
Machine Learning Handbook

Predrag Radivojac and Martha White

November 5, 2019



Table of Contents

Notation Reference 4

Preface: A starting example with linear regression 8

1 Introduction to Probabilistic Modeling 10
1.1 Probability Theory and Random Variables . . . . . . . . . . . . . . . . . . . 12
1.2 Defining distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.1 Probability mass functions . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.2 Probability density functions . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Multivariate random variables . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.1 Conditional distributions . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.2 Independence of random variables . . . . . . . . . . . . . . . . . . . 24

1.4 Expectations and moments . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.5 Multivariate PMFs and PDFs . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Introduction to Optimization 31
2.1 The basic optimization problem and stationary points . . . . . . . . . . . . 31
2.2 Gradient descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Selecting the step-size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4 Optimization properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Basic Principles of Parameter Estimation 37
3.1 MAP and Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . 37
3.2 Maximum likelihood for conditional distributions . . . . . . . . . . . . . . . 42
3.3 The relationship between maximizing likelihood and Kullback-Leibler diver-

gence** . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Introduction to Prediction Problems 45
4.1 Supervised learning problems . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 Regression and Classification . . . . . . . . . . . . . . . . . . . . . . 46
4.1.2 Deciding how to formalize the problem . . . . . . . . . . . . . . . . . 48

4.2 Unsupervised learning and semi-supervised learning . . . . . . . . . . . . . 48
4.3 Optimal classification and regression models . . . . . . . . . . . . . . . . . . 49

4.3.1 Examples of Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.2 Deriving the Optimal Predictors . . . . . . . . . . . . . . . . . . . . 50
4.3.3 Reducible and Irreducible Error . . . . . . . . . . . . . . . . . . . . . 52

4.4 Bayes Optimal Models** . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1



5 Linear Regression 56
5.1 Maximum likelihood formulation . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 Ordinary Least-Squares (OLS) Regression . . . . . . . . . . . . . . . . . . . 58

5.2.1 Weighted error function . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.2 Predicting multiple outputs simultaneously . . . . . . . . . . . . . . 61

5.3 Linear regression for non-linear problems . . . . . . . . . . . . . . . . . . . . 61
5.3.1 Polynomial curve fitting . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Stability and the bias-variance trade-off . . . . . . . . . . . . . . . . . . . . 64
5.4.1 Sensitivity of the OLS solution . . . . . . . . . . . . . . . . . . . . . 64
5.4.2 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4.3 Expectation and variance for the regularized solution . . . . . . . . . 67

5.5 The Bias-Variance Trade-off . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 More advanced optimization principles 72
6.1 Multivariate gradient descent . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2 Properties of the Hessian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3 Handling big data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.4 Non-smooth but still continuous optimization . . . . . . . . . . . . . . . . . 76
6.5 More methods to select the step-size . . . . . . . . . . . . . . . . . . . . . . 77

7 Generalized Linear Models 78
7.1 Exponential transfer and the Poisson distribution . . . . . . . . . . . . . . . 78
7.2 Exponential family distributions . . . . . . . . . . . . . . . . . . . . . . . . 80
7.3 Formalizing generalized linear models . . . . . . . . . . . . . . . . . . . . . 81

8 Linear Classifiers 84
8.1 Logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.1.1 Predicting class labels . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.1.2 Maximum likelihood estimation for logistic regression . . . . . . . . 86
8.1.3 Issues with minimizing Euclidean distance . . . . . . . . . . . . . . . 88

8.2 Naive Bayes Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.2.1 Binary features and linear classification . . . . . . . . . . . . . . . . 91
8.2.2 Continuous naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.3 Multinomial logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . 93

9 Representations for machine learning 95
9.1 Radial basis function networks and kernel representations . . . . . . . . . . 95
9.2 Learning representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9.2.1 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.2.2 Unsupervised learning and matrix factorization . . . . . . . . . . . . 102

10 Evaluation of Learning Algorithms 105
10.1 A brief introduction to generalization bounds . . . . . . . . . . . . . . . . . 106

10.1.1 Concentration inequalities . . . . . . . . . . . . . . . . . . . . . . . . 107
10.1.2 Complexity of a function class . . . . . . . . . . . . . . . . . . . . . 107
10.1.3 Generalization bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 108

10.2 Comparison of Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . 109

2



10.3 Obtaining samples of error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
10.4 Performance measures for Classification Models . . . . . . . . . . . . . . . . 111

Bibliography 113

A Additional material for probability theory 115
A.1 Axioms of probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.2 A few more useful pmfs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.3 A few more useful pdfs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.4 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.4.1 Formal definition of random variable . . . . . . . . . . . . . . . . . . 119
A.4.2 Example of conditional independence . . . . . . . . . . . . . . . . . . 121
A.4.3 Additional information for expectations and moments . . . . . . . . 121

A.5 Mixtures of distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
A.6 Graphical representation of probability distributions . . . . . . . . . . . . . 126

B Optimization background 130
B.1 Basic rules for gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

C Linear algebra background 131
C.1 An Algebraic Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

C.1.1 The four fundamental subspaces . . . . . . . . . . . . . . . . . . . . 131
C.1.2 Minimizing ‖Ax− b‖22 . . . . . . . . . . . . . . . . . . . . . . . . . . 132

D Details on unsupervised representation approaches using factorization 135

E Bayesian estimation 138

3



Notation Reference

Set notation

X A generic set of values. For example, X = {0, 1} is the set containing only 0 and 1,
X = [0, 1] is the interval from 0 to 1 and X = R is the set of real numbers. Depending on
occasion, symbols such as A, B, Ω, and others will also be used as sets.

P(X ) The power set of X , a set containing all possible subsets of X .

[a, b] Closed interval with a < b, including both a and b.

(a, b) Open interval with a < b, with neither a nor b in the set.

(a, b] Open-closed interval with a < b, including b but not a.

[a, b) Closed-open interval with a < b, including a but not b.

Vector and matrix notation

x Unbold lowercase variables are generally scalars. However, when x ∈ X , where X is
not specified, x may imdicate a vector, a structured object such as graph, etc.

x Bold lowercase variables are vectors. By default, vectors are column vectors.

X Bold uppercase variables are matrices. This looks like a multivariate random variable,
X, but the random variable is italicized. It will often be clear from context when this is a
multivariate random variable and when it is a matrix.

X> The transpose of the matrix. For two matrices A and B, it holds that

(AB)> = B>A>.

An n× d matrix consisting of n vectors each of dimension d can be expressed as

X = [x1 x2 . . . xn]> .

Xi: The i-th row of the matrix. A row vector.

X:j The j-th column of the matrix. A column vector.
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Tuples, vectors, and sequences

(x1, x2, . . . , xd) A tuple; i.e., an ordered list of d elements. When (x1, x2, . . . , xd) ∈ Rd,
the tuple will be treated as a column vector x = [x1 x2 . . . xd]>.

a1, . . . , am A sequence of m items. Index variables over these sequences are usually the
variables i, j, or k. For example,

∑m
i=1 ai or, if each ai is a vector of dimension d, then the

double index
∑m
i=1

∑d
j=1 aij .

Function notation

f : X → Y The function is defined on domain X to co-domain Y, taking values x ∈ X
and sending them to f(x) ∈ Y.

df
dx(x) The derivative of a function at x ∈ X , where f : X → R for X ⊂ R.

∇f(x) The gradient of a function at x ∈ X , where f : X → R for X ⊂ Rd. It holds that

∇f(x) =
(
∂f

∂x1
,
∂f

∂x2
, ...,

∂f

∂xd

)
.

Hf(x) The Hessian matrix of a function at x ∈ X , where f : X → R for X ⊂ Rd. It holds
that

Hf(x) =



∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xd

∂2f
∂x2∂x1

∂2f
∂x2

2... . . .
∂2f

∂xd∂x1
∂2f
∂x2
d

 .

` : Rd → R A loss function indicating the error in prediction incurred by the given
weights, `(w). If subscripted, `i typically indicates the loss on the ith instance, with `(w) =
1
n

∑n
i=1 `i(w) for n instances.

c : Rd → R A generic objective function, that we want to minimize, for the learned
variable w. This could be, for example, a loss plus a regularizer.

Random variables and probabilities

X A univariate random variable is written in uppercase.

X The space of values for the random variable.
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x Lowercase variable is an instance or outcome, x ∈ X .

X A multivariate random variable is written bold uppercase.

x Lowercase bold variable is a multivariate instance. In particular cases, when the
variable value is treated as a vector, we will use x.

N (µ, σ2) A univariate Gaussian distribution, with parameters µ, σ2.

∼ indicates that a variable is distributed as e.g., X ∼ N (µ, σ2).

Parameters and estimation

D A data set, typically composed of n elements of multivariate inputs X ∈ Rn×d and
univariate outputs y ∈ Rn or multivariate outputs Y ∈ Rn×m. The data set will also be
referred to as a set of indexed tuples; i.e., D = {(x1, y1), (x2, y2), ..., (xn, yn)}.

M Represents a generic model, to discuss general parameter estimation. For example,
M = θ for some parameters θ, such as the mean of Gaussian distribution.

ω The true parameters for the (generalized) linear regression and classification models,
typically with ω ∈ Rd.

w The approximated parameters for the (generalized) linear regression and classification
models, typically with w ∈ Rd. When discussing w as the maximum likelihood solution on
some data, we write wML(D), to indicate that the variability arises from D.

maxa∈B f(a) The maximum value of a function f across values a in a set B.

argmaxa∈B f(a) The item a in set B that produces the maximum value f(a).

Norms

‖x‖ A norm on x.

‖x‖2 The `2 norm on a vector, ‖x‖2 =
√∑d

i=1 x
2
i . This norm gives the Euclidean distance

from the origin of the coordinate system to x; that is, it is the length of vector x.

‖x‖22 The squared `2 norm on a vector, ‖x‖22 =
∑d
i=1 x

2
i .

‖x‖p The general `p norm on a vector, ‖x‖p = (
∑d
i=1 |x|

p
i )1/p.
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‖X‖F The Frobenius norm of an n-by-d matrix; i.e.,

‖X‖F =

√√√√√ n∑
i=1

d∑
j=1

X2
ij =

√√√√ n∑
i=1
‖Xi:‖22 =

√√√√√ d∑
j=1
‖X:j‖22.

Useful formulas and rules

log
(
x

y

)
= log(x)− log(y)

log (xy) = y log(x)
m∑
i=1

ai

ˆ
X
fi(x)p(x)dx =

ˆ
X

m∑
i=1

aifi(x)p(x)dx . Can bring sum into integral

d

dx

ˆ
X
f(x)p(x)dx =

ˆ
X

d

dx
f(x)p(x)dx . Can (almost always) bring derivative

into integral
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Preface: A starting example with linear regression

Machine learning involves a broad range of techniques for learning from data. A central
goal — and the one we largely discuss in this handbook — is prediction. Many techniques
learn a function f : Rd → R that inputs attributes or features about an item, and produces
an output prediction about that item. For example, consider a setting where you would
like to guess or predict the price of a house based on information about that house. You
might have features such as its age, the size of the house and, of course, distance to the
nearest bakery. Without any previous examples of house costs, i.e., without any data, it
might be hard to guess this price. However, imagine you are given a set of house features
and the corresponding selling costs, for houses that sold this year. Let x ∈ Rd be a vector
of the features for a house, in this case x = [x1 x2 x3] =[age, size, distance to bakery] and
the target y = price. If we have 10 examples or instances of previous house prices, we have
a dataset: (x1, y1), . . . , (x10, y10), where (xi, yi) is the feature-price pair for the ith house in
your set of instances. A natural goal is to find a function f that accurately recreates the
data, for example by trying to find a function f that results in a small difference between
the prediction, f(xi), and the actual price, yi, for each house.

We can formalize this as an optimization problem. Imagine we have some space of
possible functions, H, from which we can select our function f . For a simple case, let
us imagine that the function is linear: f(x) = w0 + x1w1 + x2w2 + x3w3 for any w =
[w0 w1 w2 w3] ∈ Rd where w0 is the intercept of the linear function. We can try to find a
function from the class of linear functions that minimizes these squared differences

min
f∈H

10∑
i=1

(f(xi)− yi)2

As we will see later in Chapter 5, this optimization problem is simple to solve for linear func-
tions. The procedure involves explicitly writing the optimization in terms of the parameters
w and solving for the optimal w that makes the differences as small as possible

Err(w) def=
10∑
i=1

(f(xi)− yi)2

=
10∑
i=1

w0 +
d∑
j=1

wjxij − yi

2

.

The solution is a straight line that tries to best fit the observed targets y. A simple
illustration of such a function, for only one attribute, is depicted in Figure 1.

Once we have this function, when we see a new house, we hope that it is similar enough
to the previous houses so that this function adequately predicts its house price. The learned
function f interpolates between these 10 points to predict on unseen points. But, a natural
question is, did we interpolate well and is the learned f going to produce an accurate
prediction on new houses? If you want to use this learned function f in practice, you want
to have such a characterization.
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Figure 1: An example of a linear regression fitting on data set D =
{(1, 1.2) , (2, 2.3) , (3, 2.3) , (4, 3.3)}. The task of the optimization process is to find
the best linear function f(x) = w0 +w1x so that the sum of squared errors e2

1 + e2
2 + e2

3 + e2
4

is minimized.

In the agnostic development above, it is difficult to answer such questions. We can make
intuitive modifications that we hope will provide more accurate predictions, like extending
the class of functions to complex non-linear functions. But, these functional modifications
still do not help characterize accuracy of the prediction on new houses. Rather, what we
are missing is a notion of confidence. How confident are we in the predictions? Did we
see enough previous houses to be confident about this prediction? What is the source
of variability? How do we deal with variability? All these types of questions require a
probabilistic treatment.

In this handbook, we start by providing an introduction to probability, to provide a
base for dealing with uncertainty in machine learning. We then return to learning these
functions, once we have the probabilistic tools to better understand how to approach the
answers to these questions. Much of the required mathematical background will involve
basic understanding of probability and optimization; this handbook will attempt to provide
most of that required background throughout.
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Chapter 1

Introduction to Probabilistic Modeling

Modeling the world around us and making predictions about the occurrence of events is a
multidisciplinary endeavor standing on the solid foundations of probability theory, statistics,
and computer science. Although intertwined in the process of modeling, these fields have
relatively discernible roles and can be, to a degree, studied individually. Probability theory
brings the mathematical infrastructure, firmly grounded in its axioms, for manipulating
probabilities and equips us with a broad range of models with well-understood theoretical
properties. Statistics contributes frameworks to formulate inference and the process of nar-
rowing down the model space based on the observed data and our experience in order to
find, and then analyze, solutions. Computer science provides us with theories, algorithms,
and software to manage the data, compute the solutions, and study the relationship be-
tween solutions and available resources (time, space, computer architecture, etc.). As such,
these three disciplines form the core quantitative framework for all of empirical science and
beyond.

Probability theory and statistics have a relatively long history; the formal origins of
both can be traced to the 17th century. Probability theory was developed out of efforts
to understand games of chance and gambling. The correspondence between Blaise Pascal
and Pierre de Fermat in 1654 serves as the oldest record of modern probability theory.
Statistics, on the other hand, originated from data collection initiatives and attempts to
understand trends in the society (e.g., manufacturing, mortality causes, value of land)
and political affairs (e.g., public revenues, taxation, armies). The two disciplines started
to merge in the 18th century with the use of data for inferential purposes in astronomy,
geography, and social sciences. The increased complexity of models and availability of data
in the 19th century emphasized the importance of computing machines. This contributed
to establishing the foundations of the field of computer science in the 20th century, which is
generally attributed to the introduction of the von Neumann architecture and formalization
of the concept of an algorithm. The convergence of the three disciplines has now reached
the status of a principled theory of probabilistic inference with widespread applications in
science, business, medicine, military, political campaigns, etc. Interestingly, various other
disciplines have also contributed to the core of probabilistic modeling. Concepts such as a
Boltzmann distribution, a genetic algorithm, or a neural network illustrate the influence of
physics, biology, psychology, and engineering.

We will refer to the process of modeling, inference, and decision making based on prob-
abilistic models as probabilistic reasoning or reasoning under uncertainty. Some form of
reasoning under uncertainty is a necessary component of everyday life. When driving, for
example, we often make decisions based on our expectations about which way would be
best to take. While these situations do not usually involve an explicit use of probabilities
and probabilistic models, an intelligent driverless car such as Google Chauffeur must make
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use of them. And so must a spam detection software in an email client, a credit card fraud
detection system, or an algorithm that infers whether a particular genetic mutation will re-
sult in disease. Therefore, we first need to understand the concept of probability and then
introduce a formal theory to incorporate evidence (e.g., data collected from instruments) in
order to make good decisions in a range of situations.

At a basic level, probabilities are used to quantify the chance of the occurrence of events.
As Jacob Bernoulli brilliantly put it in his work The Art of Conjecturing (1713), “To make a
conjecture [prediction] about something is the same as to measure its probability. Therefore,
we define the art of conjecturing [science of prediction] or stochastics, as the art of measuring
probabilities of things as accurately as possible, to the end that, in judgements and actions,
we may always choose or follow that which has been found to be better, more satisfactory,
safer, or more carefully considered.” The techniques of probabilistic modeling formalize
many intuitive concepts. In a nutshell, they provide toolkits for rigorous mathematical
analysis and inference, often in the presence of evidence, about events influenced by factors
that we either do not fully understand or have no control of.

To provide a quick insight into the concept of uncertainty and modeling, consider rolling
a fair six-sided die. We could accurately predict, or so we think, the outcome of a roll if we
carefully incorporated the initial position, force, friction, shape defects, and other physical
factors and then executed the experiment. But the physical laws may not be known, they
can be difficult to incorporate or such actions may not even be allowed by the rules of the
experiment. Thus, it is practically useful to simply assume that each outcome is equally
likely; in fact, if we rolled the die many times, we would indeed observe that each number is
observed roughly equally. Assigning an equal chance (probability) to each outcome of the
roll of a die provides an efficient and elegant way of modeling uncertainties inherent to the
experiment.

Another, more realistic example in which collecting data provides a basis for simple
probabilistic modeling is a situation of driving to work every day and predicting how long it
will take us to reach the destination tomorrow. If we recorded the “time to work” for a few
months we would observe that trips generally took different times depending on many inter-
nal (e.g., preferred speed for the day) and also external factors (e.g., weather, road works,
encountering a slow driver). While these events, if known, could be used to predict the
exact duration of the commute, it is unrealistic to expect to have full information—rather
we have partial observability. It is useful to provide ways of aggregating external factors via
collecting data over a period of time and providing the distribution of the commute time.
Such a distribution, in the absence of any other information, would then facilitate reasoning
about events such as making it on time to an important meeting at 9 am.

The techniques of probabilistic modeling provide a formalism for dealing with such
repetitive experiments influenced by a number of external factors over which we have little
control or knowledge. With such a formalism, we can better understand and improve
how we make predictions, because we can more clearly specify our assumptions about our
uncertainty and explicitly reason about possible outcomes. In this chapter, we introduce
probabilities and probability theory, from the beginning. Because probability is such a
fundamental concept in machine learning, it is worth understanding where it comes from.
Nonetheless, following the spirit of these notes, the treatment will be brief and focus mostly
on what is needed to understand the development in following chapters.
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1.1 Probability Theory and Random Variables

Probability theory is as a branch of mathematics that deals with measuring the likelihood of
events. At the heart of probability theory is the concept of an experiment. An experiment
can be the process of tossing a coin, rolling a die, checking the temperature tomorrow or
figuring out the location of one’s keys. When carried out, each experiment has an outcome,
which is an element drawn from a set of predefined options, potentially infinite in size. The
outcome of a roll of a die is a number between one and six; the temperature tomorrow
might be a real number; the outcome of the location of one’s keys can be a discrete set of
places such as a kitchen table, under a couch, in office etc. In many ways, the main goal of
probabilistic modeling is to formulate a particular question or a hypothesis pertaining to the
physical world as an experiment, collect the data, and then construct a model. Once a model
is created, we can compute quantitative measures of sets of outcomes we are interested in
and assess the confidence we should have in these measures.

We can build up rules of probability, based on an elegantly simple set of axioms called
the axioms of probability. Let the sample space (Ω) be a non-empty set of outcomes and
the event space (E) be a non-empty set of subsets of Ω. For example, Ω = {1, 2, 3} and one
possible event is A = {1, 3} ∈ E , where the event is that a 1 or a 3 is observed. The event
space E must satisfy the following properties1

1. A ∈ E ⇒ Ac ∈ E (where Ac is the complement of the event A: Ac = Ω−A)

2. A1, A2, . . . ∈ E ⇒
⋃∞
i=1Ai ∈ E

3. E is non-empty (in fact, we know from 1 and 2 that ∅ ∈ E and Ω ∈ E)

If E satisfies these three properties, then (Ω, E) is said to be a measurable space. Now we
can define the axioms of probability, which make it more clear why these two conditions
are needed for our event space to define meaningful probabilities over events. A function
P : E → [0, 1] satisfies the axioms of probability if

1. P (Ω) = 1

2. A1, A2, . . . ∈ E , Ai ∩Aj = ∅ ∀i, j ⇒ P (∪∞i=1Ai) =
∑∞
i=1 P (Ai)

is called a probability measure or a probability distribution. The tuple (Ω,A, P ) is called the
probability space.

