
Probability, continued

CMPUT 296: Basics of Machine Learning 
 

§2.2-2.4



Recap

• Probabilities are a means of quantifying uncertainty 

• A probability distribution is defined on a measurable space consisting of a 
sample space and an event space. 

• Discrete sample spaces (and random variables) are defined in terms of 
probability mass functions (PMFs) 

• Continuous sample spaces (and random variables) are defined in terms of 
probability density functions (PDFs)



Logistics
Now available on eClass: 

• Videos and slides for last week 
• Discussion forum! 
• Thought Question 1 (due Thursday, September 17) 
• Assignment 1 (due Thursday, September 24) 

TA office hours: 
• Ehsan: Wednesdays 3-4pm  

• or 3-5pm on "tutorial" weeks 
• Liam: Fridays 11am-12pm
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Random Variables

Random variables are a way of reasoning about a complicated underlying 
probability space in a more straightforward way. 

Example: Suppose we observe both a die's number, and where it lands. 

 

We might want to think about the probability that we get a large number, 
without thinking about where it landed.   

We could ask about , where  = number that comes up.

Ω = {(left,1), (right,1), (left,2), (right,2), …, (right,6)}

P(X ≥ 4) X



Random Variables, Formally
Given a probability space , a random variable is a function 

 (where  is some other outcome space), satisfying 

. 

It follows that . 

Example: Let  be a population of people, and  = height, and 
. 

.

(Ω, ℰ, P)
X : Ω → ΩX ΩX

{ω ∈ Ω ∣ X(ω) ∈ A} ∈ ℰ ∀A ∈ B(ΩX)

PX(A) = P({ω ∈ Ω ∣ X(ω) ∈ A})

Ω X(ω)
A = [5′ 1′ ′ ,5′ 2′ ′ ]

P(X ∈ A) = P(5′ 1′ ′ ≤ X ≤ 5′ 2′ ′ ) = P({ω ∈ Ω : X(ω) ∈ A})



Random Variables and Events

• A Boolean expression involving random variables defines an event: 
        E.g.,  

• Similarly, every event can be understood as a Boolean random variable: 

         

• From this point onwards, we will exclusively reason in terms of random 
variables rather than probability spaces.

P(X ≥ 4) = P({ω ∈ Ω ∣ X(ω) ≥ 4})

Y = {1 if event A occurred
0 otherwise.



Example: Histograms
Consider the continuous commuting example again, with observations 12.345 
minutes, 11.78213 minutes, etc. 

 

• Question: What is the random variable? 

• Question: How could we turn our observations into a histogram?

.05

.10

.15

Gamma(31.3, 0.352)

.20

.25

6 8 10 184 12 14 16 t20 22 24



What About Multiple Variables?
• So far, we've really been thinking about a single random variable at a time 

• Straightforward to define multiple random variables on a single probability space 

Example: Suppose we observe both a die's number, and where it lands. 

 

                  

 

 

Ω = {(left,1), (right,1), (left,2), (right,2), …, (right,6)}

X(ω) = ω2 = number

Y(ω) = {1 if ω1 = left
0 otherwise. } = 1 if landed on left

P(Y = 1) = P({ω ∣ Y(ω) = 1})

P(X ≥ 4 ∧ Y = 1) = P({ω ∣ X(ω) ≥ 4 ∧ Y(ω) = 1})



Joint Distribution
We typically be model the interactions of different random variables. 

Joint probability mass function:  

  

Example:  (young, old)   and     (no arthritis, arthritis)

p(x, y) = P(X = x, Y = y)

∑
x∈𝒳

∑
y∈𝒴

p(x, y) = 1

𝒳 = {0,1} 𝒴 = {0,1}

Y=0 Y=1

X=0 P(X=0,Y=0) = 
1/2

P(X=0, Y=1) = 
1/100

X=1 P(X=1, Y=0) = 
1/10

P(X=1, Y=1) = 
39/100



Questions About Multiple Variables
Example:  (young, old)   and     (no arthritis, arthritis)𝒳 = {0,1} 𝒴 = {0,1}

Y=0 Y=1

X=0 P(X=0,Y=0) = 
1/2

P(X=0, Y=1) = 
1/100

X=1 P(X=1, Y=0) = 
1/10

P(X=1, Y=1) = 
39/100

• Are these two variables related at all?  Or do they change independently? 
• Given this distribution, can we determine the distribution over just  ?   

