8 10 12 14 16 18 20 22 24 ¢

e Question: \What is the random variable?

* Question: How could we turn our observations into a histogram?



What About Multiple Variables®

e 5o far, we've really been thinking about a single random variable at a time
o Straightforward to define multiple random variables on a single probability space

Example: Suppose we observe both a die's number, and where it lands.
Q = {(left,1), (right,1), (left,2), (right,2), ..., (right,6)}

X(w) = @, = number

P
Y(w) = {1 e left} = ] if landed on left

0 otherwise.

PY=1)=P({w | Y(w) =1})
PX>4ANY=1)=P({w | X(w) 24 ANY(w)=1})



Joint Distribution

We typically be model the interactions of different random variables.

Joint probability mass function: p(x,y) = P(X =x,Y = y)

Z Zp(x,y)=1

xXeEX yeY

Example: 2 = {0,1} (young, old) and % = {0,1} (no arthritis, arthritis)

Y=0 Y=1
""" w_g PX=0Y=0)= P(X=0, Y=1)=
1/2 1/100




Questions About Multiple Variables

Example: 2 = {0,1} (young, old) and % = {0,1} (no arthritis, arthritis)

=0 =1
""" weg PX=0Y=0)= P(X=0,Y=1)=
e e 17100
X=1 P(X=1,Y=0) = PX=1, Y=1) =
- 1/10 39/100

* Are these two variables related at all? Or do they change independently?

* Given this distribution, can we determine the distribution over just Y*?
.e., what is P(Y = 1)? (marginal distribution)

* [f we knew something about one variable, does that tell us something albout the distribution
over the other? E.g., if | know X = O (person is young), does that tell me the
conditional probability P(Y =1 | X = 1)? (Prob. that person we know is young has arthritis)




Conditional Distribution

Definition: Conditional probability distribution
PX=x,Y=Yy)

PY=y|X=1x) = POX = 0

This same equation will hold for the corresponding PDF or PMF:

px,y)
p(x)

piy | x) =

Question: if p(x, y) is small, does that imply that p(y | x) is small?



PVIFs and PDEFs of Many Variaples

In general, we can consider a d-dimensional rando

valued outcomes x = (xq, ..., X,;), Wit

Discrete case:

n each X; C

M variable X = (X, ..., X ;) with vector-

nosen from some &',. Then,

p: X XAy X...X,;— [0,1]is a (joint) probability mass function if

Z Z Z p(Xi, Xy oy xy) = 1

XIESXI Xzeg‘z

Continuous case:

x,€ ,

p: X XAy X ... XX ,;— [0,00)is a (joint) probability density function if

)L

1 2 d

J p(xy, X, ..
q

LX) dxdx,...dx; =1



Marginal Distributions

A marginal distribution is defined for a subset of )_f by summing or integrati

out the remaining variables. (We will often say that we are "marginalizing ove
or "marginalizing out" the remaining variables).

Discrete case: p(x,) = Z Z Z Z DXy s X s Xy s e e X)

XE€EX T X €L X € XEL

Continuous: p(x) = J

%1 i—1 i+1 d

Question: Can a marginal distribution also be a joint distribution®
Question: Why p for p(x;) and p(xy, ..., Xx;)?
 [hey can't be the same function, they have different domains!

ng

f.ll

J J J P(X[s oo s X5 Xip s oo es Xg) dXy...dX;_1dX; .. .dX,
VA VA VA



Are these really the same function®

* No. They're not the same function.
* But they are derived from the same joint distribution.
e SO for brevity we will write

p(x,y)

p(x)

* Even though it would be more precise to write something like
p(x,y)
px(x)
 We tell which function we're talking albout from context (l.e., arguments)

piy | x) =

leX(y | X) =



Chain Rule

-rom the definition of conditional probabillity:

p(y | x) _ PLey)
p(x)
= po | opey =28 0
p(x)
< p(y | x)p(x) = p(x,y)

This is called the Chain Rule.



Multiple Variable Chain Rule

The chain rule generalizes to multiple variables:

px,y,2) = px,y | 2pi) =px |y dpQy| 2)pk)

p(;,z)

Definition: Chain rule

d—1
P(Xpy e Xy) = p(xd)Hp(xi | X g X))
i=1

d
= p(xl)Hp(xi | X X2 p)
=2




Bayes Rule

-rom the chain rule, we have:

px,y) = p(y | x)p(x)

=px | Y)p(y)
 Often, p(x | v) is easier to compute than p(y | x)

* e.g., where x is features and y is label

Definition: Bayes' rule

Posterior

\
7O 17)-

l
px | yp(y)

/

Prior

«

Evidence




Example:

Posterior /
AN P | 9 28]
D ru g TeS-t : <—Evidence

Example:

p(Test = pos | User = T) = 0.99
p(Test = pos | User = F) = 0.01
p(User = True) = 0.005

1.

Questions:

What is the likelihood?

2. What is the prior?

3. Whatis p(User =T | Test = pos)?




INndependence of Random Variables

Definition: X and Y are independent if:

px,y) = px)p(y)

X and Y are conditionally independent given Z if:

px,y|z2)=pkx|2pQ|2)




Example: Coins
(EX.7 In the course text)

SUPPOSe you have a biased coin: It does not come up heads with probability 0.5.
Instead, it is more likely to come up heads.

et Z be the bias of the coin, with £ = {0.3,0.5,0.8} and probabilities
PZ=03)=0.7,P(Z=0.5)=0.2and P(Z=0.8) =0.1.
 Question: \What other outcome space could we consider?