The beauty of these axioms lies in their compactness and elegance. Many useful ex-
pressions can be derived from the axioms of probability. For example, it is obvious that
P (Ac) = 1 − P (A). This makes it more clear why we required that if an event is in the
event space, then its complement should also be in the event space: if we can measure the
probability of an event, then we know that the probability of that event not occurring is
1 minus that probability. Similarly, we require that if two events A1, A2 are disjoint, then
P (A1 ∪A2) = P (A1) + P (A2): the probability of either event occurring is the sum of their
probabilities, because there is no overlap in the outcomes in the events. Another property
we can infer is that we always have Ω,∅ ∈ E , where ∅ corresponds to the event where

1Such a set is usually called a sigma algebra or sigma field. This terminology feels daunting and is only
due to historical naming conventions. Because the sigma algebra is simply the set of events to which we can
assign probabilities (measure), we will use the longer but more clear name.
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nothing occurs—which must have zero probability. If you are interested in other rules that
can be derived, see Appendix A.1.

Example 1: [Discrete variables (countable)] Consider modeling the probabilities of the roll
of a dice. The outcome space is the finite set Ω = {1, 2, 3, 4, 5, 6} and the event space E
is the power set P(Ω) = {∅, {1}, {2}, . . . , {2, 3, 4, 5, 6},Ω}, which consists of all possible
subsets of Ω. A natural probability distribution on (Ω, E) gives each dice roll a 1/6 chance
of occurring, defined as P ({x}) = 1/6 for x ∈ Ω, P ({1, 2}) = 1/3 and so on. �

Example 2: [Continuous variables (uncountable)] Consider modeling the probabilities of
the stopping time of a car, in the range of 3 seconds to 6 seconds. The outcome space is the
continuous interval Ω = [3, 6]. An event could be that the car stops within 3 to 3.1 seconds,
giving A = [3, 3.1] ∈ E . The probability P (A) of such an event is likely low, because it would
be a very fast stopping time. We could then start considering all possible time intervals for
the event space, and corresponding probabilities. We can already see that this will be a bit
more complicated for continuous variables, and so we more rigorously show how to define
E and P below in Section 1.2.2. �

These two examples demonstrate the two most common cases we will encounter: discrete
variables and continuous variables. The terms above—countable and uncountable—indicate
whether a set can be enumerated or not. For example, the set of natural numbers can be
enumerated, and so is countable, whereas the set of real numbers cannot be enumerated—
there is always another real number between any two real numbers—and so is uncountable.
Though this distinction results in real differences—such as using sums for countable sets
and integrals for uncountable sets—the formalism and intuition will largely transfer between
the two settings. We will focus mostly on discrete and continuous variables. Much of
the same ideas also transfer to mixed variables, where outcome spaces are composed of
both discrete and continuous sets such as Ω = [0, 1] ∪ {2}. Further, for the uncountable
setting, we specifically discuss continuous sets, i.e., those are unions of continuous intervals
such as Ω = [0, 1] ∪ [5, 10]. Because almost all uncountable sets that we will want to
consider are continuous, we will interchangeably use the terms continuous and uncountable
to designate such spaces. Finally, discrete sets can either be finite, such as {1, 2, 3}, or
countably infinite, such as the natural numbers. Continuous sets are clearly infinite, and
are said to be uncountably infinite.

Before going further in-depth on how to define probability distributions, we first in-
troduce random variables, and from here on will deal strictly with random variables. A
random variable lets us more rigorously define transformations of probability spaces; once
we execute that transformation, we can forget about the underlying probability space and
can focus on the events and distribution only on the random variable. This is in fact what
you do naturally when defining probabilities over variables, without needing to formalize it
mathematically. Of course, here we will formalize it.

Consider again the dice example, where now instead you might want to know: what is
the probability of seeing a low number (1-3) or a high number (4-6)? We can define a new
probability space with ΩX = {low, high}, EX = {∅, {low}, {high},ΩX} and PX({low}) =

13



1/2 = PX({high}). The transformation function X : Ω→ ΩX is defined as

X(ω) def=
{
low if ω ∈ {1, 2, 3}
high if ω ∈ {4, 5, 6}

The distribution PX is immediately determined from this transformation. For example,
PX({low}) = P ({ω : X(ω) = low}), because the underlying probability space indicates the
likelihood of seeing a 1, 2 or 3. Now we can answer questions about the probability of seeing
a low number of a higher number.

This function X is called a random variable. It is slightly confusing that it is neither
random, nor a variable, sinceX is a function. However, from this point onward, we will treat
X like it is a variable that is random, by more simply writing statements like PX(X = x)
or PX(X ∈ A), rather than P ({ω : X(ω) = x}) or P ({ω : X(ω) ∈ A}). For correctness, we
can remember that it is a function defined on a more complex underlying probability space.
But, in practice, we can start thinking directly in terms of the random variable X and the
associated probabilities. Similarly, even for the dice role, we can acknowledge that there is
a more complex underlying probability space, defined by the dynamics of the dice. When
considering only the probabilities of discrete outcomes from 1-6, we have already implicitly
applied a transformation on top of probabilities of the physical system.

Once we have a random variable, it defines a valid probability space (ΩX , EX , PX).
Therefore, all the same rules of probability apply, the same understanding of how to define
distributions, etc. In fact, we can always define a random variable X that corresponds
to no transformation, to obtain the original probability space. For this reason, we can
move forward assuming we are always dealing with random variables, without losing any
generality. We will drop the subscripts, and consider (Ω, E , P ) to be defined for X. For a
more in-depth discussion on random variables, see Appendix A.4.

1.2 Defining distributions

Now we would like to know how to specify P to satisfy the axioms of probability, to model
the probability of X taking values in an event A, P (X ∈ A) with outcome space Ω. This
task feels daunting, because it seems we need to define the likelihood for every possible
event—set of outcomes—and, in such a way that satisfies the axioms of probability, no
less! Fortunately, instead we can define the distribution using a function defined directly on
instances x ∈ Ω. It is convenient to separately consider discrete (countable) and continuous
(uncountable) sample spaces. For the discrete case, we will define probability mass functions
and for the continuous case, we will define probability density functions.

1.2.1 Probability mass functions

Let Ω be a discrete sample space and E = P (Ω), the power set of Ω. A function p : Ω→ [0, 1]
is called a probability mass function (pmf) if∑

ω∈Ω
p (ω) = 1.
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The probability of any event A ∈ E is defined as

P (A) def=
∑
ω∈A

p(ω).

It is straightforward to verify that P satisfies the axioms of probability and, thus, is a
probability distribution. For discrete random variables, therefore, we will often write P (X =
x), which means that P (X = x) = p(x) for each outcome x ∈ Ω. We rarely, if ever, define
the distribution directly, and rather define the pmf p which induces the distribution P .

Example 3: Consider a roll of a fair six-sided die; i.e., Ω = {1, 2, 3, 4, 5, 6}, and the event
space E = P(Ω). What is the probability that the outcome is a number greater than 4?

First, because the die is fair, we know that p(ω) = 1
6 for ∀ω ∈ Ω. Now, let A be an

event in E that the outcome is greater than 4; i.e., A = {5, 6}. Thus,

P (A) =
∑
ω∈A

p(ω) = 1
3 .

Notice that the distribution P is defined on the elements of E , whereas p is defined on the
elements of Ω. That is, P ({1}) = p(1), P ({2}) = p(2), P ({1, 2}) = p(1) + p(2), etc. �

To specify P , therefore, we need to determine how to specify the pmf, i.e., the probability
of each discrete outcome. The pmf is often specified as a table of probability values. For
example, to model the probability of a birthday for each day in the year, one could have
a table of 365 values between zero and one, as long as the probabilities sum to 1. These
probabilities could be computed from data about individuals birthdays, using counts for
each day and normalizing by the total number of people in the population to estimate the
probability of seeing a birthday on a given day. Such a table of values is very flexible,
allowing precise probability values to be specified for each outcome. There are, however, a
few useful pmfs that have a (more restricted) functional form. We describe three such pmfs
here, that we will use throughout this handbook; for more examples of pmfs, see Appendix
A.2.

The Bernoulli distribution derives from the concept of a Bernoulli trial, an experiment
that has two possible outcomes: success and failure. In a Bernoulli trial, a success occurs
with probability α ∈ [0, 1] and, thus, failure occurs with probability 1− α. A toss of a coin
(heads/tails), a basketball game (win/loss), or a roll of a die (even/odd) can all be seen as
Bernoulli trials. We model this distribution by setting the sample space to two elements
and defining the probability of one of them as α. More specifically, Ω = {success, failure}
and

p(ω) =
{
α ω = success
1− α ω = failure

where α ∈ (0, 1) is a parameter. If we take instead that Ω = {0, 1}, we can compactly write
the Bernoulli distribution as p(ω) = αω(1− α)1−ω for ω ∈ Ω. The Bernoulli distribution is
often written Bernoulli(α). As we will see, a common setting where we use the Bernoulli is
for binary classification, say where we try to predict whether a patient has the flu (outcome
0) or does not have the flue (outcome 1).
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Figure 1.1: Two probability mass functions, for discrete random variables. The Poisson
distribution continues further on the x-axis (for variable ω ∈ N), with probability decreasing
to zero as ω →∞.

The uniform distribution for discrete sample spaces is defined over a finite set of out-
comes each of which is equally likely to occur. Let Ω = {1, . . . , n}; then for ∀ω ∈ Ω

p(ω) = 1
n
.

The uniform distribution does not contain parameters; it is defined by the size of the sample
space. We refer to this distribution as Uniform(n). We will see later that the uniform
distribution can also be defined over finite intervals in continuous spaces.

The Poisson distribution reflects the probability of how many incidences occur (implic-
itly within a fixed time interval). For example, a call center is likely to receive 50 calls per
hour, with a much smaller probability on only receiving 5 calls or receiving as many as 1000
calls. This can be modeled with a Poisson(λ), where λ represents the expected number of
calls. More formally, Ω = {0, 1, . . .} and for ∀ω ∈ Ω

p(ω) = λωe−λ

ω! .

This mass function is hill-shaped, where the top of the hill is mostly centered around λ
and there is a skew to having a short, steep left side of the hill and a long, less-steep right
tail to the hill. The Poisson distribution is defined over an infinite sample space, but still
countable. This is depicted in Figure 1.1.

Exercise 1: Prove that
∑
ω∈N p(ω) = 1 for the Poisson distribution. �

Example 4: As a prelude to estimating parameters to distributions, consider an example of
how we might use a Bernoulli distribution and determine the parameter α to the Bernoulli.
A canonical example for Bernoulli distributions is a coin flip, where the outcomes are heads
(H) or tails (T). P (X = H) = α is the probability of seeing H and P (X = T) = 1 − α is
the probability of seeing T. We commonly assume α = 0.5; this is called a fair (unbiased)
coin. If we flipped the coin many times, we would expect to see about the same number of
H and T. However, a biased coin may have some skew towards H or T. If we flipped the
coin many times, if α > 0.5 we should eventually notice more H come up and if α < 0.5, we
should notice more T.
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How might we actually determine this α? An intuitive idea is to use repeated experi-
ments (data), just as described above: flip the coin many times to see if you can gauge the
skew. If you see 1000 H and 50 T, a natural guess for the bias is α = 1000

1000+50 ≈ 0.95. How
confident are you in this solution? Is it definitely 0.95? And how do we more formally define
why this should be the solution? This is in fact a reasonable solution, and corresponds to
the maximum likelihood solution, as we will discuss in Chapter 3. �

1.2.2 Probability density functions

The treatment of continuous probability spaces is analogous to that of discrete spaces,
with probability density functions (pdfs) replacing probability mass functions and integrals
replacing sums. In defining pdfs, however, we will not be able to use tables of values, and
will be restricted to functional forms. The main reason for this difference stems from the
fact that it no longer makes sense to measure the probability of a singleton event. Consider
again the stopping time for a car, discussed in Example 2. It would not make a lot of sense
to ask the probability of the car stopping in exactly 3.14159625 seconds; realistically, the
probability of such a precise event is vanishingly small. In fact, the probability of seeing
precisely that stopping time is zero, because the set {3.14159625} as a subset of [3, 6] is a
set of measure zero. Essentially, it takes up zero mass inside the interval [3, 6], which is after
all uncountably infinite. Instead, we will have to consider the probabilities of intervals, like
[4, 5] or [5.667, 5.668].

For continuous spaces, we will assume that the set of events E consists of all possible
intervals, called the Borel field B(Ω). For example, if Ω = R, the Borel field B(R) consists
of all open intervals (e.g., (0, 1)), closed intervals (e.g.,[0, 1]) and semi-open intervals (e.g.,
[0, 1)) in R, as well as sets that can be obtained by a countable number of basic set operations
on them, such as unions. This results in a more restricted set of events than the power set
of Ω, which would, for example, include sets with only a singleton event. B(R) is still a
huge set—an uncountably infinite set—but still smaller than P(R). Nicely, though, B(R)
still contains all sets we could conceivably want to measure. The Borel field can be defined
for any measurable space, such as higher-dimensional spaces like Ω = R2, with events such
as A = [0, 1]× [0, 1] ⊂ Ω or A = [1, 2]× [−1, 4] ∪ [0, 0.1]× [10, 1000].

Let now Ω be a continuous sample space and E = B (Ω). A function p : Ω → [0,∞) is
called a probability density function (pdf) if2

ˆ
Ω
p(ω)dω = 1.

The probability of an event A ∈ B(Ω) is defined as

P (A) def=
ˆ
A
p(ω)dω.

Notice that the definition of the pdf is not restricted to having a range [0, 1], but rather to
[0,∞). For pmfs, the probability of a singleton event {ω} is the value of the pmf at the
sample point ω; i.e., P ({ω}) = p(ω). Since probability distributions P are restricted to the

2For correctness, we would like to note that this definition uses Lebesgue integration. You do not need to
know about nuanced differences in integration formulations; for all settings we consider, all the definitions
are equivalent and your knowledge of integration rules will be effective.
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range [0, 1], this implies pmfs must also be restricted to that range. In contrast, the value of
a pdf at point ω is not a probability; it can actually be greater than 1. Though it is common
when speaking informally to call p(x) the probability of x, more accurately we call this the
density at x because it is most definitely not a probability. In fact, as mentioned above, the
probability at any single point is 0 (i.e., a countable subset of Ω is a set of measure zero).

A natural confusion is how p can integrate to 1, but actually have values larger than 1.
The reason for this is that p(x) can be (much) larger than 1, as long as its only for a very
small interval. Consider the small interval A = [x, x+ ∆x], with probability

P (A) =
ˆ x+∆x

x
p(ω)dω

≈ p(x)∆x.

A potentially large value of the density function is compensated for by the small interval
∆x to result in a number between 0 and 1. So, even if p(x) is a million, and the density
of points in the small interval or ball around x is large, the probability of an event must
still be ≤ 1. The density does indicate that there is high likelihood around that point. By
having a huge density around x, this suggests that the density for other points is zero or
near zero and that the pdf is extremely peaked around x.

Unlike pmfs, we cannot so easily define pdfs p to flexibly provide specific probabilities
for each outcome with a table of probabilities. Rather, for pdfs, we will usually use a known
pdf that satisfies the required properties. Further, unlike the discrete case, we will never
write P (X = x), because that would be zero. Rather, we will typically write P (X ∈ A)
or more explicitly probabilistic questions like P (X ≤ 5). We highlight four pdfs here, that
will be used throughout this book; for more examples of pdfs, see Appendix A.3.

The uniform distribution is defined by an equal value of a probability density function
over a finite interval in R. Thus, for Ω = [a, b] the uniform probability density function
∀ω ∈ [a, b] is defined as

p(ω) def= 1
b− a

.

One can also define Uniform(a, b) by taking Ω = R and setting p(ω) = 0 whenever ω is
outside of [a, b]. This form is convenient because Ω = R can then be used consistently for
all one-dimensional probability distributions. When we do this, we will refer to the subset
of R where p(ω) > 0 as the support of the density function.

The exponential distribution is defined over a set of non-negative numbers; i.e., Ω =
[0,∞). For parameter λ > 0, its pdf is

p(ω) = λe−λω.

As the name suggests, this pdf has an exponential form, with sharply decreasing probability
for values x as they increase in magnitude. As before, the sample space can be extended to
all real numbers, in which case we would set p(ω) = 0 for ω < 0.

3Many images in this document are currently taken from other sources. This is generally not a good
practice, and we will be replacing these images someday soon. We want to highlight that we do not encourage
this for formal documents, but only use them here in these educational notes for your benefit temporarily.
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Figure 1.2: Four probability density functions, for continuous random variables. Images
taken from Wikipedia.3

The Gaussian distribution or normal distribution is one of the most frequently used
probability distributions. It is defined over Ω = R, with two parameters, µ ∈ R and σ > 0
and pdf

p(ω) = 1√
2πσ2

e−
1

2σ2 (ω−µ)2

As we will discuss next, for a random variable that is Gaussian distributed, the parameter
µ is the mean or expected value and σ2 is the variance. We will refer to this distribution as
Gaussian(µ, σ2) or N (µ, σ2). When the mean is zero, and the variance is 1 (unit variance),
this Gaussian is called the standard normal. This specific Gaussian has a name because it is
so frequently used. Both Gaussian and exponential distributions are members of a broader
family of distributions called the natural exponential family. We will see a general definition
of this family later, in Section 7.2.

The Laplace distribution is similar to the Gaussian, but is more peaked around the
mean. It is also defined over Ω = R, with two parameters, µ ∈ R and b > 0 and pdf

p(ω) = 1
2be
− 1
b
|ω−µ|

The gamma distribution is used to model waiting times, and is similar to the Poisson dis-
tribution but for continuous variables. It is defined over Ω = (0,∞), with shape parameter
α > 0 and rate parameter β > 0 and pdf

p(ω) = βα

Γ(α)ω
α−1e−βω
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Figure 1.3: Selection of a random number (x) from the unit interval [0, 1].
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Figure 1.4: A histogram of recordings of the commute time (in minutes) to work. The
data set contains 340 measurements collected over one year, for a distance of roughly 3.1
miles. The data was modeled using a gamma family of probability distributions, with the
particular location and scale parameters estimated from the raw data. The values of the
gamma distribution are shown as dark circles.

where Γ(α) is called the gamma function. A random variable that is gamma-distributed is
denoted X ∼ Gamma(α, β).

Example 5: Consider selecting a number (x) between 0 and 1 uniformly randomly (Figure
1.3). What is the probability that the number is greater than or equal to 3

4 or less than
and equal to 1

4?
We know that Ω = [0, 1]. The distribution is defined by the uniform pdf, p(ω) = 1

b−a = 1
where a = 0, b = 1 define the interval for the outcome space. We define the event of interest
as A =

[
0, 1

4

]
∪ [3

4 , 1] and calculate its probability as

P (A) =
ˆ 1/4

0
p(ω)dω +

ˆ 1

3/4
p(ω)dω . p(ω) = 1

=
(1

4 − 0
)

+
(

1− 3
4

)
= 1

2 .

What if we had instead asked the probability that the number is strictly greater than 3
4 or

strictly less than 1
4? Because the probability of any individual event in the continuous case

is 0, there is no difference in integration if we consider open or closed intervals. Therefore,
the probability would still be 1

2 . �

Example 6: Let’s imagine you have collected your commute times for the year4, and
would like to model the probability of your commute time to help you can make predictions

4as co-author Predrag amazingly did, and you get to see his fascinating data here.
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about your commute time tomorrow. For this setting, your random variable X corresponds
to the commute time, and you need to define probabilities for this random variable. This
data could be considered to be discrete, taking values, in minutes, {4, 5, 6, . . . , 26}. You
could then create histograms of this data (table of probability values), as shown in Figure
1.4, to reflect the likelihood of commute times.

The commute time, however, is not actually discrete, and so you would like to model
it as a continuous RV. One reasonable choice is a gamma distribution. How, though, does
one take the recorded data and determine the parameters α, β to the gamma distribution?
Estimating these parameters is actually quite straightforward, though not as immediately
obvious as estimating tables of probability values; we discuss how to do so in Chapter 3.
The learned gamma distribution is also depicted in Figure 1.4.