I.e., what is ?  (marginal distribution) 
• If we knew something about one variable, does that tell us something about the distribution 

over the other?  E.g., if I know  (person is young), does that tell me the 
conditional probability ?  (Prob. that person we know is young has arthritis)

Y
P(Y = 1)

X = 0
P(Y = 1 ∣ X = 1)



Conditional Distribution

 

This same equation will hold for the corresponding PDF or PMF: 

  

Question: if  is small, does that imply that  is small?

Definition: Conditional probability distribution 

 P(Y = y ∣ X = x) =
P(X = x, Y = y)

P(X = x)

p(y ∣ x) =
p(x, y)
p(x)

p(x, y) p(y ∣ x)



PMFs and PDFs of Many Variables
In general, we can consider a -dimensional random variable  with vector-
valued outcomes , with each  chosen from some .  Then, 

Discrete case: 
 is a (joint) probability mass function if 

  

Continuous case: 
 is a (joint) probability density function if 

 

d ⃗X = (X1, …, Xd)
⃗x = (x1, …, xd) xi 𝒳i

p : 𝒳1 × 𝒳2 × … × 𝒳d → [0,1]

∑
x1∈𝒳1

∑
x2∈𝒳2

⋯ ∑
xd∈𝒳d

p(x1, x2, …, xd) = 1

p : 𝒳1 × 𝒳2 × … × 𝒳d → [0,∞)

∫𝒳1
∫𝒳2

⋯∫𝒳d

p(x1, x2, …, xd) dx1dx2…dxd = 1



Marginal Distributions
A marginal distribution is defined for a subset of  by summing or integrating 
out the remaining variables.  (We will often say that we are "marginalizing over" 
or "marginalizing out" the remaining variables). 

Discrete case:   

Continuous:  

Question: Can a marginal distribution also be a joint distribution? 
Question: Why  for  and ? 

• They can't be the same function, they have different domains!

⃗X

p(xi) = ∑
x1∈𝒳1

⋯ ∑
xi−1∈𝒳i−1

∑
xi+1∈𝒳i+1

⋯ ∑
xd∈𝒳d

p(x1, …, xi−1, xi+1, …, xd)

p(xi) = ∫𝒳1

⋯∫𝒳i−1
∫𝒳i+1

⋯∫𝒳d

p(x1, …, xi−1, xi+1, …, xd) dx1…dxi−1dxi+1…dxd

p p(xi) p(x1, …, xd)



Are these really the same function?
• No.  They're not the same function. 
• But they are derived from the same joint distribution. 
• So for brevity we will write  

  

• Even though it would be more precise to write something like 

  

• We tell which function we're talking about from context (i.e., arguments)

p(y ∣ x) =
p(x, y)
p(x)

pY∣X(y ∣ x) =
p(x, y)
pX(x)



Chain Rule

From the definition of conditional probability: 

                  

         

   

This is called the Chain Rule.

p(y ∣ x) =
p(x, y)
p(x)

⟺ p(y ∣ x)p(x) =
p(x, y)
p(x)

p(x)

⟺ p(y ∣ x)p(x) = p(x, y)



Multiple Variable Chain Rule
The chain rule generalizes to multiple variables: 

  p(x, y, z) = p(x, y ∣ z)p(z) = p(x ∣ y, z)p(y ∣ z)p(z)

p(y,z)

Definition: Chain rule 

 

p(x1, …, xd) = p(xd)
d−1

∏
i=1

p(xi ∣ xi+1, …xd)