* Question: \What kind of distribution is this?

* Question: What other kinds of distribution could we consider?

Let X and Y be two consecutive flips of the coin
Question: Are X and Y independent?

Question: Are X and Y conditionally independent given Z?



Conditional Independence |Is a
Property of the Distribution

o (Conditional independence is a property of the (joint) distribution
e |t is not somehow objective for all possible distributions

X Y @z 0 X Y z p

0 0 03 0245 0 0 03 008
0 0 08 002 0 0 08 008
0 1 03 0105 0 1 03 o012
0 1 08 008 0 1 08 012
"""""""""""""""""" 0 03 0105 10 03 012
"""""""""""""""""" 0 08 008 1 0 08 o012
"""""""""""""""""" 1 03 0045 1 1 03 o018

..........................................................................................................................................................................................................




=Xpected Value

The expected value of a random variable is the weighted average of that
variable over its domain.

Definition: Expected value of a random variable

er o Xp(x) if X'is discrete

—[X] =

I o xp(x)dx if X is continuous.




EXpected Value with Functions

The expected value of a function f : & — R of a random variable is the
weighted average of that function's value over the domain of the variable.

Definition: Expected value of a function of a random variable

er o JOp(x) if X'is discrete
ISZ, f(x)p(x)dx if Xis continuous.

—[f(X)] =

Example:
Suppose you get $10 if heads is flipped, or lose $3 if tails is flipped.
What are your winnings on expectation?




Conditional Expectations

Definition:
The expected value of ¥ conditional on X = x is

Zyegyp(y | x) if Yis discrete,

-|Y ‘ X =x]|=
J? yp(v | x)dy if Yis continuous.

Question: What is E[Y | X]?




Properties of Expectations

Linearity of expectation: E[Y] = Z yp(y) def. E[Y]
YEY

e [E[cX] = clt[X] for all constant ¢ =Yy Y by et marainal distibuton

e EIX+Y]|=E[X]+[E[Y] V€Y €

. . B Z Z yp(x y) rearrange sums

Products of expectations of independent YeX yeY

random variables X, Y- =Y Y w0 | x)pk) Chain rule
xed yeY

» E[XY] = E[X]E[Y]

Law of Total Expectation: B XZ? [yg;y Py | x)]p )

. -l-[Y\XH = [E[ Y] =Z([E[Y\X=x])p(x) def. E[Y | X = X]
xXeX

Question: How would you prove these? B 2 (ELY | X'= 1) px)

XEX
= E (E[Y | X]) B def. expected value of function



Expected Value Is a Lossy Summary

P(X)
P(X)




Variance

Definition: [he variance of a random variable Is

Var(X) =

= [(X—

[ X])?|.

.e., E[ f(X)] where f(x) = (x — -[X])z.

—quivalently,
Var(X) =

(why?)

- [X?] = (ELX1)°




Covariance

Definition: The covariance of two random variables Is

[ X])?)

Cov(X,Y) =

- [(x -

- [ XY | =

= [ X ]

-1 Y].

Large Positive
Covariance

Large Negative
Covariance

Near Zero
Covariance

Question: \What is the range of Cov(X, Y)?




Correlation

Definition: The correlation of two random variables IS
Cov(X, Y)

\/ Var(X)Var(Y)

Corr(X, Y) =

Large Negative Near Zero Large Positive
Covariance Covariance Covariance

Question: \What is the range of Corr(X, Y)?
hint: Var(X) = Cov(X, X)




Properties of Varlances

» Var|c] = O for constant ¢

e Var[cX] = ¢*Var[X] for constant ¢

e Var|X + Y| = Var|X] + Var| Y] + 2Cov| X, Y]

* Forindependent X, Y,

Var| X + Y| = Var| X | + Var[ Y] (why?)



INndependence and Decorrelation

* [ndependent RVs have zero correlation (why?)

hint: Cov| X, Y| = E|XY]| — E[X]E]Y]

» Uncorrelated RVs (i.e., Cov(X, Y) = 0) might be dependent

(i.e., p(x,y) # p(xX)p(y)).

 Correlation (Pearson's correlation coefficient) shows linear relationships; but can
Miss nonlinear relationships

. Example: X ~ Uniform{—=2, — 1,0,1,2}, ¥ = X?
e EIXY]=2(—2%x4)+.22%x4)+ 2(—1x1)+.2(1 x1)+ .2(0%x0)
e E[X] =0
e SO E[XY]—-EIX]|E[Y]=0-0E[Y] =0




Summary

Random variables are functions from sample to some value
* Upshot: A random variable takes different values with some probability

The value of one variable can be informative about the value of another
(oecause they are both functions of the same sample)

* Distributions of multiple random variables are described by the joint probability
distribution (joint PMF or joint PDF)

* You can have a new distribution over one variable when you condition on the other

The expected value of a random variable is an average over its values, weighted by the
porobability of each value

The variance of a random variable is the expected squared distance from the mean

The covariance and correlation of two random variables can summarize how changes in
one are informative about changes in the other.