Given the gamma distribution, one could now ask the question: what is the most likely
commute time today? This corresponds to maxω p(ω), which is called the mode of the
distribution. Another natural question is the average or expected commute time. To obtain
this, you need the expected value (mean) of this gamma distribution, which we define below
in Section 1.4. �

1.3 Multivariate random variables

Much of the above development extends to multivariate random variables—a vector of ran-
dom variables—because the definition of outcome spaces and probabilities is general. The
examples so far, however, have dealt with scalar random variables, because for multivariate
random variables, we need to understand how variables interact. In this section, we discuss
several new notions that only arise when there are multiple random variables, including
joint distributions, conditional distributions, marginals and dependence between variables.

Let us start with a simpler example, with two discrete random variables X and Y with
outcome spaces X and Y. There is a joint probability mass function p : X ×Y → [0, 1], and
corresponding joint probability distribution P , such that

p(x, y) def= P (X = x, Y = y)

where the pmf needs to satisfy ∑
x∈X

∑
y∈Y

p(x, y) = 1.

For example, if X = {young, old} and Y = {no arthritis, arthritis}, then the pmf could be
the table of joint probabilities This fits within the definition of probability spaces, because

Y
0 1

X
0 P (X=0, Y=0) = 1/2 P (X=0, Y=1) = 1/100
1 P (X=1, Y=0) = 1/10 P (X=1, Y=1) = 39/100

Table 1.1: A joint probability table for random variables X and Y .

Ω = X × Y is a valid space, and
∑
ω∈Ω p(ω) =

∑
(x,y)∈Ω p(x, y) =

∑
x∈X

∑
y∈Y p(x, y). The

random variable Z = (X,Y ) is a multivariate random variable, of two dimensions.
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We can see that the two random variables interact, by looking at the joint probabilities
in the table. For example, the joint probability is small for young and having arthritis.
Further, there seems to be more magnitude in the rows corresponding to young, suggesting
that the probabilities are influenced by the proportion of people in the population that are
old or young. In fact, one might ask if we can figure out this proportion just from this table.

The answer is a resounding yes, and leads us to marginal distributions and why we
might care about marginal distributions. Given a joint distribution over random variables,
one would hope that we could extract more specific probabilities, like the distribution over
just one of those variables, which is called the marginal distribution. The marginal can be
simply computed, by summing up over all values of the other variable

P (X = young) = p(young,no arthritis) + p(young, arthritis) = 51
100 .

A young person either does or does not have arthritis, so summing up over these two
possible cases factors out that variable. Therefore, using data collected for random variable
Z = (X,Y ), we can determine the proportion of the population that is young and the
proportion that is old.

In general, we can consider d-dimensional random variable X = (X1, X2, . . . , Xd) with
vector-valued outcomes x = (x1, x2, . . . , xd), such that each xi is chosen from some Xi.
Then, for the discrete case, any function p : X1 ×X2 × . . .×Xd → [0, 1] is called a multidi-
mensional probability mass function if∑

x1∈X1

∑
x2∈X2

· · ·
∑

xd∈Xd
p (x1, x2, . . . , xd) = 1.

or, for the continuous case, p : X1×X2× . . .×Xd → [0,∞] is a multidimensional probability
density function if

ˆ
X1

ˆ
X2

· · ·
ˆ
Xd
p (x1, x2, . . . , xd) dx1dx2 . . . dxd = 1.

A marginal distribution is defined for a subset of X = (X1, X2, . . . , Xd) by summing or
integrating over the remaining variables. For the discrete case, the marginal distribution
p (xi) is defined as

p (xi)
def=

∑
x1∈X1

· · ·
∑

xi−1∈Xi−1

∑
xi+1∈Xi+1

· · ·
∑
xd∈Xd

p (x1, . . . , xi−1, xi, xi+1, . . . , xd) ,

where the variable xi is fixed to some value and we sum over all possible values of the other
variables. Similarly, for the continuous case, the marginal distribution p (xi) is defined as

p (xi)
def=
ˆ
X1

· · ·
ˆ
Xi−1

ˆ
Xi+1

· · ·
ˆ
Xd
p (x1, . . . , xi−1, xi, xi+1, . . . , xd) dx1 . . . dxi−1dxi+1 . . . dxd.

Notice that we use p to define the density over x, but then we overload this terminology and
also use p for the density only over xi. To be more precise, we should define two separate
functions (pdfs), say px for the density over the multivariate random variable and pxi for
the marginal. It is common, however, to simply use p, and infer the random variable from
context. In most cases, it is clear; if it is not, we will explicitly highlight the pdfs with
additional subscripts.
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We can define common multivariate pmfs and pdfs, that are extensions of the scalar pmfs
and pdfs. Some extensions—like tables of probability values and uniform distributions—are
more obvious, whereas others require more case, such as Gaussians. For others, like the
Laplace, the extension may not be unique and multiple options are possible. We define the
extensions we will need in the final section of this chapter, Section 1.5, for reference. First,
however, it will be useful to understand how multiple variables interact, because this will
influence the extension from univariate to multivariate. In particular, it will be useful to
understand conditional distributions and dependence, which we discuss next.

1.3.1 Conditional distributions

Conditional probabilities define probabilities of a random variable X, given information
about the value of another random variable Y . More formally, the conditional probability
p(y|x) for two random variables X and Y is defined as

p(y|x) def= p(x, y)
p(x) (1.1)

where p(x) > 0.

Exercise 2: Verify that p(y|x) sums (integrates) to 1 over all values y ∈ Y for a fixed
given x ∈ X , and thus satisfies the conditions of a probability mass (density) function. �

Equation (1.1) now allows us to calculate the posterior probability of an event A, given
some observation x, as

P (Y ∈ A|X = x) =


∑
y∈A p(y|x) Y : discrete

´
A p(y|x)dy Y : continuous

Writing p(x, y) = p(x|y)p(y) = p(y|x)p(x) is called the product rule. The extension to more
than two variables is straightforward. We can write

p(x1, . . . , xd) = p(xd|x1, . . . , xd−1)p(x1, . . . , xd−1).

By a recursive application of the product rule, we obtain

p(x1, . . . , xd) = p(xd|x1, . . . , xd−1)p(x1, . . . , xd−1)
= p(xd|x1, . . . , xd−1)p(xd−1|x1, . . . , xd−2)p(x1, . . . , xd−2)
...
= p(xd|x1, . . . , xd−1)p(xd−1|x1, . . . , xd−2) . . . p(x2|x1)p(x1).

More compactly,

p(x1, . . . , xd) = p(x1)
d∏
i=2

p(xi|x1, . . . , xi−1) (1.2)

which is referred to as the chain rule or general product rule. For example, for three
variables, the product rule gives

p(x1, x2, x3) = p(x3|x2, x1)p(x2|x1)p(x1)
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This rule also applies to collections of random variables, where a collection can be treated
as one random variable. For example,

p(x1, x2, x3) = p(x2, x3|x1)p(x1)

This arises because (x2, x3) have a valid probability space, so we can use the product rule
for two variables: x1 and (x2, x3). Using the product rule, giving p(x, y) = p(x|y)p(y) =
p(y|x)p(x), we can also derive Bayes’ rule:

p(x|y) = p(y|x)p(x)
p(y) . (1.3)

Therefore, one really only needs to remember the product rule, to easily recall Bayes’ rule.
You may notice that the order of variables in the product rule did not seem to matter.

It is in fact somewhat interesting that we can either define the conditional distribution
p(x|y) and marginal p(y) or we can define p(y|x) and p(x) and both equivalently recover
the joint distribution p(x, y). This property is simply a fact of the definition of conditional
distributions, and provides flexibility when estimating distributions. We will most use this
equivalence in the form of Bayes rule, when doing parameter estimation and maximum
likelihood. For work in graphical models, which is not discussed here, this flexibility is of
even greater importance.

1.3.2 Independence of random variables

Two random variables are independent if their joint probability distribution factors into the
product of the marginals

p (x, y) = p(x)p(y).

One intuitive reason for this definition can be seen by considering X conditioned on Y . If
p(x|y) = p(x), then this means that the value of Y has no influence on the distribution over
X, and so they are independent. From the product rule, we know p(x, y) = p(x|y)p(y) and
since p(x|y) = p(x), this gives p(x, y) = p(x)p(y) as defined above.

The notion of independence can be generalized to more than two random variables. More
generally, d random variables are said to be mutually independent or jointly independent if
a joint probability distribution of any subset of variables can be expressed as a product of
marginal probability distributions of its components

p (x1, x2, . . . , xd) = p(x1)p(x2) . . . p(xd).

Another form of independence, called conditional independence, is used even more fre-
quently in machine learning. It represents independence between variables in the presence
of some other random variable (evidence); e.g.,

p (x, y|z) = p(x|z)p(y|z)

Interestingly, the two forms of independence are unrelated: neither one implies the other.
X and Y can be independent, but not conditionally independent given Z. X and Y can
be conditionally independent given Z, but not independent. We show this in two simple
examples in Figure A.1 in the Appendix.
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Here, we provide an example more directly related to machine learning, about why we
care about independence and conditional independence. If two variables are independent,
this has important modeling implications. For example, if feature X and target Y are
independent, then X is not useful for predicting Y and so is not a useful feature. If two
variables are conditionally independent given another variable, this can also have important
modeling implications. For example, if we have two features X1 and X2, with target Y ,
where X2 and Y are conditionally independent given X1, then feature X2 is redundant and
could potentially be discarded.

As a concrete example, let X1 = temperature in Celcius and X2 = temperature in
Fahrenheit, with Y = plants need watering. Y is definitely not independent of X2; however,
once X1 is known (or given), then there is no additional information to be gained from
X2 and so p(y|x1, x2) = p(y|x1) = p(y|x2). In general, recognizing independencies and
conditional independencies can inform and simplify the modeling procedure, and we will
see several examples in terms of simplifying maximum likelihood for i.i.d. data and in naive
Bayes for classification. We end this section with one more example, using a biased coin,
to highlight the distinction between independence and conditional independence.

Example 7: [Biased coin and conditional independence] Assume a manufacturer has pro-
duced a biased coin, where it does not equally randomly give heads (H) or tails (T). Rather,
it actually has some unknown probability α of seeing H when flipping the coin. Because this
bias is unknown, we will encode our uncertainty by defining a random Z = bias of the coin.
In general, this random variable can take values in [0, 1]. For the purposes of this example,
let’s make this a bit simpler, and assume that we know the bias is one of Z = {0.1, 0.5, 0.8}.
If the bias is 0.5, that would mean this is an unbiased (fair) coin. Let’s further assume that
we think the probability of each bias is equally likely, meaning P (Z = z) = 1/3, because
the manufacturer gave us no reason to think any of 0.1, 0.5 or 0.8 to be more likely.

Now imagine that you flip the coin twice, and record the two outcomes x1 and x2. These
two separate flips correspond to two random variables, X1 and X2. The outcome space for
X1 and X2 is {H,T}. Given the true bias of the coin, α, the true distribution is Bernoulli
P (Xi = H|Z = α) = α. However, we do not know the bias α. Instead, we are modeling it
with a random variable Z, so that for each given Z = z, we know that P (Xi|Z = z) = z,
i.e., Xi is a Bernoulli random variable with parameter z. Because we do not know the true
bias, we have to marginalize over Z to get the marginal distribution over X1,

P (X1 = x) =
∑
z∈Z

P (X1 = x, Z = z)

=
∑
z∈Z

P (X1 = x|Z = z)P (Z = z) . product rule

= P (X1 = x|Z = 0.1)P (Z = 0.1) + P (X1 = x|Z = 0.5)P (Z = 0.5)+
+ P (X1 = x|Z = 0.8)P (Z = 0.8)

Are X1 and X2 conditionally independent given Z? The answer is yes, because given
the bias of the coin, knowing the outcome of X2 does not influence the distribution over
X1, i.e.,

P (X1 = x1, X2 = x2|Z = z) = P (X1 = x1|Z = z)P (X2 = x2|Z = z)

Regardless of what we observe for X2, we know the distribution over X1 is a Bernoulli with
the given bias z.
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Are X1 and X2 independent? The answer is no, because without knowing the bias of
the coin, knowing the outcome of X2 tells us something about the Bernoulli distribution
over X1. For example, if X1 = T and X2 = H, then the second outcome suggests that the
bias might not be totally skewed towards T. More formally,

P (X1 = x1, X2 = x2) =
∑
z∈Z

P (X1 = x1, X2 = x2|Z = z)P (Z = z)

=
∑
z∈Z

P (X1 = x1|Z = z)P (X2 = x2|Z = z)P (Z = z)

which is not guaranteed to equal P (X1 = x1)P (X2 = x2), where

P (X1 = x1)P (X2 = x2)

=

∑
z1∈Z

P (X1 = x1|Z = z1)P (Z = z1)

∑
z2∈Z

P (X2 = x2|Z = z2)P (Z = z2)


�

1.4 Expectations and moments

The expected value, or mean, of a random variable X is the average of repeatedly sampled x,
in the limit of sampling. It is not necessarily the value we expect to see most frequently—
that is called the mode. More precisely, given the pmf or pdf p for outcome space X , the
expectation of X is

E [X] def=


∑
x∈X xp(x) if X is discrete

´
X xp(x)dx if X is continuous

For a dice roll, where each number from 1 to 6 has uniform probability, the expected
value is 3.5 and the mode is tied for all numbers (i.e., it is multi-modal). For a Bernoulli
distribution, where X = {0, 1}, the expected value is α, which is not even an outcome that
will be observed, but is the average of 0s and 1s if we flipped the coin infinitely many times.
The mode in this case depends on α: if α > 0.5, making 1 have higher probability, then the
mode is 1; if α < 0.5, the mode is 0; otherwise, it is bimodal with modes 0 and 1. For a
Gaussian distribution, the expected value is the parameter µ, and the mode also equals µ.

In general, we may be interested in the expected value of functions of the random
variable X. For example, we may want to know E

[
X2], or more generally E

[
Xk
]
for some

k > 1. Or, we may want to know E
[
(X − c)k

]
for some k > 1 and a constant c. These are

called the moments of X. In general, for a function f : X → R, we can consider f(X) to
be a transformed random variables and define its expectation as

E [f(X)] =


∑
x∈X f(x)p(x) if X is discrete

´
X f(x)p(x)dx if X is continuous

If E [f(X)] = ±∞, we say that the expectation does not exist or is not well-defined.
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One useful moment is the variance: the central second moment, where central indicates
c = E[X]. The variance indicates the amount that the random variable varies around
its mean. For example, for a Gaussian distribution, if the variance σ2 is large, then the
Gaussian is very wide, indicating a non-negligible density for a broader range of points x
around µ. Alternatively, if σ2 is almost zero, then the Gaussian is concentrated tightly
around µ.

We can also consider conditional expectations, and expectations for multivariate random
variables. For two random variables X and Y and function f : Y → R, the conditional
expectation is

E [f(Y )|X = x] =


∑
y∈Y f(y)p(y|x) if Y is discrete

´
Y f(y)p(y|x)dy if Y is continuous

Using the identity function f(y) = y results in the standard conditional expectation E [Y |x].

Exercise 3: Show the law of total expectations: E[Y ] = E[E[Y |X]], where the outer
expectation is over X and the inner expectation is over Y . For example, if both Y and X
are discrete

E[E[Y |X]] =
∑
x∈X

p(x)E[Y |X = x]

=
∑
x∈X

p(x)
∑
y∈Y

yp(y|x)

�

For two random variablesX and Y and f : X×Y → R, we can also define the expectation
over the joint distribution, with one variable fixed

E [f(X, y)] =


∑
x∈X f(x, y)p(x|y) if X is discrete

´
X f(x, y)p(x|y)dx if X is continuous

or over both variables

E [f(X,Y )] =


∑
y∈Y p(y)E[f(X, y)] if Y is discrete

´
Y p(y)E[f(X, y)]dy if Y is continuous

For example, if X is continuous and Y is discrete, this gives

E [f(X,Y )] =
∑
y∈Y

p(y)E [f(X, y)]

=
∑
y∈Y

p(y)
ˆ
X
f(x, y)p(x|y)dx

Exercise 4: Show that
´
X

(∑
y∈Y f(x, y)p(x, y)

)
dx =

´
X E[f(x, Y )]p(x)dx. �
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Just as above with variance, the covariance is one important instance of these expected
values, with f(x, y) = (x−E[X])(y−E[Y ]). The expected value under this function indicates
how the two variables vary together. We use specific notation for the covariance, because
it is so frequently used

Cov[X,Y ] = E [(X − E [X]) (Y − E [Y ])]
= E [XY ]− E [X]E [Y ] ,

with Cov[X,X] = V [X] being the variance of the random variable X. The correlation is
the covariance, normalized by the standard deviation—square root of the variance—of each
random variable

Corr[X,Y ] = Cov[X,Y ]√
V [X]

√
V [Y ]

.

The covariance can become larger, if X and Y themselves have large variance. The correla-
tion, on the other hand, is guaranteed to be between -1 and 1, and so is an scale-invariant
measure of how the variables vary together.

In many situations we need to analyze more than two random variables. A simple
two-dimensional summary of all pairwise covariance values involving d random variables
X1, X2, . . . , Xd is called the covariance matrix. The covariance matrix Σ ∈ Rd×d has the
(i, j) entry defined as

Σij = Cov[Xi, Xj ]
= E [(Xi − E [Xi]) (Xj − E [Xj ])]

with the full matrix written as

Σ = Cov[X,X]
= E[(X − E[X])(X − E[X])>]
= E[XX>]− E[X]E[X]>.

The second line involves the outer product of the vector v = X − E[X] ∈ Rd, to produce
A = vv> ∈ Rd×d. This outer product is a matrix multiplication, where the first matrix is
d×1 and the second is 1×d. Using the rules of matrix multiplication, this gives Aij = vivj .
Notice that the diagonal elements of the d × d covariance matrix are the variances for
each variable Xi and the off-diagonal elements are the covariance values between pairs of
variables. The covariance matrix is symmetric and positive semi-definite.

Recall that a matrix is said to be positive semi-definite (denoted as Σ � 0) if z>Σz ≥ 0
for all vectors z 6= 0. Equivalently, the eigenvalues of the matrix are all greater than or
equal to zero. If the matrix is positive definite rather than positive semi-definite (Σ � 0),
then the eigenvalues are strictly positive and the covariance matrix is full rank. A positive
semi-definite matrix can have eigenvalues that are zero, and so have rank smaller than d.
For d = 1, this positive semi-definite property of the matrix corresponds to the the property
σ2 ≥ 0 for the scalar variance.
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Properties of expectations

Here we review some useful properties of expectations. Consider multivariate random vari-
ables, X ∈ Rd and Y ∈ Rm, for d,m ∈ N, with univariate random variables as a special
case. For a constant c ∈ R, it holds that:

1. E [cX] = cE [X] ∈ Rd

2. E [X + Y ] = E [X] + E [Y ] . when d = m

3. V [c] = 0 . the variance of a constant is zero

4. V[X] def= Cov[X,X] � 0, where for d = 1, V[X] ≥ 0 is a scalar. We use V[X] as a
shorthand for Cov[X,X].

5. V[cX] = c2V[X] ∈ Rd×d.

6. Cov[X,Y ] = E[(X − E[X])(Y − E(Y )>] = E[XY >]− E[X]E[Y ]> ∈ Rd×m

7. V[X + Y ] = V[X] + V[Y ] + 2Cov[X,Y ] . when d = m

In addition, if X and Y are independent random variables, it holds that:

8. E [XiYj ] = E [Xi]E [Yj ] for all i, j

9. V[X + Y ] = V[X] + V[Y ] . when d = m

10. Cov[X,Y ] = 0.

Finally, for any d-dimensional random variables, X1 +X2 + . . .+Xm,

11. Cov[X1 +X2 + . . .+Xm] =
m∑
i=1

m∑
j=1

Cov[Xi,Xj ] =
m∑
i=1

V[Xi] + 2
∑

1≤i<j≤m
Cov[Xi,Xj ]

1.5 Multivariate PMFs and PDFs

We now consider extensions to definitions of pmfs and pdfs, for the multivariate setting.
The multivariate Gaussian distribution is a generalization of the Gaussian or normal

distribution to the d-dimensional case, with Ω = Rd. It is defined as

p(ω) def= 1√
(2π)d|Σ|

exp
(
−1

2(ω − µ)>Σ−1(ω − µ)
)
,

with parameters µ ∈ Rd and positive-definite matrix Σ, which is the covariance matrix. The
definition considers how the variables vary together, given by the covariance matrix Σ. For
example, if the variables are independent, then the covariance matrix is diagonal. Further,
if each variable has unit variance, then the Gaussian is spherical. If some dimensions have
higher variance, then the Gaussian is ellipsoidal. If the variables are not independent, the
Gaussian becomes sheared, skewed away from its mean differently than can be accounted
for solely by the variables variance. We will refer to this distribution as N (µ,Σ), and
sometimes use N (ω|µ,Σ) to indicate the pdf for the given µ and Σ.
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There are a few new terms in this pdf, so let’s walk through this formula. The term
|Σ| is the determinant of Σ. The determinant equals the product of the eigenvalues of Σ.
It reflects the width of the distribution. When d = 1, the determinant is simply equal to
σ2, and we scale as usual by the variance of the distribution. As another example, consider
the case where the covariance is zero between all of the variables. Imagine one Gaussian
has all ones on the diagonal for the covariance, and another has a variance of 5 for the first
diagonal element and 1s otherwise. The determinant of the first is 1 and the second is 5.
It makes sense to scale by more for the second Gaussian, which has more variance in one
dimension. The second new term is (ω − µ)>Σ−1(ω − µ). This actually corresponds to a
weighted dot-product. Consider again a diagonal covariance matrix, with d = 3 with a 5,
0.5 and 2 on the diagonal. Then, for z = ω − µ

z>Σ−1z = z2
1

5 + z2
2

0.5 + z2
3

2 .