= p(x1)
d

∏
i=2

p(xi ∣ xi, …xi−1)



Bayes' Rule
From the chain rule, we have:  

 

• Often,  is easier to compute than  
• e.g., where  is features and  is label 

p(x, y) = p(y ∣ x)p(x)
= p(x ∣ y)p(y)

p(x ∣ y) p(y ∣ x)
x y

Definition: Bayes' rule 

p(y ∣ x) =
p(x ∣ y)p(y)

p(x)

Posterior Likelihood Prior

Evidence



Example:  
Drug Test

Example:  

 
p(Test = pos ∣ User = T) = 0.99
p(Test = pos ∣ User = F) = 0.01

p(User = True) = 0.005

Posterior
Likelihood

Prior

Evidence
p(y ∣ x) =

p(x ∣ y)p(y)
p(x)

Questions: 

1. What is the likelihood? 

2. What is the prior? 

3. What is ? p(User = T ∣ Test = pos)



Independence of Random Variables

Definition:   and  are independent if: 

  

 and  are conditionally independent given  if: 

X Y

p(x, y) = p(x)p(y)

X Y Z

p(x, y ∣ z) = p(x ∣ z)p(y ∣ z)



Example: Coins 
(Ex.7 in the course text)

• Suppose you have a biased coin: It does not come up heads with probability 0.5.  
Instead, it is more likely to come up heads. 

• Let  be the bias of the coin, with  and probabilities 
,  and . 

• Question: What other outcome space could we consider? 
• Question: What kind of distribution is this? 
• Question: What other kinds of distribution could we consider? 

• Let  and  be two consecutive flips of the coin 

• Question: Are  and  independent? 

• Question: Are  and  conditionally independent given ?

Z 𝒵 = {0.3,0.5,0.8}
P(Z = 0.3) = 0.7 P(Z = 0.5) = 0.2 P(Z = 0.8) = 0.1

X Y

X Y

X Y Z



Conditional Independence Is a 
Property of the Distribution

• Conditional independence is a property of the (joint) distribution 
• It is not somehow objective for all possible distributions 

X Y Z p
0 0 0.3 0.245
0 0 0.8 0.02
0 1 0.3 0.105
0 1 0.8 0.08
1 0 0.3 0.105
1 0 0.8 0.08
1 1 0.3 0.045
1 1 0.8 0.32

X Y Z p
0 0 0.3 0.08
0 0 0.8 0.08
0 1 0.3 0.12
0 1 0.8 0.12
1 0 0.3 0.12
1 0 0.8 0.12
1 1 0.3 0.18
1 1 0.8 0.18



Expected Value

The expected value of a random variable is the weighted average of that 
variable over its domain. 

Definition: Expected value of a random variable 

 𝔼[X] = {
∑x∈𝒳 xp(x) if X is discrete

∫
𝒳

xp(x) dx if X is continuous.



Expected Value with Functions
The expected value of a function  of a random variable is the 
weighted average of that function's value over the domain of the variable. 

 
Example: 
Suppose you get $10 if heads is flipped, or lose $3 if tails is flipped. 
What are your winnings on expectation?

f : 𝒳 → ℝ

Definition: Expected value of a function of a random variable 

 𝔼[ f(X)] = {
∑x∈𝒳 f(x)p(x) if X is discrete

∫
𝒳

f(x)p(x) dx if X is continuous.



Conditional Expectations

 

Question: What is ?

Definition: 
The expected value of  conditional on  is Y X = x

𝔼[Y ∣ X = x] =
∑y∈𝒴 yp(y ∣ x) if Y is discrete,

∫
𝒴

yp(y ∣ x) dy if Y is continuous.

𝔼[Y ∣ X]



Properties of Expectations
• Linearity of expectation: 

•  for all constant  
•  

• Products of expectations of independent 
random variables : 

•  

• Law of Total Expectation: 

•  

• Question: How would you prove these?