For discrete random variable, the generalization to multiple dimensions is straightfor-
ward for pmfs: multi-dimensional pmfs simply correspond to multi-dimensional probability
tables. We saw an example of this in Table 1.1. However, as in the univariate case, there
are a few named pmfs, since they are frequently used.

One example of a named multidimensional pmf is the categorical distribution—which is
an instance of a multinomial distribution. The categorical distribution is used to model a
d-dimensional random variable where each element can be a 0 or 1. This distribution can
equivalently be used to model a scalar random variable with d possible outcomes. When
we use it in Section 8.3, however, it will be useful to think of the categorical distribution
as a pmf for a d-dimensional random variable. Each point (k1, k2, . . . , kd) in the outcome
space is a binary vector, with exactly one element ki = 1 and others zero, indicating that
the i-th outcome occurred. The categorical pmf is defined as

p(k1, k2, . . . , kd)
def=


αk1

1 αk2
2 . . . αkdd if k1 + k2 + · · ·+ kd = n

0 otherwise

where the αi’s are positive coefficients such that
∑d
i=1 αi = 1. That is, each coefficient αi

gives the probability of outcome i.

Example 8: [Curse of dimensionality for discrete multidimensional random variables] One
way to avoid pdfs is to discretize variables, and then define a pmf that is a table of probability
values. Though reasonable in some cases, in general this can exponentially increase the
number of parameters for the probability distribution and is one example of the curse of
dimensionality.

To see why, consider the following example. Assume we have a d-dimensional random
variable, with each entry taking values between 0 and 1 (i.e., Xi = [0, 1]). You decide to
discretize this so that each entry is put into one of three bins, changing Xi = {1, 2, 3}.
Now you have a lot of flexibility in specifying these probabilities in your pmf, unlike say
a Gaussian that has a more rigid functional form. Unfortunately, however, this table of
values could be very large, with 3d entries. This requires you to specify 3d − 1 probability
values, where one of the values is automatically set to one minus the sum of all the other
probabilities to ensure you have a valid pmf.

If, instead, you had specified a Gaussian distribution on these variables, the number of
parameters needed to define the distribution is only d+ d2, which is likely much less. �
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Chapter 2

Introduction to Optimization

Much of machine learning deals with learning functions by finding the optimal function
according to an objective. For example, one may be interested in finding a function f : Rd →
R that minimizes the squared differences to some targets for all the samples:

∑n
i=1(f(xi)−

yi)2. To find such a function, you need to have a basic grasp of optimization techniques.
In this chapter, we discuss basic optimization tools, for generic smooth objectives. Many

of the algorithms in machine learning rely on a simple approach: gradient descent. We
first discuss how to minimize objectives using both first and second-order gradient descent.
This overview covers only a small part of optimization, but fortunately, many machine
learning algorithms are based on these simple optimization approaches. We provide more
optimization background later, in Chapter 6, once you have had a chance to use this more
basic optimization knowledge in the next couple of chapters.

2.1 The basic optimization problem and stationary points

A basic optimization goal is to select a set of parameters w ∈ Rd to minimize a given
objective function c : Rd → R

min
w∈Rd

c(w)

For example, to obtain the parameters w for linear regression that minimizes the squared
differences, we use c(w) =

∑n
i=1(〈xi,w〉 − yi)2, for dot product

〈xi,w〉 =
d∑
j=1

xijwj .

We use the term objective here, rather than error, since error has an explicit connotation
that the function is inaccurate. Later we will see that objectives will include both error
terms—indicating how accurately they recreate data—as well as terms the provide other
preferences on the function. Combining these terms with the error produces the final
objective we would like to minimize. For example, for linear regression, we will optimize a
regularized objective, c(w) =

∑n
i=1(〈xi,w〉−yi)2 +

∑d
j=1w

2
j where the second term encodes

a preference for smaller coefficients wj .
The goal then is to find w that minimizes the objective. The most straightforward,

naive solution could be to do a random search: generate random w and check c(w). If
any newly generated wt on iteration t outperforms the previous best solution w, in that
c(wt) < c(w), then we can set wt to be the new optimal solution. We will assume that our
objectives are continuous, and so can take advantage of this smoothness to design better
search strategies. In particular, for smooth functions, we will be able to use gradient descent,
which we describe in the next section.
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Local Minima

Global Minima

Saddlepoint

Figure 2.1: Stationary points on a smooth function surface: local minima, global minima
and saddlepoints.

Gradient descent enables us to reach stationary points: points w where the gradient is
zero. Consider first the univariate case. The derivative tells us the rate of change of the
function surface at a point w. When the derivative of the objective is zero at w ∈ R, i.e.,
d
dwc(w) = 0, this means that locally the function surface is flat. Such points correspond to
local minima, local maxima and saddlepoints, as shown in Figure 2.1.

For example, assume again that we are doing linear regression, with only one feature
and so only one weight w ∈ R. The derivative of the objective c(w) =

∑n
i=1(xiw − yi)2 is

d

dw
c(w) = d

dw

n∑
i=1

(xiw − yi)2

=
n∑
i=1

d

dw
(xiw − yi)2

=
n∑
i=1

2(xiw − yi)xi

where the last step follows from the chain rule. Our goal is to find w such that d
dwc(w) = 0;

once we find such a stationary point, we can then determine if it is a local minimum,
local maximum or saddlepoint. Because this objective is convex, we in fact know that all
stationary points must be global minima, and so we would not need to do this check. We
discuss this further in the last section, where we discuss some properties of objectives.

For the multivariate case, we need to consider gradients instead of derivatives. For
w ∈ Rd where d > 1, we need to ask: how does the function change locally, depending on
how each element of w is changed? To quantify this, we use the gradient which is composed
of partial derivatives

∇c(w) =
[
∂c

∂w1
(w) ∂c

∂w2
(w) . . .

∂c

∂wd
(w)

]
.

Each partial derivative ∂c
∂wj

(w) represents how the function c changes, when only wj is
changed and the other w1, . . . , wj−1, wj+1, . . . , wd are kept constant. For example, for c(w =
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(w1, w2)) = 1
2(x1w1 + x2w2 − y)2, the partial derivatives are

∂c

∂w1
(w) = (x1w1 + x2w2 − y)x1

∂c

∂w2
(w) = (x1w1 + x2w2 − y)x2

Usefully, we do not have to consider how the whole vector changes jointly in all the variables.
Rather, it is sufficient to find stationary points by finding w where the partial derivatives
are zero.

2.2 Gradient descent

The key idea behind gradient descent is to approximate the function with a Taylor series
approximation. This approximation facilitates computation of a descent direction locally
on the function surface. We begin by considering the univariate setting, with w ∈ R. A
function c(w) in the neighborhood of point w0, can be approximated using the Taylor series
as

c(w) =
∞∑
n=0

c(n)(w0)
n! (w − w0)n,

where c(n)(w0) is the n-th derivative of function c(w) evaluated at point w0. This assumes
that c(w) is be infinitely differentiable, but in practice we will take such polynomial approx-
imations for a finite n. A second-order approximation to this function uses the first three
terms of the series as

c(w) ≈ ĉ(w) = c(w0) + (w − w0)c′(w0) + 1
2(w − w0)2c′′(w0).

A stationary point of this ĉ(w) can be easily found by finding the first derivative and setting
it to zero

c′(w) ≈ c′(w0) + (w − w0)c′′(w0) = 0.

Solving this equation for w gives us

w1 = w0 −
c′(w0)
c′′(w0) .

Locally, this new w1 will be an improvement on w0, and will be a stationary point of this
local approximation ĉ. Moving (far enough) from w0, however, makes this local second-
order Taylor series inaccurate. We would need to check the local approximation at this new
point w1, to determine if we can further improve locally. Therefore, to find the optimal w,
we can iteratively apply this procedure

wt+1 = wt −
c′(wt)
c′′(wt)

. (2.1)

constantly improving wi until we reach a point where the derivative is zero, or nearly zero.
This method is called the Newton-Raphson method, or second-order gradient descent.
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(a) Step-size too small (b) Step-size too big (c) Adaptive step-size

Figure 2.2: Different optimization paths, due to different stepsize choices.

In first-order gradient descent, the approximation is worse, where we no longer use the
second derivative. Instead, when taking a first-order approximation, we know that we are
ignoring O((w − w0)2) terms, and so the local approximation becomes

c(w) ≈ ĉ(w) = c(w0) + (w − w0)c′(w0) + 1
2η (w − w0)2

for some constant 1
η reflecting the magnitude of the ignored O((w − w0)2) terms. The

resulting update is then, for step-size ηt

wt+1 = wt − ηtc′(wt). (2.2)

From this, one can see that, given access to the second derivative, a reasonable choice
for the stepsize is ηt = 1

c′′(wt) .
We can similarly obtain such rules for multivariate variables. For example, gradient

descent for c : Rd → R consists of the update

wt+1 = wt − ηt∇c(wt). (2.3)

where
∇c(wt) =

(
∂c

∂w1
(wi),

∂c

∂w2
(wt), ...,

∂c

∂wd
(wt)

)
∈ Rd

is the gradient of function c evaluated at wt. We will discuss how to derive this update in
the multivariable setting in Chapter 6.

2.3 Selecting the step-size

An important part of (first-order) gradient descent is to select the step-size. If the step-size
is too small, then many iterations are required to reach a stationary point (Figure 2.2(a));
If the step-size is too large, then you are likely to oscillate around the minimum (Figure 2.2
(b)). What we really want is an adaptive step-size (Figure 2.2 (c)), that likely starts larger
and then slowly reduces over time as a stationary point is approached.

The basic method to obtain adaptive step-sizes is to use line search. The idea springs
from the following goal: we would like to obtain the optimal step-size according to

min
η∈R+

c(wt − η∇c(wt))
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The solution to this optimization corresponds to the best scalar stepsize we could select, for
the current point wt with descent direction −∇c(wt). Solving this optimization would be
too expensive; however, we can find approximate solutions quickly. One natural choice is
to use a backtracking line search, that tries the largest reasonable stepsize ηmax, and then
reduces it until the objective is decreased. The idea is to search along the line of possible
η ∈ (0, ηmax], with the intuition that a large step is good—as long as it does not overshoot.
If it does overshoot, then the stepsize was too large, and should be reduced. The reduction
is typically according to the rule τη for some τ ∈ [0.5, 0.9]. For τ = 0.5, the stepsize
reduces more quickly—halves on each step of the backtracking line search; for τ = 0.9, the
search more slowly backtracks from ηmax. As soon as a stepsize is found that decreases the
objective, it is accepted. We then obtain a new wt, again compute the gradient and start
the line search once again from ηmax.

One can imagine better strategies for selecting the stepsize than this simplistic search;
we will in fact discuss some of these in Section 6.5. Nonetheless, this basic line search
provides some intuition for our goal in adapting the stepsize.

Algorithm 1: Line Search(wt, c,g = ∇c(wt))
1: Optimization parameters: ηmax = 1.0, τ = 0.7, tolerance← 10e−4

2: η ← ηmax
3: w← wt

4: obj← c(w)
5: while number of backtracking iterations is less than maximum iterations do
6: w← wt − ηg
7: // Ensure improvement is at least as much as tolerance
8: If c(w) < obj - tolerance then break
9: // Else, the objective is worse and so we decrease stepsize

10: η ← τη
11: if maximum number of iterations reached then
12: // Could not improve solution
13: return wt, η = 0
14: return w, η

2.4 Optimization properties

There are several optimization properties to keep in mind when reading this handbook,
which we highlight here.

Maximizing versus minimizing We have so far discussed the goal of minimizing an
objective. An equivalent alternative is to maximize the negative of this objective.

argmin
w∈Rd

c(w) = argmax
w∈Rd

−c(w)

where argmin returns w that produces the minimum value of c(w) and argmax returns
w that produces the maximum value of −c(w). The actual min and max values are not
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the same, since for a given optimal solution, c(w) 6= −c(w). We opt to formulate each of
our optimizations as a minimization, and do gradient descent. It would be equally valid,
however, to formulate the optimizations as maximizations, and do gradient ascent.

Convexity A function c : Rd → R is said to be convex if for any w1,w2 ∈ Rd and
t ∈ [0, 1],

c(tw1 + (1− t)w2) ≤ tc(w1) + (1− t)c(w2) (2.4)

This definition means that when we draw a line between any two points on the function
surface, the function values between these two points all lie below this line. Convexity is
an important property, because it means that every stationary point is a global minimum.
Therefore, regardless of where we start our gradient descent, with appropriately chosen
stepsize and sufficient iterations, we will reach an optimal solution.

A corresponding definition is a concave function, which is precisely the opposite: all
points lie above the line. For any convex function c, the negative of that function −c is a
concave function.

Uniqueness of the solution We often care if there is more than one solution to our
optimization problem. In some cases, we care about identifiability, which means we can
identify the true solution. If there is more than one solution, one might consider that
the problem is not precisely posed. For some problems, it is important or even necessary
to have identifiability (e.g., estimating the percentage of people with a disease) whereas
for others we simply care about finding a suitable (predictive) function f that reasonably
accurately predicts the targets, even if it is not the unique such function. We will not
consider identifiability further in this document, but it is important to be cognizant of if
your objective has multiple solutions.

Equivalence under a constant shift Adding or multiplying by a constant a 6= 0 does
not change the solution

argmin
w∈Rd

c(w) = argmin
w∈Rd

a c(w) = argmin
w∈Rd

c(w) + a.

You can see why by taking the gradient of all three objectives and noticing that the gradient
is zero under the same conditions

∇a c(w) = 0 ⇐⇒ a∇c(w) = 0 ⇐⇒ ∇c(w) = 0

and
∇(c(w) + a) = 0 ⇐⇒ ∇c(w) = 0.
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Chapter 3

Basic Principles of Parameter Estimation

In probabilistic modeling, we are typically presented with a set of observations and the
objective is to find a model, or function, f̂ that shows good agreement with the data and
respects certain additional requirements. We shall roughly categorize these requirements
into three groups: (i) the ability to generalize well, (ii) the ability to incorporate prior
knowledge and assumptions into modeling, and (iii) scalability. First, the model should
be able to stand the test of time; that is, its performance on the previously unseen data
should not deteriorate once this new data is presented. Models with such performance are
said to generalize well. Second, f̂ must be able to incorporate information about the model
space F from which it is selected and the process of selecting a model should be able to
accept training “advice” from an analyst. Finally, when large amounts of data are available,
learning algorithms must be able to provide solutions in reasonable time given the resources
such as memory or CPU power. In summary, the choice of a model ultimately depends on
the observations at hand, our experience with modeling real-life phenomena, and the ability
of algorithms to find good solutions given limited resources.

An easy way to think about finding the “best” model is through learning parameters
of a distribution. Suppose we are given a set of observations D = {xi}ni=1, where xi ∈ R
and have knowledge that the xi are i.i.d. from a Gaussian distribution. In this case, the
problem of finding the best model can be seen as finding the best parameters µ∗ and σ∗:
the problem can be seen as parameter estimation. We call this process estimation because
the typical assumption is that the data was generated by an unknown model from F whose
parameters we are trying to recover from data. We will formalize parameter estimation
using probabilistic techniques and will subsequently find solutions through optimization,
occasionally with constraints in the parameter space.

3.1 MAP and Maximum Likelihood Estimation

Imagine you observe a dataset of observations D = {xi}ni=1. The data is drawn from some
true distribution p∗, but that distribution is unknown to you. Instead, all you know is
that the distribution is in a set of possible distributions, F , sometimes called the hypothesis
space or function class. For example, F could be the family of all univariate Gaussian
distributions:

F = {N (µ, σ2) | for any µ ∈ R and σ ∈ R+}.

The true distribution has parameters µ∗ and σ∗; using the data, we would like to find µ
and σ as close to these as possible.

The idea behind maximum a posteriori (MAP) estimation is to find the most probable
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model for the observed data. Given the data set D, we formalize the MAP solution as

fMAP = argmax
f∈F

p(f |D)

where p(f |D) is called the posterior distribution of the model given the data. In discrete
model spaces, p(f |D) is the probability mass function and the MAP estimate is exactly the
most probable model. Its counterpart in continuous spaces is the model with the largest
value of the posterior density function. Note that we use words model, which is a function,
and its parameters, which are the coefficients of that function, somewhat interchangeably.
For example, above, we could have equivalently considered F = {µ ∈ R, σ ∈ R+}. We
will typically reason directly about the parameter space, or function space, rather than
indirectly about the models or probabilities that they parameterize.

To calculate the posterior distribution we start by applying the Bayes rule as

p(f |D) = p(D|f)p(f)
p(D) , (3.1)

where p(D|f) is called the likelihood function, p(f) is the prior distribution of the model,
and p(D) is themarginal distribution of the data. Notice that we use D for the observed data
set, but that we usually think of it as a realization of a multidimensional random variable
D drawn according to some distribution p(D). Using the formula of total probability, we
can express p(D) as

p(D) =


∑
f∈F p(D|f)p(f) f : discrete

´
F p(D|f)p(f)df f : continuous

Therefore, the posterior distribution can be fully described using the likelihood and the
prior. The field of research and practice involving ways to determine this distribution and
optimal models is referred to as inferential statistics.

Finding fMAP can be greatly simplified because p(D) in the denominator does not affect
the solution. We shall re-write Equation (3.1) as

p(f |D) = p(D|f) · p(f)
p(D)

∝ p(D|f) · p(f),

where ∝ is the proportionality symbol. Thus, we can find the MAP solution by solving the
following optimization problem

fMAP = argmax
f∈F

p(D|f)p(f).

In some situations we may not have a reason to prefer one model over another and can think
of p(f) as a constant over the model space F . Then, MAP reduces to the maximization of
the likelihood function:

fMLE = argmax
f∈F

p(D|f).

38



This solution is called the maximum likelihood (MLE) solution. Formally speaking, the
assumption that p(f) is constant is problematic because a uniform distribution cannot be
always defined (say, over R), though there are some solutions to this issue using improper
priors. Nonetheless, it is useful to think of MLE as a special case of MAP estimation.

Example 9: Suppose data set D = {2, 5, 9, 5, 4, 8} is an i.i.d. sample from a Poisson
distribution with a fixed but unknown parameter λ0. Find a maximum likelihood estimate
of λ0.

The probability mass function of a Poisson distribution is expressed as p(x|λ) = λxe−λ/x!,
with some parameter λ ∈ R+. We will estimate this parameter as

λMLE = argmax
λ∈(0,∞)

p(D|λ). (3.2)

We can write the likelihood function as

p(D|λ) = p({xi}ni=1 |λ)

=
n∏
i=1

p(xi|λ)

where the probability breaks up into individual probabilities of each xi because the data
is i.i.d. (the random variables are independent). To find λ that maximizes the likelihood,
we will first take a logarithm (a monotonic function) to simplify the calculation; then find
its first derivative with respect to λ; and finally equate it with zero to find the maximum.
Specifically, we express the log-likelihood ln p(D|λ) as

ln p(D|λ) = ln
n∏
i=1

p(xi|λ)

=
n∑
i=1

ln p(xi|λ)

= lnλ
n∑
i=1

xi − nλ−
n∑
i=1

ln (xi!)

because1

ln p(xi|λ) = lnλxie−λ/(xi)!
= lnλxi + ln e−λ − ln xi!
= xi lnλ− λ− ln xi!.

Now in this simpler form, we proceed with computing the derivative

∂ ln p(D|λ)
∂λ

= 1
λ

n∑
i=1

xi − n.

Solving for λ such that ∂ ln p(D|λ)
∂λ = 0 gives us a stationary point of this problem, and we get

λMLE = 1
n

∑n
i=1 xi. We can substitute n = 6 and values from D to compute the solution as

λMLE = 1
n

n∑
i=1

xi = 5.5

1Recall that for scalars a, b > 0, (i) ln(ab) = ln a + ln b (ii) ln(a/b) = ln a− ln b and (iii) ln ab = b ln a
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which is simply a sample mean.
The second derivative of this log likelihood is always negative because λmust be positive.

The second derivative is −λ−2∑n
i=1 xi which is < 0 for this λMLE; thus, the previous

expression indeed maximizes the likelihood. Note that to properly maximize this loss, we
also need to ensure the constraint λ ∈ (0,∞) is enforced. Because the solution above is
in the constraint set, we know we have the correct solution to Equation (3.2); however, in
other situations, we will have to explicitly enforce constraints in the optimization, as we
will discuss later.

�

Example 10: Let D = {2, 5, 9, 5, 4, 8} again be an i.i.d. sample from Poisson(λ0), but
now we are also given additional information. Suppose the prior knowledge about λ0 can
be expressed using a gamma distribution with parameters k = 3 and θ = 1. Find the MAP
estimate of λ0.

First, we write the probability density function of the gamma distribution for our prior

p(λ) = λk−1e−
λ
θ

θkΓ(k) ,

where λ > 0. Γ(k) is the gamma function that generalizes the factorial function; when k is
an integer, we have Γ(k) = (k − 1)!. The MAP estimate of the parameters can be found as

λMAP = argmax
λ∈(0,∞)

p(D|λ)p(λ).

As before, we take the log to simplify calculations to get

ln p(D|λ)p(λ) = ln p(D|λ) + ln p(λ)

=
n∑
i=1

ln p(xi|λ) + ln p(λ).

We have already simplified the first term in the previous example. For the log of the prior
distribution, we have

ln p(λ) = ln
(
λk−1e−

λ
θ

)
− ln(θkΓ(k))

= (k − 1) lnλ− λ

θ
− ln(θkΓ(k)).

The last term is constant with respect to λ; so when we take the derivative it will disappear
and we will be able to avoid computing it. Plugging everything back in

ln p(D|λ)p(λ) = lnλ
n∑
i=1

xi − nλ−
n∑
i=1

ln (xi!) + (k − 1) lnλ− λ

θ
− ln(θkΓ(k))

and taking the derivative gives

∂ ln p(D|λ)p(λ)
∂λ

= 1
λ

n∑
i=1

xi − n+ k − 1
λ
− 1
θ

because ∂ ln p(λ)
∂λ

= k − 1
λ
− 1
θ
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Once again setting the derivative to zero and solving for λ gives

λMAP = k − 1 +
∑n
i=1 xi

n+ 1
θ

= 5 for the dataset D

�

A quick look at λMAP and λMLE suggests that as n grows, both numerators and denomi-
nators in the expressions above become increasingly more similar. In fact, it is a well-known
result that, in the limit of infinite samples, both the MAP and MLE converge to the same
model, f , as long as the prior does not have zero probability (or density) on f . This re-
sult shows that the MAP estimate approaches the MLE solution for large data sets. In
other words, large data diminishes the importance of prior knowledge. This is an important
conclusion because it simplifies mathematical apparatus necessary for practical inference.

To get some intuition for this result, we will show that the MAP and MLE estimates
converge to the same solution for the above example with a Poisson distribution. Let sn =∑n
i=1 xi, which is a sample from the random variable Sn =

∑n
i=1Xi. If limn→∞ sn/n

2 = 0
(i.e., sn does not grow faster than n2), then

|λMAP − λMLE| =
∣∣∣∣k − 1 + sn
n+ 1/θ

− sn
n

∣∣∣∣
=
∣∣∣∣ k − 1
n+ 1/θ

− sn
n(n+ 1/θ)

∣∣∣∣
≤ |k − 1|
n+ 1/θ

+ sn
n(n+ 1/θ) −−−→

n→∞
0

Note that if limn→∞ sn/n
2 6= 0, then both estimators go to ∞; however, such a sequence

of values has an essentially zero probability of occurring. Consistency theorems for MLE
and MAP estimation state that convergence to the true parameters occurs “almost surely”
or “with probability 1” to indicate that these unbounded sequences constitute a set of
measure-zero, under certain reasonable conditions (for more, see [19, Theorem 9.13]).

Example 11: Let D = {xi}ni=1 be an i.i.d. sample from a univariate Gaussian distribution.
Our goal is to find the maximum likelihood estimates of the parameters. We start by forming
the log-likelihood function

ln p(D|µ, σ) = ln
n∏
i=1

p(xi|µ, σ)

= n ln 1√
2π

+ n ln 1
σ
−
∑n
i=1 (xi − µ)2

2σ2 .

We compute the partial derivatives of the log-likelihood with respect to all parameters as

∂

∂µ
ln p(D|µ, σ) =

∑n
i=1 (xi − µ)

σ2

and

∂

∂σ
ln p(D|µ, σ) = −n

σ
+
∑n
i=1 (xi − µ)2

σ3 .
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From here, we can proceed to derive that

µMLE = 1
n

n∑
i=1

xi

and

σ2
MLE = 1

n

n∑
i=1

(xi − µMLE)2 .

�

MAP and MLE estimates are called point estimates. These estimates contrast Bayesian
estimates, which estimate the entire posterior distribution or confidence intervals for the
parameters. We focus primarily on point estimates in this book, and only briefly touch on
Bayesian approaches near the end.

3.2 Maximum likelihood for conditional distributions

We can also formulate maximum likelihood problems for conditional distributions. Recall
that a conditional distribution has the form p(y|x), for two random variables Y and X,
where above we considered the marginal distribution p(x) or p(y). For the distributions
above, we asked: what is the distribution over this variable? For a conditional distribution,
we are instead asking: given some auxiliary information, now what is the distribution over
this variable? When the auxiliary information changes, so will the distribution over the
variable. For example, we may want to condition a distribution over sales of a particular
product (Y ) given the current month (X). We expect the distribution over Y to be different,
depending on the month.

Conditional distributions can be from any of the distribution families discussed above,
and we can similarly formulate parameter estimation problems. The parameters, however,
are usually tied to the given variable X. We provide a simple example to demonstrate
this below. Much of the parameter estimation formulations we consider in the remainder
of the book will be for conditional distributions, because in machine learning we typically
have a large number of auxiliary variables (features) and are trying to predict (or learn
the distribution over) targets. In the chapters on regression and classification, we will
demonstrate how many models can be formulated as maximum likelihood for conditional
distributions p(y|x).

Example 12: Assume you are given two random variables X and Y and that you believe
p(y|x) = N (µ = x, σ2) for some unknown σ. Our goal is to estimate this unknown parameter
σ. Notice that the distribution over Y varies, depending on which X value is observed or
given.

We again start by forming the log-likelihood function, now for pairs of n samples D =
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(x1, y1), . . . , (xn, yn). We will use the chain rule: p(xi, yi) = p(yi|xi)p(xi).

ln p(D|σ) = ln
n∏
i=1

p(xi, yi|σ)

= ln
n∏
i=1

p(yi|xi, σ)p(xi)

=
n∑
i=1

ln p(yi|xi, σ) + ln p(xi)

=
n∑
i=1

ln 1√
2πσ exp(−(yi − xi)2

2σ2 ) + ln p(xi)

= n ln 1√
2π

+ n ln 1
σ
−
∑n
i=1 (yi − xi)2

2σ2 +
n∑
i=1

ln p(xi).

Notice that we use µ = xi for each normal distribution p(yi|xi, σ). We now compute the
partial derivatives of the log-likelihood with respect to the parameter σ

∂

∂σ
ln p(D|σ) = −n

σ
+
∑n
i=1 (yi − xi)2

σ3 .

Notice that ∂
∂σ

∑n
i=1 ln p(xi) = 0, because σ does not parameterize p(xi). Therefore, to

obtain the optimal σ, we do not need to know or specify the distribution over the random
variable X. By setting the derivative to zero, to obtain a stationary point, we obtain

σ2
MLE = 1

n

n∑
i=1

(yi − xi)2.

�

3.33.3 [Advanced] The relationship between maximizing likeli-
hood and Kullback-Leibler divergence

We now investigate the relationship between maximum likelihood estimation and Kullback-
Leibler divergence. Kullback-Leibler divergence between two probability distributions p(x)
and q(x) is defined on X = R as

DKL(p||q) =
ˆ ∞
−∞

p(x) log p(x)
q(x)dx.

In information theory, Kullback-Leibler divergence has a natural interpretation of the inef-
ficiency of signal compression when the code is constructed using a suboptimal distribution
q(x) instead of the correct (but unknown) distribution p(x) according to which the data has
been generated. However, more often than not, Kullback-Leibler divergence is simply con-
sidered to be a measure of divergence between two probability distributions. Although this
divergence is not a metric (it is not symmetric and does not satisfy the triangle inequality)
it has important theoretical properties in that (i) it is always non-negative and (ii) it is
equal to zero if and only if p(x) = q(x).
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Consider now a divergence between an estimated probability distribution p(x|θ) and an
underlying (true) distribution p(x|θ0) according to which the data set D = {xi}ni=1 was
generated. The Kullback-Leibler divergence between p(x|θ) and p(x|θ0) is

DKL(p(x|θ0)||p(x|θ)) =
ˆ ∞
−∞

p(x|θ0) log p(x|θ0)
p(x|θ) dx

=
ˆ ∞
−∞

p(x|θ0) log 1
p(x|θ)dx−

ˆ ∞
−∞

p(x|θ0) log 1
p(x|θ0)dx.

The second term in the above equation is simply the (differential) entropy of the true
distribution and is not influenced by our choice of the model θ. The first term, on the other
hand, can be expressed as

ˆ ∞
−∞

p(x|θ0) log 1
p(x|θ)dx = −E[log p(X|θ)]

Therefore, maximizing E[log p(X|θ)] minimizes the Kullback-Leibler divergence between
p(x|θ) and p(x|θ0). Using the strong law of large numbers, we know that

1
n

n∑
i=1

log p(xi|θ)
a.s.→ E[log p(X|θ)]

when n→∞. Thus, when the data set is sufficiently large, maximizing the likelihood func-
tion minimizes the Kullback-Leibler divergence and leads to the conclusion that p(x|θMLE) =
p(x|θ0), if the underlying assumptions are satisfied. Under reasonable conditions, we can
infer from it that θMLE = θ0. This will hold for families of distributions for which a set of
parameters uniquely determines the probability distribution; e.g., it will not generally hold
for mixtures of distributions but we will discuss this situation later. This result is only one
of the many connections between statistics and information theory.

44



Chapter 4

Introduction to Prediction Problems

Machine learning addresses many problem settings, which can sometimes feel overwhelm-
ing. As a non-exhaustive list, these include supervised learning (with classification and
regression); semi-supervised learning; unsupervised learning; completion under missing fea-
tures; structured prediction; learning to rank; statistical relational learning; active learning;
and temporal prediction (with time series prediction and policy evaluation in reinforce-
ment learning and online learning). For some of these settings, such as active learning and
reinforcement learning, the data collection is a central part of the algorithm and can signif-
icantly determine the quality of the learned predictive models. Most other settings assume
that data has been collected—without our ability to influence that collection—and now we
simply need to analyze that data and learn the best predictors that we can. In this passive
setting, we can either assume that the data is i.i.d.—which is the most common—or that
there are dependencies between data points—such as in time series prediction or statistical
relational learning. There are also settings where the data is incomplete, say because a user
did not fill in their age.

One ontology, therefore, could consider the following dimensions to categorize machine
learning problems:

1. passive vs. active

2. i.i.d. vs. non-i.i.d.

3. complete vs. incomplete.

As with all ontologies, each problem will not perfectly fit into these categories. Further, it
is likely that most data collection is not completely passive (even if only because the human
modeler influences collection of data), is likely not i.i.d. (even if we intended it to be), and
likely has some missing components. Nonetheless, algorithms will make these assumptions,
to varying degrees, even if the data does not satisfy those assumptions. For the majority of
these notes, we will focus on the simplest setting: passive, i.i.d. and complete.

In this chapter, we will first introduce classification and regression and then discuss
criteria for selecting functions for classification and regression, to motivate the algorithms
developed in later chapters.

4.1 Supervised learning problems

We start by defining a data set D = {(x1, y1), (x2, y2), ..., (xn, yn)}, where xi ∈ X is the
i-th input or observation and yi ∈ Y the corresponding target. We usually assume that
X = Rd, in which case xi = (xi1, xi2, . . . , xid) is a d-dimensional vector called an instance
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Figure 4.1: Notation for the dataset. X is an n-by-d matrix, with rows corresponding to
instances and columns to features. y is an n-by-1 vector of targets.

or a sample.1 Each dimension of xj is typically called a feature or an attribute. We will
often organize the dataset into a matrix X ∈ Rn×d where each row corresponds to a sample
xi and each column corresponds to a feature (see Figure 4.1).

The distinction between x and y is due to the fact that we assume that the features are
relatively easy to collect for each object (e.g., by measuring the height of a person or the
square footage of a house), while the target variable is difficult to observe or expensive to
collect (e.g., presence of a disease or the final selling price of a house before it has sold).
Such situations usually benefit from the construction of a computational model that predicts
targets from a set of input values. The model is trained using a set of input observations for
which target values have already been collected. In deployment, we can use this model to
make predictions from easy-to-obtain information—the observation—about hard-to-obtain
information—the targets.

4.1.1 Regression and Classification

The differences in algorithms for prediction problems, with i.i.d. complete data, typically
arises from the properties of the inputs (observations) and the properties of the targets. For
example, we may need to treat text observations—such as those from a set of documents—
differently than a ten-dimensional real-valued observation vector of sensor readings reflecting
the temperature and pressure in a physical system. A simple, and relatively common
strategy, to handle these differences is to map different types of observations—language,
categorical variables and even sequence data—into a Euclidean space where the observation
is re-represented as a real-valued vector. Many prediction algorithms are designed for real-
valued observations, and so standard algorithms can be applied. This question of data
representation is a central and difficult problem in itself; we will discuss it more in Chapter
9. For now, we will assume the observations are already in a convenient form, as a d-
dimensional real-valued vector.

1In statistics, a sample usually refers to a collection of randomly sampled x, rather than a single instance.
It is common in machine learning, though, to use the word sample to mean a single sample, rather than
multiple samples or draws from the distribution.
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The properties of the target are also important, and result in two typical distinctions for
prediction problems: classification and regression. Generally speaking, we have a regression
problem when Y is continuous and a classification problem if Y is discrete. In regression
possible target set include Y = R or Y = [0,∞). An example of a regression problem is
shown in Table 4.1.

size [sqft] age [yr] dist [mi] inc [$] dens [ppl/mi2] y

x1 1250 5 2.85 56,650 12.5 2.35
x2 3200 9 8.21 245,800 3.1 3.95
x3 825 12 0.34 61,050 112.5 5.10

Table 4.1: An example of a regression problem: prediction of the price of a house in a
particular region. Here, features indicate the size of the house (size) in square feet, the age
of the house (age) in years, the distance from the city center (dist) in miles, the average
income in a one square mile radius (inc), and the population density in the same area
(dens). The target indicates the price a house is sold at, e.g. in hundreds of thousands of
dollars.

In classification we construct a function that predicts discrete class labels; this function
is typically called a classifier. The cardinality of Y in classification problems is usually small,
e.g. Y = {healthy, diseased}. An example of a data set for classification with n = 3 data
points and d = 5 features is shown in Table 4.2.

Classification problems can be further subdivided into multi-class and multi-label prob-
lems. A multi-class problem consists of providing the single label for an input. For example,
for (simple) blood-type with Y = {A,B,AB,O}, a patient can only be labeled with one of
these labels. Within multi-class problems, if there are only two classes, it is called binary
classification, such as the example in Table 4.2. In multi-label, an input can be associated
with more than one label. An example of a multi-label problem is the classification of text
documents into categories such as {sports, medicine, travel, politics}. Here, a single docu-
ment may be related to more than one value in the set; e.g. an article on sports medicine.
The learned function can now return multiple outputs.

Typically, to make the outputs more consistent between these two settings, the output
for both multi-class and multi-label is an indicator vector. For m = |Y|, the prediction for
blood types might be [0 1 0 0] to indicate blood-type B and the prediction for four article
labels could be [1 1 0 0] if it is both an article pertaining to sports and medicine.

As with the observation, the targets may themselves be complex, such as text targets.
One area that deals with more complex targets is structured-output prediction, where Y
can be a set of structured outputs, e.g. strings, trees, or graphs. The cardinality of the
output space in structured-output learning problems is often very high. For example, when
predicting the functions of a protein, an entire ontology tree needs to be predicted, as
certain functionality is a subset of other functionality. As with the observation, we may be
able to find simpler re-representations for these targets, to apply more standard methods
from regression and classification. Again, we will discuss this more in Chapter 9. For now,
we will assume relatively simply targets, that are m-dimensional real-valued vectors or a
relatively small number of discrete outcomes.
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wt [kg] ht [m] T [◦C] sbp [mmHg] dbp [mmHg] y

x1 91 1.85 36.6 121 75 −1
x2 75 1.80 37.4 128 85 +1
x3 54 1.56 36.6 110 62 −1

Table 4.2: An example of a binary classification problem: prediction of a disease state for
a patient. Here, features indicate weight (wt), height (ht), temperature (T), systolic blood
pressure (sbp), and diastolic blood pressure (dbp). The class labels indicate presence of a
particular disease, e.g. diabetes. This data set contains one positive data point (x2) and two
negative data points (x1, x3). The class label shows a disease state, i.e. yi = +1 indicates
the presence while yi = −1 indicates absence of disease.

4.1.2 Deciding how to formalize the problem

Though we separate supervised learning problems into two categories, it is not always
clear cut how a problem should be formalized. For example, consider the output space
Y = {0, 1, 2}. We can treat this as a multi-class classification problem, or we could presume
Y = [0, 2] and learn a regression model. We can then threshold the predictions returned by
the regression model, by rounding them to the closest integer.

How do you decide which problem formulation to use? Though the mathematical pro-
cedures in machine learning are precise, deciding how to formulate real-world problem is
subtle, and so inherently less clear-cut. The selection of a particular way of modeling de-
pends on the analyst and their knowledge of the domain as well as technical aspects of
learning. In this example, you could ask: is there inherently an ordering to the outputs
{0, 1, 2}? If not, say they correspond to Prefers apples, Prefers oranges, Prefers bananas,
then it may be a poor choice to model the output as an interval, which often implies or-
dering. On the other hand, regression functions can be easier to learn and often produce
surprisingly good classification predictions. Further, if there is an ordering to these classes,
say Good, Better, Best, then most classification models— which do not assume an ordering
on the outputs—would not be able to take advantage of this ordering to improve prediction
performance.

Formalizing the problem and selecting the function class, and objective is an important
step in using machine learning effectively. Fortunately, there is a wealth of knowledge,
especially empirically, that can guide this selection. As you learn more about the methods,
combined with some information about structure in your domain, you will become better
at this specification.

4.2 Unsupervised learning and semi-supervised learning

Datasets are not always complete: in some cases, we can only get labels for a small subset of
instances, or we cannot get any labels at all. For example, when predicting whether a cat is
in an image or not, we would need a human to take each image and label it with a 0 or 1. This
labeling can be expensive, and so we can only expect that a small number of all pictures with
cats have such an associated label. Using supervised learning only on this labeled subset if
likely to produce a poor predictor, because of limited data. Semi-supervised learning deals
with taking advantage of all the unlabeled data, to supplement the small labeled dataset, by
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finding structure in the features. For example, the features may lie on a lower-dimensional
manifold; this structure could be inferred from the unlabeled data, and potentially more
effectively restrict the function class to learn on the labeled dataset. Unsupervised learning
is focused only on obtaining this structure, without the goal of learning a function to predict
targets, because no targets are provided. Unsupervised learning will be discussed in Section
9.2.2, as a part of representation learning.

These two problem settings can be seen as an instance of a larger setting of learning
under missing data. In general, it may not only be difficult to gather the outputs, but
also some of the features. For example, when collecting patient data, it is likely that some
patients will omit some information. Even though it is difficult to gather the information
“has disease”, it can also be difficult to ensure that other more straightforward data like
“age” or “weight” is gathered. Further, one might even ask why there is a distinction
between features and targets: they are all associated information about one item, like a
patient. Given that a patient does have a disease, you may want to use this feature and
their age to predict their weight—which they so blithely chose not to disclose. This more
general way of approaching the problem can be useful when data is missing and leads to the
general problem of completion. Different techniques are often used in such a setting, and
we will not address it further until Section 9.2.2. For now, we keep the focus on supervised
learning, which we will still be able to use even when some features are missing, using some
simple heuristics for dealing with this missing data.