𝔼[cX] = c𝔼[X] c
𝔼[X + Y] = 𝔼[X] + 𝔼[Y]

X, Y
𝔼[XY] = 𝔼[X]𝔼[Y]

𝔼 [𝔼 [Y ∣ X]] = 𝔼[Y]

 

 

 

 

 

 

 

𝔼[Y ] = ∑
y∈𝒴

yp(y)

𝔼[Y ] = ∑
y∈𝒴

y ∑
x∈𝒳

p(x, y)

𝔼[Y ] = ∑
x∈𝒳

∑
y∈𝒴

yp(x, y)

𝔼[Y ] = ∑
x∈𝒳

∑
y∈𝒴

yp(y ∣ x)p(x)

𝔼[Y ] = ∑
x∈𝒳

∑
y∈𝒴

yp(y ∣ x) p(x)

𝔼[Y ] = ∑
x∈𝒳

(𝔼[Y ∣ X = x]) p(x)

𝔼[Y ] = ∑
x∈𝒳

(𝔼[Y ∣ X = x]) p(x)

𝔼[Y ] = 𝔼 (𝔼[Y ∣ X]) ∎

def. marginal distribution

def. E[Y]

rearrange sums

Chain rule

def. E[Y | X = x]

def. expected value of function



Expected Value is a Lossy Summary

1 2 3 4 51 2 3 4 5

𝔼[X] = 3 𝔼[X] = 3

𝔼[X2] ≃ 10 𝔼[X2] ≃ 12

X X

P(
X

)

P(
X

)



Variance

 

i.e.,  where . 

Equivalently, 

  

 (why?)

Definition: The variance of a random variable is 

.Var(X) = 𝔼 [(X − 𝔼[X])2]

𝔼[ f(X)] f(x) = (x − 𝔼[X])2

Var(X) = 𝔼 [X2] − (𝔼[X])2



Covariance

 

 
Question: What is the range of ?

Definition: The covariance of two random variables is 

 
Cov(X, Y) = 𝔼 [(X − 𝔼[X])2]

= 𝔼[XY] − 𝔼[X]𝔼[Y] .

Cov(X, Y)



Correlation

 

 
Question: What is the range of ? 
hint: 

Definition: The correlation of two random variables is 

 Corr(X, Y) =
Cov(X, Y)
Var(X)Var(Y)

Corr(X, Y)
Var(X) = Cov(X, X)



Properties of Variances

•  for constant  

•  for constant  

•  

• For independent ,  
 (why?)

Var[c] = 0 c

Var[cX] = c2Var[X] c

Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]

X, Y
Var[X + Y] = Var[X] + Var[Y]



Independence and Decorrelation
• Independent RVs have zero correlation (why?) 

        hint:  

• Uncorrelated RVs (i.e., ) might be dependent  
(i.e., ). 
• Correlation (Pearson's correlation coefficient) shows linear relationships; but can 

miss nonlinear relationships 
• Example: ,  

•  
•  
• So 

Cov[X, Y] = 𝔼[XY] − 𝔼[X]𝔼[Y]

Cov(X, Y) = 0
p(x, y) ≠ p(x)p(y)

X ∼ Uniform{−2, − 1,0,1,2} Y = X2

𝔼[XY] = .2(−2 × 4) + .2(2 × 4) + .2(−1 × 1) + .2(1 × 1) + .2(0 × 0)
𝔼[X] = 0

𝔼[XY] − 𝔼[X]𝔼[Y] = 0 − 0𝔼[Y] = 0



Summary
• Random variables are functions from sample to some value 

• Upshot: A random variable takes different values with some probability 

• The value of one variable can be informative about the value of another 
(because they are both functions of the same sample) 

• Distributions of multiple random variables are described by the joint probability 
distribution (joint PMF or joint PDF) 

• You can have a new distribution over one variable when you condition on the other 

• The expected value of a random variable is an average over its values, weighted by the 
probability of each value 

• The variance of a random variable is the expected squared distance from the mean 

• The covariance and correlation of two random variables can summarize how changes in 
one are informative about changes in the other.