4.3 Optimal classification and regression models

Our goal now is to establish the performance criteria that will be used to evaluate predictors
f : X → Y and subsequently define optimal classification and regression models. To do so,
we assume we have access to the true joint distribution p(x, y) and ask what the optimal
prediction would be in this ideal case. The optimal predictor is defined based on a cost
function cost : Y ×Y → [0,∞), where cost(ŷ, y) reflects the cost or penalty for predicting ŷ
when the true target is y. Because X,Y are random, the cost C = cost(f(X), Y ) is also a
random variable, because it is a function of these random variables. Our goal is to minimize
the expected cost. We first consider a few examples of costs, and then derive the optimal
predictors.

4.3.1 Examples of Costs

The costs for classification and regression are usually different. A typical cost function for
classification is

cost(ŷ, y) =


0 when y = ŷ

1 when y 6= ŷ

(4.1)

A more complex cost function might arise in settings where certain inaccurate predictions
are more problematic than others. Let’s consider a concrete example, in a medical domain.
Suppose our goal is to decide whether a patient with a particular set of symptoms (x) should
be sent for an additional lab test (y = 1 if yes and y = −1 if not), with cost clab, in order to
improve diagnosis. However, if we do not perform a lab test and the patient is later found to
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have needed the test for proper treatment, we may incur a significant penalty, say clawsuit.
If clawsuit � clab, as it is expected to be, then the classifier needs to appropriately adjust
its outputs to account for the cost disparity in different forms of incorrect prediction. Here,
the cost is better depicted as a table It is not always possible to define a meaningful cost

Y
-1 (¬Has Disease) 1 (Has Disease)

Ŷ
-1 (¬Has Disease, No Test) 0 1000
1 (Has Disease, Do Test) 1 1

Table 4.3: The cost function for the medical lab, cost(ŷ, y), with clawsuit = 1000 and clab = 1.

function and, thus, a reasonable criterion is to use the default 0-1 loss in Equation (4.1).
In regression, common costs are the squared error

cost(ŷ, y) = (ŷ − y)2 (4.2)

and the absolute error
cost(ŷ, y) = |ŷ − y|. (4.3)

The squared error more heavily penalizes values further away from y than the absolute
error. There are many other costs, that factor in the magnitude of the targets, such as the
percentage error.

4.3.2 Deriving the Optimal Predictors

We begin first by deriving the optimal classifier. We can express the expected cost as
follows, assuming the inputs are continuous real-valued vectors and the targets are from a
discrete set Y and ŷ = f(x) for the given predictor f

E[C] =
ˆ
X

∑
y∈Y

cost(f(x), y)p(x, y)dx

=
ˆ
X
p(x)

∑
y∈Y

cost(f(x), y)p(y|x)dx,

where the integration is over the entire input space X = Rd. Notice that we have to predict
one class for each observation: f(x) can only output one value ŷ in Y. But, the target
is random. Because of this the optimal classifier f∗ may not be able to obtain zero cost.
However, simply by looking at the above equation, we can obtain f∗ = argminE[C], by
picking the best classifier for each x separately

f∗(x) = argmin
ŷ∈Y

E[C|X = x]

= argmin
ŷ∈Y

∑
y∈Y

cost(ŷ, y)p(y|x).

This classifier is called the Bayes risk classifier.
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If we use the 0-1 cost function, in Equation (4.1), the Bayes risk classifier simply becomes

f∗(x) = argmin
ŷ∈Y

∑
y∈Y

cost(ŷ, y)p(y|x)

= argmax
ŷ∈Y

1−
∑
y∈Y

cost(ŷ, y)p(y|x)


= argmax

ŷ∈Y

∑
y∈Y

(1− cost(ŷ, y))p(y|x) . because
∑
y∈Y

p(y|x) = 1

= argmax
ŷ∈Y

∑
y∈Y,y 6=ŷ

0 · p(y|x) +
∑

y∈Y,y=ŷ
1 · p(y|x)

= argmax
y∈Y

p(y|x)

Therefore, if p(y|x) is known or can be accurately learned, we are fully equipped to make
the prediction that minimizes the total cost. In other words, we have converted the problem
of minimizing the expected classification cost or probability of error, into the problem of
learning functions, more specifically learning probability distributions.

The analysis for regression is similar to that for classification. Here too, we are interested
in minimizing the expected cost of prediction of the true target y when a predictor f(x) is
used. The expected cost can be expressed as

E[C] =
ˆ
X

ˆ
Y
cost(f(x), y)p(x, y)dydx.

For simplicity, we will consider the squared error from Equation (4.2)

cost(f(x), y) = (f(x)− y)2,

which results in

E[C] =
ˆ
X

ˆ
Y

(f(x)− y)2p(x, y)dydx

=
ˆ
X
p(x)
ˆ
Y

(f(x)− y)2p(y|x)dy︸ ︷︷ ︸
g(f(x))

dx.

Assuming f(x) is flexible enough to be separately optimized for each unit volume dx, we
see that minimizing E[C] leads us to the problem of finding ŷ for each x to minimize

g(ŷ) =
ˆ
Y

(ŷ − y)2p(y|x)dy.

To find the optimal ŷ, we can solve this minimization problem by finding a stationary point,
the global minimum. To do so, we differentiate g with respect to ŷ and find the point where
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the derivative equals zero

∂g(ŷ)
∂ŷ

= 2
ˆ
Y

(ŷ − y)p(y|x)dy = 0

=⇒ ŷ

ˆ
Y
p(y|x)dy︸ ︷︷ ︸

=1

=
ˆ
Y
yp(y|x)dy

=⇒ ŷ

ˆ
Y
p(y|x)dy︸ ︷︷ ︸

=1

=
ˆ
Y
yp(y|x)dy

=⇒ ŷ =
ˆ
Y
yp(y|x)dy = E[Y |x].

Therefore, the optimal predictor is

f∗(x) = E[Y |x].

Therefore, the optimal regression model in the sense of minimizing the square error between
the prediction and the true target is the conditional expectation E[Y |X = x].2

Exercise 5: We can similarly compute the optimal predictor for the absolute error cost,
in Equation (4.3). Show that the optimal predictor for the absolute error is the conditional
median, Median[Y |X = x]. �

The above has motivated that learning p(y|x) is sensible for classification, to reduce
0-1 classification error. An alternative to directly learning p(y|x) is to instead learn the
class-conditional and prior distributions, p(x|y) and p(y), respectively. Using

p(y|x) = p(x, y)
p(x)

= p(x|y)p(y)
p(x)

∝ p(x|y)p(y)

we can see that these two learning approaches are equivalent in theory, to decide the ŷ with
highest p(y|x). The choice depends on our prior knowledge and/or preferences. Models
obtained by directly estimating p(y|x) are called discriminative models and models obtained
by directly estimating p(x|y) and p(y) are called generative models.

4.3.3 Reducible and Irreducible Error

Having found the optimal regression model, we can now write the expected cost in the cases
of both optimal and suboptimal models f(x). That is, we are interested in expressing E[C]
when

2It may appear that in the above equations, setting f(x) = y would always lead to E[C] = 0. Unfor-
tunately, this would be an invalid operation because for a single input x there may be multiple possible
outputs y and they can certainly appear in the same data set. To be a well-defined function, f(x) must
always have the same output for the same input. E[C] = 0 can only be achieved if p(y|x) is a delta function
for every x.
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1. f(x) = E[Y |x]

2. f(x) 6= E[Y |x].
When f(x) = E[Y |x], the expected cost can be simply expressed as

E[C] =
ˆ
X
p(x)

ˆ
Y

(E[Y |x]− y)2p(y|x)dydx

=
ˆ
X
p(x)V[Y |X = x]dx (4.4)

Recall that V[Y |X = x] is the variance of Y , for the given x. The expected cost, therefore,
reflects the cost incurred from noise or variability in the targets. This is the best scenario
in regression for a squared error cost; we cannot achieve a lower expected cost.

The next situation is when f(x) 6= E[Y |x]. Here, we will proceed by decomposing the
squared error as

(f(x)− y)2 = (f(x)− E[Y |x] + E[Y |x]− y)2

= (f(x)− E[Y |x])2 + 2(f(x)− E[Y |x])(E[Y |x]− y)︸ ︷︷ ︸
g(x,y)

+ (E[Y |x]− y)2

Notice that the expected value of g(x, Y ) for each x is zero because

E[g(x, Y )] = E
[
(f(x)− E[Y |x])(E[Y |x]− Y )|x

]
= (f(x)− E[Y |x])E

[
(E[Y |x]− Y )|x

]
= (f(x)− E[Y |x]) (E[Y |x]− E[Y |x])
= 0.

Therefore, we can conclude that E[g(X, Y )] = 0, when taking expectations over X. We
can now express the expected cost as

E[C] = E[(f(X)− Y )2]
= E[(f(X)− E[Y |X])2]︸ ︷︷ ︸

reducible error

+E[(E[Y |X]− Y )2]︸ ︷︷ ︸
irreducible error

.

The first term reflects how far the trained model f(x) is from the optimal model E[Y |x].
The second term reflects the inherent variability in Y given x, as written in Equation (4.4).
These terms are also often called the reducible and irreducible errors. If we extend the
class of functions f to predict E[Y |x], we can reduce the first expected error. However, the
second error is inherent or irreducible in the sense that no matter how much we improve the
function, we cannot reduce this term. This relates to the problem of partial observability,
where there is always some stochasticity due to a lack of information. This irreducible
distance could potentially be further reduced by providing more feature information (i.e.,
extending the information in x). However, for a given dataset, with the given features, this
error is irreducible.

To sum up, we argued here that optimal classification and regression models critically
depend on knowing or accurately learning the posterior distribution p(y|x). This task can
be solved in different ways, but a straightforward approach is to assume a functional form
for p(y|x), say p(y|x,θ), where θ is a set of weights or parameters that are to be learned
from the data.
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4.44.4 [Advanced] Bayes Optimal Models

We saw earlier that optimal prediction models reduce to the learning of the posterior dis-
tribution p(y|x) which is then used to minimize the expected cost (risk, loss). However, in
practice, the probability distribution p(y|x) must be modeled using a particular functional
form and a set of tunable coefficients. When X = Rd and Y = {0, 1}, one such example is
used in logistic regression, where

p(1|x) = 1

1 + e
−(w0+

∑d

j=1 wjxj)

and p(0|x) = 1 − p(1|x). Here (w0, w1, . . . , wd) ∈ Rd+1 is a set of weights that are to be
inferred from a given data set D and x ∈ Rd is an input data point. A number of other
types of functional relationships can be used as well, providing a vast set of possibilities for
modeling distributions.

To be more precise about these functional forms, we should adjust our notation to denote
the distribution over y given x as

p(y|x) = p(y|x, f),

where f is a particular function from some function (hypothesis) space F . We can think
of F as a set of all functions from a specified class, say for all (w0, w1, . . . , wd) ∈ Rk+1 in
the example above, but we can also extend the functional class beyond simple parameter
variation to incorporate non-linear decision surfaces. We typically select one function, given
the data—say the maximum likelihood or MAP solution

We could instead consider the distribution Y |x, over all plausible functions f . In a
typical learning problem, we are given a data set D = {(xi, yi)}ni=1 and are asked to model
p(y|x). For this purpose, we will think of D as a realization of a random variable D and
will assume that D was drawn according to the true underlying distribution p(x, y). Thus,
our task is to express p(y|x,D). Using the sum and product rules, will rewrite our original
task of estimating p(y|x) as

p(y|x,D) =
ˆ
F
p(y|x, f,D)p(f |x,D)df

=
ˆ
F
p(y|x, f)p(f |x,D)df.

Here we used conditional independence between output Y and the data set D once a partic-
ular model f was selected based on D; thus p(y|x, f,D) = p(y|x, f). This equation, gives us
a sense that the optimal decision can be made through a mixture of distributions p(y|x, f),
where the weights are given as posterior densities p(f |x,D). In finite hypothesis spaces F
we have that

p(y|x,D) =
∑
f∈F

p(y|x, f)p(f |x,D),

and p(f |x,D) are posterior probabilities. We may further assume that p(f |x,D) = p(f |D),
in which case the weights can be precomputed based on the given data set D. This leads
to more efficient calculations of the posterior probabilities.
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In classification, we can rewrite our optimal classifier as

f∗(x,D) = argmax
y∈Y

p(y|x,D)

which readily leads to the following formulation

f∗(x,D) = argmax
y∈Y

ˆ
F
p(y|x, f,D)p(f |D)df

= argmax
y∈Y

ˆ
F
p(y|x, f)p(D|f)p(f)df.

It can be shown that no classifier can outperform the Bayes optimal classifier. Interestingly,
the Bayes optimal model also hints that a better prediction performance can be achieved by
combining multiple models and averaging their outputs. This provides theoretical support
for ensemble learning and methods such as bagging and boosting.

One problem in Bayes optimal classification is efficient calculation of f∗(x,D), given
that the function (hypothesis) space F is generally uncountable. One approach to this is
sampling of functions from F according to p(f) and then calculating p(f |D) or p(D|f). This
can be computed until p(y|x,D) converges.
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Chapter 5

Linear Regression

Given a data set D = {(xi, yi)}ni=1 the objective is to learn the relationship between features
and the target. We usually start by hypothesizing the functional form of this relationship.
For example,

f(x) = w0 + w1x1 + w2x2

where w = (w0, w1, w2) is a set of parameters that need to be determined (learned) and
x = (x1, x2). Alternatively, we may hypothesize that f(x) = α+βx1x2, where θ = (α, β) is
another set of parameters to be learned. In the former case, the target function is modeled
as a linear combination of features and parameters, i.e.

f(x) =
d∑
j=0

wjxj ,

where we extended x to (x0 = 1, x1, x2, . . . , xd). Finding the best parameters w is then
referred to as linear regression problem, whereas all other types of relationship between the
features and the target fall into a category of non-linear regression. In either situation, the
regression problem can be presented as a probabilistic modeling approach that reduces to
parameter estimation: to an optimization problem with the goal of maximizing or minimiz-
ing some performance criterion between target values {yi}ni=1 and predictions {f(xi)}ni=1.
We can think of a particular optimization algorithm as the learning or training algorithm.

5.1 Maximum likelihood formulation

We now consider a statistical formulation of linear regression. We shall first lay out the
assumptions behind this process and subsequently formulate the problem through maxi-
mization of the conditional likelihood function. In following section, we will show how to
solve the optimization and analyze the solution and its basic statistical properties.

Let us assume that the observed data set D is a product of a data generating process in
which n data points were drawn independently and according to the same distribution p(x).
Assume also that the target variable Y has an underlying linear relationship with features
X = (X1, X2, . . . , Xd), modified by some error term ε that follows a zero-mean Gaussian
distribution, i.e. ε : N (0, σ2). That is, for a given input x, the target y is a realization of a
random variable Y defined as

Y =
d∑
j=0

ωjXj + ε,
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where ω = (ω0, ω1, . . . , ωd) is a set of unknown coefficients we seek to recover through
estimation. Generally, the assumption of normality for the error term is reasonable (recall
the central limit theorem!), although the independence between ε and X may not hold in
practice. Using a few simple properties of expectations, we can see that Y also follows a
Gaussian distribution, i.e. its conditional density is p(y|x,ω) = N (ω>x, σ2).

In linear regression, we seek to approximate the target as f(x) = w>x, where weights
w are to be determined. We first write the conditional likelihood function for a single pair
(x, y) as

p(y|x,w) = 1√
2πσ2

exp

−
(
y −

∑d
j=0wjxj

)2

2σ2


where we use the notation exp(a) = ea, to make the exponent easier to read. Observe that
the only change from the conditional density function of Y is that coefficients w are used
instead of ω. Incorporating the entire data set D = {(xi, yi)}ni=1, we can now write the
conditional likelihood function as p(y|X,w) and find weights as

wMLE = arg max
w

{p(y|X,w)} .

Since the n examples are independent and identically distributed (i.i.d.), we have

p(y|X,w) =
n∏
i=1

p(yi|xi,w)

=
n∏
i=1

1√
2πσ2

exp

−
(
yi −

∑d
j=0wjxij

)2

2σ2

 .
For the reasons of mathematical convenience, we will look at the logarithm (monotonic
function) of the likelihood function and express the log-likelihood as

ln(p(y|X,w)) = −
n∑
i=1

log
(√

2πσ2
)
− 1

2σ2

n∑
i=1

yi − d∑
j=0

wjxij

2

.

Given that the first term on the right-hand hand side is independent of w, maximizing the
likelihood function corresponds exactly to minimizing the sum of squared errors

Err(w) =
n∑
i=1

(f(xi)− yi)2 . f(xi) =
d∑
j=0

wjxij = ŷi.

Geometrically, this error is the square of the Euclidean distance between the vector of
predictions ŷ = (f(x1), f(x2), . . . , f(xn)) and the vector of observed target values y =
(y1, y2, . . . , yn). A simple example illustrating the linear regression problem is shown in
Figure 5.1.

To more explicitly see why the maximum likelihood solution corresponds to minimizing
Err(w), notice that maximizing the likelihood is equivalent to maximizing the log-likelihood
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Figure 5.1: A linear regression solution on data set D = {(1, 1.2) , (2, 2.3) , (3, 2.3) , (4, 3.3)}.
The task of the optimization process is to find the best linear function f(x) = w0 + w1x so
that the sum of squared errors e2

1 + e2
2 + e2

3 + e2
4 is minimized.

(because log is monotonic) which is equivalent to minimizing the negative log-likelihood.
Therefore, the maximum likelihood wMLE corresponds to

wMLE = argmin
w∈Rd

− ln(p(y|X,w))

= argmin
w∈Rd

n∑
i=1

log
(√

2πσ2
)

+ 1
2σ2

n∑
i=1

yi − d∑
j=0

wjxij

2

= argmin
w∈Rd

n∑
i=1

yi − d∑
j=0

wjxij

2

= argmin
w∈Rd

Err(w)

In the next sections, we will discuss how to solve this optimization and the properties of
the solution.

Note that we could have simply started with some (expert-defined) error function, as
was originally done for OLS and using Err(w). However, the statistical framework provides
insights into the assumptions behind OLS regression. In particular, the assumptions include
that the data D was drawn i.i.d.; there is an underlying linear relationship between features
and the target; that the noise (error term) is zero-mean Gaussian and independent of the
features; and that there is an absence of noise in the collection of features.

5.2 Ordinary Least-Squares (OLS) Regression

To minimize the sum of squared errors, we shall first re-write Err(w) as

Err(w) =
n∑
i=1

(f(xi)− yi)2

=
n∑
i=1

 d∑
j=0

wjxij − yi

2

,

58



where, again, we expanded each data point xi by xi0 = 1 to simplify the expression.
We now calculate the gradient ∇Err(w). Finding weights for which ∇Err(w) = 0 will

result in a stationary point. To ensure that this stationary point is a global minimum, we
need a bit more information. We can look at the second derivative; this requires under-
standing of Hessian, so we include this later in the notes in Example 16. But, fortunately,
it is even simpler here, since we know that this objective is convex in w; therefore, any
stationary point will be a global minimum.

Now, we set the partial derivatives to 0 and solve the equations for each weight wj

∂Err
∂w0

= 2
n∑
i=1

 d∑
j=0

wjxij − yi

xi0 = 0

∂Err
∂w1

= 2
n∑
i=1

 d∑
j=0

wjxij − yi

xi1 = 0

...

∂Err
∂wd

= 2
n∑
i=1

 d∑
j=0

wjxij − yi

xid = 0

This results in a system of d+ 1 linear equations with d+ 1 unknowns that can be routinely
solved (e.g. by using Gaussian elimination).

While this formulation is useful, it does not allow us to obtain a closed-form solution
for w or discuss the existence or multiplicity of solutions. To address the first point we will
exercise some matrix calculus, while the remaining points will be discussed later. We will
first write the sum of square errors using the matrix notation as

Err(w) = (Xw− y)> (Xw− y)
= ‖Xw− y‖22 ,

where ‖v‖2 =
√

v>v =
√
v2

1 + v2
2 + . . . v2

n is the length of vector v; it is also called the `2
norm. We can now formalize the ordinary least-squares (OLS) linear regression problem as

wMLE = arg min
w

‖Xw− y‖22 .

We proceed by finding ∇Err(w). The gradient function ∇Err(w) is a derivative of a scalar
with respect to a vector. However, the intermediate steps of calculating the gradient require
derivatives of vectors with respect to vectors (some of the rules of such derivatives are shown
in Table B.1). Application of the rules from Table B.1 results in

∇Err(w) = 2X>Xw− 2X>y

and, therefore, from ∇Err(w) = 0 we find that

wMLE = (X>X)−1X>y. (5.1)
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We can now express the predicted target values as

ŷ = XwMLE

= X(X>X)−1X>y.

The matrix X(X>X)−1X> is called the projection matrix; see Section C.1 to understand
how it projects y to the column space of X.

Example 13: Consider again data set D = {(1, 1.2) , (2, 2.3) , (3, 2.3) , (4, 3.3)} from Figure
5.1. We want to find the optimal coefficients of the least-squares fit for f(x) = w0 + w1x
and then calculate the sum of squared errors on D after the fit.

The OLS fitting can now be performed using

x =


1 1
1 2
1 3
1 4

 , w =
[
w0
w1

]
, y =


1.2
2.3
2.3
3.3

 ,
where a column of ones was added to x to allow for a non-zero intercept (y = w0 when
x = 0). Substituting x and y into Eq. (5.1) results in w = (0.7, 0.63) and the sum of square
errors is Err(w) = 0.223. �

As seen in the example above, it is a standard practice to add a column of ones to
the data matrix x in order to ensure that the fitted line, or generally a hyperplane, does
not have to pass through the origin of the coordinate system. This effect, however, can be
achieved in other ways. Consider the first component of the gradient vector

∂Err
∂w0

= 2
n∑
i=1

 d∑
j=0

wjxij − yi

xi0 = 0

where, because xi0 = 1 by definition, we obtain that

0 =
n∑
i=1

 d∑
j=0

wjxij − yi

 =
n∑
i=1

w0 +
d∑
j=1

wjxij − yi


giving

n∑
i=1

w0 =
n∑
i=1

yi −
d∑
j=1

wj

n∑
i=1

xij .

When all features (columns of X) are normalized to have zero mean, i.e. when
∑n
i=1 xij = 0

for any column j, it follows that

w0 = 1
n

n∑
i=1

yi.

We see now that if the target variable is normalized to the zero mean as well, it follows that
w0 = 0 and that the column of ones is not needed.
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5.2.1 Weighted error function

In some applications it is useful to consider minimizing the weighted error function

Err(w) =
n∑
i=1

ci

 d∑
j=0

wjxij − yi

2

,

where ci > 0 is a cost for data point i. Expressing this in a matrix form, the goal is to
minimize (Xw− y)>C (Xw− y), where C = diag (c1, c2, . . . , cn). Using a similar approach
as above, it can be shown that the weighted least-squares solution wC can be expressed as

wC =
(
X>CX

)−1
X>Cy.

In addition, it can be derived that

wC = wMLE +
(
X>CX

)−1
X> (I−C) (XwMLE − y) ,

where wMLE is provided by Eq. (5.1). We can see that the solutions are identical when
C = I, but also when XwMLE = y.

5.2.2 Predicting multiple outputs simultaneously

The extension to multiple outputs is straightforward, where now the target is an m-
dimensional vector, y ∈ Rm, rather than a scalar, giving target matrix Y ∈ Rn×m. Corre-
spondingly, the weights W ∈ Rd×m to give W>x ∈ Rm, with error

Err(W) = ‖XW−Y‖2F =
n∑
i=1
‖Xi,:W−Yi,:‖22 . Frobenius norm

= trace
(
(XW−Y)>(XW−Y)

)
and solution

WMLE = (X>X)−1X>Y.

Exercise 6: Derive this solution, by taking partial derivatives or, preferably, by using
gradient rules for matrix variables. A good resource for matrix gradients is the matrix
cookbook [16]. �

To gain further insight into the ordinary linear regression solution, see an algebraic
perspective in the appendix C.1. It provides more insights into uniqueness of the solution,
and the space of possible solutions, and connects the linear regression optimization to solving
systems.

5.3 Linear regression for non-linear problems

At first, it might seem that the applicability of linear regression to real-life problems is
greatly limited. After all, it is not clear whether it is realistic (most of the time) to assume
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x Φ
1 x1 φ0(x1) ... φp(x1)

x2 → ... ... ...
... ... ... ...

n xn φ0(xn) ... φp(xn)

Figure 5.2: Transformation of an n× 1 data matrix x into an n× (p+ 1) matrix Φ using
a set of basis functions φj, j = 0, 1, . . . , p .

that the target variable is a linear combination of features. Fortunately, the applicability
of linear regression is broader because we can use it to obtain non-linear functions. The
main idea is to apply a non-linear transformation to the data matrix X prior to the fitting
step, which then enables a non-linear fit. Obtaining such a useful feature representation is
a central problem in machine learning; we will discuss this in detail in Chapter 9. Here,
we will first examine a simpler expanded representation that enables non-linear learning:
polynomial curve fitting.

5.3.1 Polynomial curve fitting

We start with one-dimensional data. In OLS regression, we would look for the fit in the
following form

f(x) = w0 + w1x,

where x is the data point and w = (w0, w1) is the weight vector. To achieve a polynomial
fit of degree p, we will modify the previous expression into

f(x) =
p∑
j=0

wjx
j ,

where p is the degree of the polynomial. We will rewrite this expression using a set of basis
functions as

f(x) =
p∑
j=0

wjφj(x)

= w>φ,

where φj(x) = xj and φ = (φ0(x), φ1(x), . . . , φp(x)). Applying this transformation to every
data point in x results in a new data matrix Φ, as shown in Figure 5.2.

Following the discussion from Section 5.2, the optimal set of weights is calculated as

wMLE =
(
Φ>Φ

)−1
Φ>y.

Example 14: In Figure 5.1 we presented an example of a data set with four data points.
What we did not mention was that, given a set {x1, x2, x3, x4}, the targets were generated

62
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1
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3

4

5

x

f3(x)

f1(x)

Figure 5.3: Example of a linear vs. polynomial fit on a data set shown in Figure 5.1. The
linear fit, f1(x), is shown as a solid green line, whereas the cubic polynomial fit, f3(x), is
shown as a solid blue line. The dotted red line indicates the target linear concept.

by using function 1 + x
2 and then adding a measurement error e = (−0.3, 0.3,−0.2, 0.3). It

turned out that the optimal coefficients wMLE = (0.7, 0.63) were close to the true coefficients
ω = (1, 0.5), even though the error terms were relatively significant. We will now attempt
to estimate the coefficients of a polynomial fit with degrees p = 2 and p = 3. We will
also calculate the sum of squared errors on D after the fit as well as on a large discrete set
of values x ∈ {0, 0.1, 0.2, . . . , 10} where the target values will be generated using the true
function 1 + x

2 .
Using a polynomial fit with degrees p = 2 and p = 3 results in w2 = (0.575, 0.755,−0.025)

and w3 = (−3.1, 6.6,−2.65, 0.35), respectively. The sum of squared errors on D equals
Err(w2) = 0.221 and Err(w3) ≈ 0. Thus, the best fit is achieved with the cubic poly-
nomial. However, the sum of squared errors on the outside data set reveal a poor gen-
eralization ability of the cubic model because we obtain Err(w) = 26.9, Err(w2) = 3.9,
and Err(w3) = 22018.5. This effect is called overfitting. Broadly speaking, overfitting is
indicated by a significant difference in fit between the data set on which the model was
trained and the outside data set on which the model is expected to be applied (Figure 5.3).
In this case, the overfitting occurred because the complexity of the model was increased
considerably, whereas the size of the data set remained small.

One signature of overfitting is an increase in the magnitude of the coefficients. For
example, while the absolute values of all coefficients in w and w2 were less than one, the
values of the coefficients in w3 became significantly larger with alternating signs (suggesting
overcompensation). We will discuss regularization in Section 5.4.2 as an approach to prevent
this effect. �

Polynomial curve fitting is only one way of non-linear fitting because the choice of basis
functions need not be limited to powers of x. Among others, non-linear basis functions that
are commonly used are the sigmoid function

φj(x) = 1

1 + e
−
x−µj
sj
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or a Gaussian-style exponential function

φj(x) = e
−

(x−µj)2

2σ2
j ,

where µj , sj , and σj are constants to be determined. However, this approach works only for
a one-dimensional input x. For higher dimensions, this approach can be generalized using
radial basis functions; see Section 9.1 for more details.

5.4 Stability and the bias-variance trade-off

The OLS solution can be unstable. In this section, we show why this is the case, and
discuss how regularization can be used to mitigate this problem. We will then discuss a
foundational concept in machine learning: the bias-variance trade-off.

5.4.1 Sensitivity of the OLS solution

The OLS solution is unstable if X>X is not invertible. This can occur for two main reasons:
linearly dependent features and small datasets. Data sets often include large numbers of
features, which are sometimes identical, similar, or nearly linearly dependent. If the dataset
is small, it is feasible that some features are the same across samples, again resulting in
low-rank X. When X>X is not invertible—or ill-conditioned—the OLS solution is highly
sensitive to small perturbations in y and X.

To see why, we will look at the singular value decomposition of X. As with the previous
linear algebra constructs, it allows us to easily examine properties of X. Let’s consider the
common case, where n > d: the number of samples is greater than the input dimension.
The singular value decomposition of X = UΣV> for orthonormal matrices1 U ∈ Rn×n,V ∈
Rd×d and non-negative (rectangular) diagonal matrix Σ ∈ Rn×d. The diagonal entries in Σ
are the singular values, which we typically order in descending order σ1, σ2, . . . , σd, giving

Σ def=



σ1 0 0 . . . 0
0 σ2 0 . . . 0

...
0 0 . . . 0 σd
0 0 . . . 0 0

... (n− d) rows of zeros
0 0 . . . 0 0


=
[
Σd

0

]
where Σd

def=


σ1 0 . . . 0
0 σ2 . . . 0

...
0 0 . . . σd

 .

Any matrix X ∈ Rn×d can be decomposed into its singular value decomposition, because any
linear transformation can be decomposed into a rotation (multiplication by V>), followed
by a scaling (multiplication by Σ), followed again by a rotation (multiplication by U).

This decomposition simplifies analysis of the properties of a matrix. For example, the
number of non-zero singular values constitutes the rank of X. To see why, assume σd = 0,
and σd−1 > 0, meaning X has rank d − 1. Take any vector w ∈ Rd, and consider Xw.
We can write this product as UΣV>w = UΣw̃ for w̃ = V>w. The product Σw̃ sets the

1An orthonormal matrix U is square matrix that satisfies U>U = I and UU> = I
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last dimension of w̃ to zero, effectively removing that dimension and so projecting w̃ into a
lower-dimensional (d− 1) space. Then it rotates that projected vector afterwards, using U,
but cannot undo that projection into a lower-dimensional space. Therefore, Xw can only
product ŷ = Xw that lie in a d−1-dimensional plane, rotated in Rd−1. This decomposition,
then, can help us understand the space of possible predictions for linear regression Xw.

Now we can discuss the least-squares solution, in terms of the singular value decompo-
sition of X. Notice that

X>X = VΣ>U>UΣV> = VΣ2
dV
>

because U is orthonormal and so U>U = I the identity matrix (I is a diagonal matrix with
ones on the diagonal). The inverse of X>X exists if X is full rank, i.e., Σd has no zeros on
the diagonal, because (X>X)−1 = VΣ−2

d V>. The resulting solution for w looks like2

w = (X>X)−1X>y = VΣ−1U>y =
d∑
j=1

u>j y
σj

vj (5.2)

where U = [u1, . . . ,un] ∈ Rn×n is the orthonormal matrix composed of the left singular
vectors, Ud = [u1, . . . ,ud] ∈ Rn×d is the first d left singular vectors, and V = [v1, . . . ,vd] ∈
Rd×d is the orthonormal matrix composed of the right singular vectors.

The solution in Equation (5.3) makes it clear why the linear regression solution can be
sensitive to perturbations. For small singular values, σ−1

j is large and amplifies any changes
in y. For example, for slightly different noise component εi for the ith sample, the solution
vector w could be very different. A common strategy to deal with this instability is to drop
or truncate small singular values. This is a form of regularization, which we discuss in the
next section.

Remark: In the general case, where X is not full rank, we can still obtain a least-squares
solution to X>Xw = X>y. Now, there are potentially infinitely many solutions. The
common choice is to select the minimum variance solution, which corresponds to dropping
the components (singular vectors) for the zero singular values:

w =
rank of X∑
j=1

u>j y
σj

vj . (5.3)

Example 15: [Nearly linear dependent] Let’s look at a simple example of why X ∈ Rn×d
might have small singular values. First, assume d = 2 and x2 = x1, i.e., that the second
features is a copy of the first and simply redundant. Then X = U2Σ2V> is the thin SVD
of X, where U2 only has the first two columns of the full SVD. We can write this thin SVD
because X = U2Σ2V> = UΣV>, where the zero singular values zero out the remaining
columns of U.

The SVD of just the first column x1 ∈ Rn×1 is straightforward: x1 = u1σ1v1, where
u1 = x1/‖x1‖, σ1 = ‖x1‖ and v1 = 1. The SVD of X = [x1 x2] is therefore, for any n-
dimensional unit vector u2 that is orthogonal to u1, and right singular vectors v1,v2 ∈ R2,

X = [u1 u2]Σ[v1 v2]> = [u1 u2]
[

2σ1 0
0 0

] [
0.5 0.5
−0.5 0.5

]
= u1σ1[1.0 1.0]

2The last step in the below equation, writing the matrix product as a sum, is not immediately obvious.
As an exercise, see if you can derive this last equality.
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Figure 5.4: A comparison between Gaussian and Laplace priors. Both prefers values to be
near zero, but the Laplace prior more strongly prefers the values to equal zero.

where we extended v1 to two-dimensions (since d = 2), and defined v2 to be orthogonal
to that vector, and had to rescale σ1 to maintain unit singular vectors. So because x2 is
dependent on x1, the rank does not increase when we add it as a column and the singular
value σ2 = 0.

If instead x2 = x1 +ε for a small noise vector ε ∈ Rn, then instead we would find that σ2
would no longer be zero, but would be very close to zero, because u1 and the first singular
value σ1 would largely be able to recreate x2. �

5.4.2 Regularization

So far, we have discussed linear regression in terms of maximum likelihood. But, as before,
we can also propose a MAP objective. Instead of specifying no prior over w, we can select
a prior to help regularize overfitting to the observed data. We will discuss two common
priors (regularizers): the Gaussian prior (`2 norm) and the Laplace prior (`1 norm), shown
in Figure 5.4.

Taking the log of the zero-mean Gaussian prior, N (0, λ−1I), we get

− ln p(w) = 1
2 ln(2π|λ−1I|) + w>w

2λ−1 = 1
2 ln(2π)− d ln(λ) + λ

2 w>w.

because |λ−1I| = λ−d, where |A| is the determinant of the matrix A. As before, we can
drop the first constant which does not affect the selection of w.

Now we can combine the negative log-likelihood and the negative log prior. Then ig-
noring constants, we can add up the negative log-likelihood and negative log to the prior
to get

argmin
w

− ln(p(y|X,w))− ln p(w) = argmin
w

1
2σ2

n∑
i=1

yi − d∑
j=0

wjxij

2

+ λ

2 w>w

= argmin
w

n∑
i=1

yi − d∑
j=0

wjxij

2

+ λσ2

2 w>w.
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Therefore if we assume that the weights have a zero-mean Gaussian prior N (0, λ−1σ2I),
then we get the following ridge regression problem:

c(w) = (Xw− y)>(Xw− y) + λw>w . ‖w‖22 = w>w

where λ is a user-selected parameter that is called the regularization parameter. The idea
is to penalize weight coefficients that are too large; the larger the λ, the more large weights
are penalized. Correspondingly, larger λ corresponds to a smaller covariance in the prior,
pushing the weights to stay near zero. The MAP estimate, therefore, has to balance between
this prior on the weights, and fitting the observed data.

If we solve this equation in a similar manner as before, we obtain

wMAP = (X>X + λI)−1X>y.

This has the nice effect of shifting the squared singular values in Σ2
d by λ, removing stability

issues with dividing by small singular values, as long as λ is itself large enough.
If we choose a Laplace distribution, we get an `1 penalized objective

c(w) = (Xw− y)>(Xw− y) + λ‖w‖1

which is often called the Lasso. This objective can be obtained similarly to the `2 regularized
objective, but instead using a Laplace distribution with parameter λ for the prior. As with
the `2 regularizer for ridge regression, this regularizer penalizes large values in w. However,
it also produces more sparse solutions, where entries in w are zero. This preference can
be seen in Figure 5.4, where the Laplace distribution is more concentrated around zero. In
practice, however, this preference is even stronger than implied by the distribution, due to
how the spherical least-squares loss and the `1 regularizer interact.

Forcing entries in w to zero has the effect of feature selection, because zeroing entries
in w is equivalent to removing the corresponding feature. Consider the dot product each
time a prediction is made,

x>w =
d∑
j=0

xjwj =
∑

j:wj 6=0
xjwj .

This is equivalent to simply dropping entries in x and w where wj = 0.
For the Lasso, we no longer have a closed-form solution. We do not have a closed form

solution, because we cannot solve for w in closed-form that provides a stationary point.
Instead, we use gradient descent to compute a solution to w. The `1 regularizer, however,
is non-differentiable at 0. Understanding how to optimize this objective requires a bit more
optimization background, so we provide this algorithm in the next chapter, in Algorithm 4.

5.4.3 Expectation and variance for the regularized solution

A natural question to ask is how this regularization parameter can be selected, and the
impact on the final solution vector. The selection of this regularization parameter leads
to a bias-variance trade-off. To understand this trade-off, we need to understand what it
means for the solution to be biased, and how to characterize the variance of the solution,
across possible datasets.
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Let us begin with understanding the bias and variance of the non-regularized solu-
tion, presuming that the distributional assumptions behind linear regression are true. This
means that there exists a true parameter ω such that for each of the data points Yi =∑d
j=0 ωjXij + εi, where the εj are i.i.d. random variables drawn according to N (0, σ2).

We can characterize the solution vector (estimator) wMLE as a random variable, where the
randomness is across possible datasets that could have been observed. In this sense, we
are considering the dataset D to be a random variable, and the solution wML(D) from that
dataset as a function of this random variable.

Let us now look at the expected value (with respect to training data set D) for the
weight vector wML, with ε = (ε1, ε2, . . . , εn):

E[wML(D)] = E
[(

X>X
)−1

X> (Xω + ε)
]

= E
[(

X>X
)−1

(X>X)ω
]

+ E
[(

X>X
)−1

X>ε
]

= E [ω] + E
[(

X>X
)−1

X>
]
E [ε]

= ω,

where the third equality follows from the fact that the noise terms ε are independent of the
features and the last equality because ω is a constant vector (non-random) and E[ε] = 0.
An estimator whose expected value is the true value of the parameter is called an unbiased
estimator. The covariance matrix for the optimal set of parameters can be expressed as

Cov[wML(D)] = E
[
(wML(D)− ω) (wML(D)− ω)>

]
= E

[
wML(D)wML(D)>

]
− ωω>

Taking3 X† =
(
X>X

)−1 X>, we have wML(D) = ω + X†ε, so

Cov[wML(D)] = E
[(
ω + X†ε

) (
ω + X†ε

)>]
− ωω>

= ωω> + E
[
X†εε>X†>

]
− ωω>

because E
[
X†εω>

]
= E

[
X†
]
E [ε]ω> = 0. Now because the noise terms are independent

of the inputs, i.e., E
[
εε>|X

]
= E

[
εε>

]
= σ2I, we can use the law of total probability (also

called the tower rule), to get

E
[
X†εε>X†>

]
= E

[
E
[
X†εε>X†>|X

]]
= E

[
X†E

[
εε>|X

]
X†>

]
= σ2E

[
X†X†>

]
.

Thus, we have
Cov[wML(D)] = σ2E

[
(X>X)−1

]
.

3This matrix is called the pseudo-inverse of X. The idea of a pseudo-inverse generalizes the concept of
inverses to non-invertible matrices, including rectangular matrices. It is a useful concept, but not one we
will need to use again and so is not explained in-depth here.
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It can be shown that estimator wML(D) = X†y is the one with the smallest variance among
all unbiased estimators (Gauss-Markov theorem).

Unfortunately, however, as discussed above, the matrix X>X = VΣV> can be poorly
conditioned, with some zero or near-zero singular values. Consequently, this covariance ma-
trix can be poorly conditioned, with high magnitude co-variance values. This implies that,
across datasets, the solution wML(D) can vary widely. This type of behavior is suggestive
of overfitting, and is not desirable. If our solution could be very different across several
different random subsets of data, we cannot be confident in any one of these solutions.

The regularized solution, on the other hand, is much less likely to have high covariance,
but will no longer be unbiased. Let wMAP(D) be the MAP estimate for the `2 regularized
problem with some λ > 0. Using a similar analysis to above, the expected value of wMAP(D)
is

E[wMAP(D)] = E
[(

X>X + λI
)−1

X> (Xω + ε)
]

= E
[(

X>X + λI
)−1

(X>X)ω
]

6= ω.

As λ→ 0, the MAP solution becomes closer and closer to being unbiased. The covariance
is

Cov[wMAP(D)] = σ2E
[
(X>X + λI)−1(X>X)(X>X + λI)−1

]
.

This covariance is much less susceptible to ill-conditioned X>X, because as discussed above,
the shift by λ improves the condition. Consequently, we expect wMAP to have lower variance
across different datasets that could have been observed. This correspondingly implies that
we are less likely to overfit to anyone dataset. Notice that as λ→∞, the variance decreases
to zero, but the bias increases to its maximal value (i.e., the norm of the true weights).
As depicted in Figure 5.5, there is an optimal choice of λ that minimizes this bias-variance
trade-off—if we could find it.

The reason we care about the bias and variance is that the expected mean-squared error
to the true weights can be decomposed into the bias and variance. To see why

E
[
‖w(D)− ω‖22

]
= E

 d∑
j=1

(wj(D)− ωj)2


=

d∑
j=1

E
[
(wj(D)− ωj)2

]
where we can then further simplify this inner term

E
[
(wj(D)− ωj)2

]
= E

[
(wj(D)− E [wj(D)] + E [wj(D)]− ωj)2

]
= E

[
(wj(D)− E [wj(D)])2

]
+ E

[
(E [wj(D)]− ωj)2

]
where the second step follows from the fact that

−2E [(wj(D)− E [wj(D)])(E [wj(D)]− ωj)] = (E [wj(D)]− ωj)E [wj(D)− E [wj(D)]]
= 0.
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Figure 5.5: The bias-variance trade-off. Image obtained from: http://scott.fortmann-roe.
com/docs/BiasVariance.html

The first term above in E
[
(wj(D)− ωj)2] is the variance of the jth weight and the second

term is the bias of the jth weight, where E
[
(E [wj(D)]− ωj)2] = (E [wj(D)]−ωj)2 because

nothing is random in this term so the outer expectation is dropped. This gives

E
[
‖w(D)− ω‖22

]
=

d∑
j=1

E
[
(wj(D)− ωj)2

]

=
d∑
j=1

(E [wj(D)]− ωj)2 + V[wj(D)]

showing that the expected mean-squared error to the true weight vector ω decomposes
into the squared bias—where the bias is E [wj(D)] − ωj—and the variance. The bias-
variance trade-off reflects the fact that we could potentially reduce the mean-squared error
by incurring some bias, as long as the variance is decreased more than the squared bias.

Remark: We do not directly optimize the bias-variance trade-off. We cannot actually
measure the bias, so we do not directly minimize these terms. Rather, this decomposition
guides how we select models.

Exercise 7: Derive the covariance formula for wMAP(D). �

5.5 The Bias-Variance Trade-off

Above we assumed that the true model was linear, and so the only bias introduced was from
the regularization. This assumed that the hypothesis space of linear functions included the
true function, and that the bias introduced was only due to regularization. In reality, when
using linear regression with regularization, we are introducing bias both from selecting a
simpler function class and from the regularization. If the true function is not linear, then
we cannot compare the learned weights for a linear function directly to the true function.
If a powerful basis is used to first transform the data, then we can learn nonlinear functions
even though the solution uses linear regression. In this case, it is feasible that this function
class is sufficiently powerful and includes the true function, and that the bias is mostly due
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to regularization. But, in general, it will be difficult to guarantee that we have specified a
function class that includes the true function, and it will be difficult to directly compare
our parameters to true parameters (which may not even be of the same dimension).

We can more generally talk about bias and variance by considering instead the reducible
error. In fact, the bias-variance trade-off is all about reducing the reducible error. (Remem-
ber, we cannot reduce the irreducible error—the name says it all—by improving how we
estimate the function.) We can define a more general bias-variance decomposition that
compares function outputs rather than parameter vectors. Recall the reducible error corre-
sponds to E

[
(fD(X)− f(X))2], where f(X) is the optimal function, i.e., f(x) = E [Y |x]

for the squared cost. We previously discussed this reducible error for a fixed function, with
expectation only over X. But now we additionally consider the fact that fD is random,
and we can reason about its expectation and variance for a given x.

Let’s start by only considering the expected mean-squared error, for a given input x.
Using similar steps to the decomposition above, we get

E
[
(fD(x)− f(x))2)

]
= (E [fD(x)]− f(x))2 + V[fD(x)].

Notice that in the second line, the expectation is now inside the squared distance; this
term corresponds to the squared bias. The bias here reflects the output of the estimated
function fD(x), in expectation across all datasets D. The variance term reflects how much
the prediction for x can vary, if we learn on different iid datasets. This decomposition of
the mean-squared error into a squared bias and variance is not obvious, but does follow
similar steps to above. It is left as an exercise.

The above generalization highlights that one of the ways we balance bias and variance
is actually in the selection of the function class. If we select a simple function class, the
class is likely not large enough—not powerful enough—to represent the true function. This
introduces some bias, but likely also has lower variance, because that simpler function class
is less likely to overfit to any one dataset. If this class is too simple, we might say that our
function is underparametrized and is underfitting. On the other hand, if we select a more
powerful function class, that does contain the true function, we may not have any bias but
could have high variance due to the ability to find a function in your large class that overfits
a given dataset. In this setting, we might say the function is over-parametrized, and though
we have the ability to learn a highly accurate function, it will be difficult to actually find
that function amongst this larger class. Instead, one is likely to select a model that overfits
to the given data, and does not generalize to new data (i.e., performs poorly on new data).

Finding the balance between bias and variance, and between underfitting and overfitting,
is a core problem in machine learning. We discuss ways to theoretically and empirically
investigate this trade-off, in Chapter 10.
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Chapter 6

More advanced optimization principles

Given the optimization background in Chapter 2, and seeing how it is useful in the following
chapters, we can now turn to more advanced optimization approaches. We will now discuss
more in-depth how we obtain the second-order gradient descent update for the multivariate
case. We then discuss some computational improvements on these methods, particularly
through the use of improved step-size selection techniques, by using stochastic gradient
descent and some small modifications to deal with non-differentiable points. Finally, we will
also provide some basics on constrained optimization. When moving to the multivariate
case, it will be useful to get used to multivariate calculus. We provide some basic rules in
Section B.1; a more complete reference for these rules can be found in the (highly useful)
matrix cookbook [16].

6.1 Multivariate gradient descent

We can generalize the discussion on obtaining the gradient descent update in Section 2.2
from the univariate case to the multivariate case using the multivariate Taylor series ap-
proximation. The second-order Taylor approximation for a real-valued function of multiple
variables can be written as

c(w) ≈ ĉ(w) = c(w0) +∇c(w0)>(w−w0) + 1
2 (w−w0)>Hc(w0) (w−w0) ,

where
∇c(w0) =

(
∂c

∂w1
(w0), ∂c

∂w2
(w0), ..., ∂c

∂wd
(w0)

)
∈ Rd

is the gradient of function c evaluated at w0 and

Hc(w0) =



∂2c
∂w2

1
(w0) ∂2c

∂w1∂w2
(w0) · · · ∂2c

∂w1∂wd
(w0)

∂2c
∂w2∂w1

(w0) ∂2c
∂w2

2
(w0)

...
... . . .

∂2c
∂wd∂w1

(w0) . . . ∂2c
∂w2

d
(w0)

 ∈ Rd×d

is the Hessian matrix of function c evaluated at w0. We provide some intuition for the
Hessian in the next section, but here it can be intuitively considered analogous to the
second derivative. Like the second derivative, it provides information about the curvature
of the function, and so provides useful information about how much to step in the direction
of the gradient for each wi.
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As a reminder about matrix-vector multiplication, the product of a d× d matrix H and
d×1 vector w is a d×1 vector Hw. Then, taking w>Hw is the dot product between a 1×d
vector w> and d× 1 vector Hw, resulting in a scalar. For matrix-vector multiplication,

Hw =


H1:
H2:
...

Hd:

w =


H1:w
H2:w

...
Hd:w

 =


〈H1:,w〉
〈H2:,w〉

...
〈Hd:,w〉


When performing matrix-vector multiplication, you can just imagine the vector w turning
sideways and multiplying each row of H. For matrix-matrix multiplication, AB, you have to
ensure that the second dimension of A equals the first dimension of B. The matrix-matrix
multiplication decomposes into matrix-vector multiplication, for each column of B.

As before, to get the incremental update, we can take the gradient of this approximation
and obtain the (local) stationary point. Using the basic rules summarized below in Section
B.1, the gradient of ĉ(w) is

∇ĉ(w) = ∇c(w0) + Hc(w0) (w−w0) .

Again, we want to find w1 such that this gradient is zero. If you are not yet familiar with the
inverse of a matrix, this will be discussed more in later sections of these notes (particularly
for linear regression in Chapter 5). For now, to solve for Hc(w0) (w−w0) = −∇c(w0),
one can compute the inverse H−1

c(w0) and multiply both sides of the equation by this inverse.
This is again analogous to the inverse of a scalar: h−1h = 1. The corresponding multivariate
update, extended beyond Equation (2.1) for the scalar case, is

wi+1 = wi −
(
Hc(wi)

)−1
∇c(wi). (6.1)

In Equation 6.1, both gradient and Hessian are evaluated at point wi.
The size of the Hessian makes the choice between first-order and second-order gradient

descent less obvious in the multivariate case. Unlike the scalar setting, computing the
Hessian itself is expensive (quadratic in the size of w) and it is further even more expensive
to compute the inverse of the Hessian. For this reason, more light-weight first-order updates
are often preferred. For example, if computing the Hessian costs O(d2n) as it does for the
linear regression objective, then the computational complexity of the second-order gradient
descent is O(d3 + d2n) in each iteration, assuming O(d3) time for finding matrix inverses.
On the other hand, again for linear regression, the computational complexity for first-order
gradient descent is only O(dn) per iteration.

The first order update for the multivariate case is an even greater approximation, because
the whole Hessian is approximated with a scalar 1

η (making the Hessian approximation a
diagonal matrix with 1

η on the diagonal). The gradient of the first-order approximation
then becomes

∇ĉ(w) = ∇c(w0) + 1
η

(w−w0)

and the resulting first-order update is

wi+1 = wi − ηi∇c(wi). (6.2)

The selection of this step-size is an important consideration. We have already discussed one
basic strategy to select the step-size; in Section 6.5, we discuss a few more.
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6.2 Properties of the Hessian

Like the second-derivative, the Hessian reflects the curvature of the function at the point
w0. Each entry reflects how the partial derivative for wj changes when wi is changed.

For additional intuition, consider the directional derivative. The directional derivative
reflects how a (multivariate) function changes when stepping a small amount t in some fixed
direction u

lim
t→0

c(w + tu)− c(w)
t

.

Once we restrict ourselves to how the function changes in this one direction, it is easier
to imagine and it allows us to use the familiar second derivative rules for the univariate
setting. Let

w(t) = w + tu
g(t) = c(w(t)).

We can use the chain rule on g(t) to compute the derivative w.r.t. t.

g′(t) = ∇c(w(t))>∂(w(t))
∂t

= ∇c(w(t))>u
g′(0) = ∇c(w(0))>u

= ∇c(w)>u = 0

where the last equality occurs because w is a stationary point and so ∇c(w) = 0. The
second derivative is

g′′(t) = ∂(w(t))
∂t

>
Hc(w(t))

∂(w(t))
∂t

= u>Hc(w(t))u
g′′(0) = u>Hc(w)u

For this stationary point w (corresponding to t = 0) to be a local minimum, g′′(0) has to
satisfy the second derivative test: g′′(0) > 0. This test is only satisfied if Hc(w) is positive
definite, by definition of a positive definite matrix. Recall that a positive-definite matrix
H is one for which, given any u 6= 0, u>Hu > 0, or equivalently, has all eigenvalues
greater than zero. Since u was an arbitrary direction away from w, the Hessian must be
positive-definite to ensure that g′′(0) > 0 for all u 6= 0.

The eigenvalues of the Hessian, therefore, reflect the curvature of the function locally.
If Hc(w) has a very small eigenvalue λ, then the corresponding eigenvector u—satisfying
Hc(w)u = λu—is a direction away fro w where the function is almost flat. This is because
g′′(0) = u>Hc(w)u = λ‖u‖22 = λ is very small.

Example 16: We can now consider the Hessian Hc(w) for the linear regression solution.
This Hessian will enable us to verify if we indeed found a local minimum, of if instead we
found a stationary point that is a local maximum or a saddle point. The Hessian is

Hc(w) = 2X>X.
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This Hessian is positive semi-definite matrix. To see why, consider that for any vector
w 6= 0,

w>X>Xw = (Xw)>Xw = ‖Xw‖22 ≥ 0

where equality can only happen—for some w—if the columns of X are linearly dependent.
Since the Hessian is positive semi-definite for every w, this verifies the convexity of c(w).
Furthermore, if the columns of x are linearly independent, the Hessian is positive definite,
which implies that the global minimum is unique. �

6.3 Handling big data sets

One common approach to handling big datasets is to use stochastic approximation, where
samples are processed incrementally. To see how this would be done, let us revisit the
gradient of the objective function, ∇c(w). We obtained a closed form solution for ∇c(w) =
0; however, for many other objective functions, solving for ∇c(w) = 0 in a closed form way
is not possible. Instead, we start at some initial w0 (typically random), and then step in the
direction of the negative of the gradient until we reach a local minimum. This approach is
called gradient descent and is summarized in Algorithm 2. Notice that here the gradient is
normalized by the number of samples n, as X>(Xw−y) grows with the number of samples
and makes it more difficult to select the stepsize.

Algorithm 2: Batch Gradient Descent(c,X,y)
1: // A non-optimized, basic implementation of batch gradient descent
2: w← random vector in Rd
3: err←∞
4: tolerance← 10e−4

5: max iterations← 10e5

6: while |c(w)− err| > tolerance and have not reached max iterations do
7: err← c(w) . for linear regression, c(w) = 1

2n‖Xw− y‖22
8: g← ∇c(w) . for linear regression, ∇c(w) = 1

nX>(Xw− y)
9: // The step-size η could be chosen by line-search, as in Algorithm 1

10: η ← line search(w, c,g)
11: w← w− ηg
12: return w

For a large number of samples n, however, computing the gradient across all samples can
be expensive or infeasible. An alternative is to approximate the gradient less accurately
with fewer samples. In stochastic approximation, we typically approximate the gradient
with one sample1, as in Algorithm 3. Though this approach may appear to be too much of
an approximation, there is a long theoretical and empirical history indicating its effectiveness
(see for example [6, 5]). With ever increasing data-set size for many scenarios, the generality
of stochastic approximation makes it arguably the modern approach to dealing with big
data. For specialized scenarios, there are of course other approaches. For one example, see
[17].

1Mini-batches are a way to obtain a better approximation but remain efficient.
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The training algorithm for stochastic gradient descent can now be revised to randomly
draw one data point at a time from D and then update the current weights using the
previous equation. Typically, in practice, this entails iterating one or more times over the
dataset in order (assuming it is random, with i.i.d. samples). Each iteration over the dataset
is called an epoch. The conditions for convergence typically include conditions on the step-
sizes, requiring them to decrease over time. As with batch gradient descent, these stochastic
gradient descent updates will converge, though with more oscillation around the true weight
vector, with the decreasing step-size progressively smoothing out these oscillations.

Algorithm 3: Stochastic Gradient Descent(c,X,y)
1: w← random vector in Rd
2: for i = 1, . . . number of epochs do
3: Shuffle data points from 1, . . . , n
4: for j = 1, . . . , n do
5: g← ∇cj(w) . for linear regression, ∇cj(w) = (x>j w− yj)xj
6: // For convergence, the step-size ηt needs to decrease with time, such as
7: // ηt = η0t

−1/2 or ηt = η0i
−1 for an initial η0 (e.g., η0 = 1.0).

8: // In practice, it is common to pick a fixed, small stepsize
9: ηt ← i−1

10: w← w− ηtg
11: return w

6.4 Non-smooth but still continuous optimization

We assume throughout these notes that our objectives are continuous. However, this need
not mean that they are smooth: in some cases, these continuous objectives may have non-
differentiable points. For example, the `1 regularizer is non-differentiable at 0, making
‖Xw−y‖22 +λ‖w‖1 non-differentiable. One strategy is to use sub-gradient descent; loosely,
this amounts to selecting a reasonable choice for the gradient at the non-differentiable point.
Here, for example, we could take the partial derivative of `1 for wj to be zero at zero, -1 for
wj < 0 and 1 for wj > 0. Unfortunately, this descent is slow because there is a tendency
to jump around zero. Unlike `2, the gradient does not gradually decrease near zero, slowly
decreasing wj , but rather jumps between two large values −1 and 1. With such large
gradient, it is difficult to gradually decrease wj to zero, even if that is the optimal solution.

One alternative for such non-smooth objectives is to use proximal methods. The idea
is simple: use gradient descent for the smooth component of the optimization (the error
term ‖Xw − y‖22), and then for values in w that are close to zero, set them to zero. This
thresholding idea, though simple, is a theoretically sound approach for optimizing with the
non-smooth `1. This thresholding operator is called the proximal operator, and can be
seen as a projection operator. Each time w is updated with the gradient, it moves it away
from a sparse solution; the proximal operator then projects w back onto the space of sparse
solutions. The proximal operator for `1 is applied element-wise to w, and so is defined on
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each wi as, with stepsize η and regularization parameter λ,

proxηλ`1(wi) =


wi − ηλ if wi > ηλ
0 if |wi| ≤ ηλ
wi + ηλ if wi < −ηλ.

The proximal operator on the entire vector w is defined element-wise: proxηλ`1(w) =
[proxηλ`1(w1), . . . ,proxηλ`1(wd)]. Nicely, the theory states that the stepsize should be no
larger than the inverse of the Lipschitz constant for the smooth part of the objective, where
intuitively the Lipschitz constants reflects how quickly the function changes. In Algorithm
4, we provide a gradient descent algorithm for the incremental update with the `1 regu-
larizer, introduced as an algorithm called ISTA [4]. More generally, proximal methods are
used for other non-smooth objectives, though in these notes we only consider Lasso.

Algorithm 4: Batch gradient descent for `1 regularized linear regression (X,y, λ)
1: w← 0 ∈ Rd
2: err←∞
3: tolerance← 10e−4

4: // Precomputing these matrices, to avoid recomputing them in the loop
5: XX ← 1

nX>X
6: Xy ← 1

nX>y
7: // This stepsize is specific to the least-squares loss for linear regression
8: η ← 1/(2‖XX‖F )
9: while |c(w)− err| > tolerance and have not reached max iterations do

10: err← c(w)
11: // Proximal operator projects back into the space of sparse solutions given by `1
12: w← proxηλ`1(w− ηXXw + ηXy)
13: return w

6.5 More methods to select the step-size

Because selecting the step-size is such an important part of an effective descent algorithm,
there are many ways to do so. In addition to line search, one of the most popular methods is
to use quasi-second-order (or quasi-Newton) methods. As we saw, the inverse of the Hessian
provides a good way to select the stepsize, but is typically too expensive to compute let
alone invert. Quasi-second-order methods approximate the Hessian, with as little storage
and computation as possible. One of the simplest such approximations is to approximate
only the diagonal of the Hessian, and the invert it, which only costs O(d) computation and
space. Such an approximation is typically quite poor for even the diagonal of the inverse
Hessian, and so is not commonly used. Instead, the most popular methods include LBFGS
[14], Adadelta [21] and Adam [11].
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Chapter 7

Generalized Linear Models

In previous sections, we saw that the statistical framework provided valuable insights into
linear regression, especially with respect to explicitly stating most of the assumptions in
the system (we will see the full picture only when Bayesian formulation is used). These
assumptions were necessary to rigorously estimate parameters of the model, which could
then be subsequently used for prediction on previously unseen data points.

In this section, we introduce generalized linear models (GLMs) which extend ordinary
least-squares regression beyond Gaussian probability distributions and linear dependencies
between the features and the target. This generalization will also introduce you to a broader
range of loss functions, called Bregman divergences.

We shall first revisit the main points of the ordinary least-squares regression. There,
we assumed that a set of i.i.d. data points with their targets D = {(xi, yi)}ni=1 were drawn
according to some distribution p(x, y). We also assumed that an underlying relationship
between the features and the target was linear, i.e.

Y =
d∑
j=0

ωjXj + ε,

where ω was a set of unknown weights and ε was a zero-mean normally distributed random
variable with variance σ2. In order to simplify generalization, we will slightly reformulate
this model. In particular, it will be useful to separate the underlying linear relationship
between the features and the target from the fact that Y was normally distributed. That
is, we will write that

1. E[y|x] = ω>x

2. p(y|x) = N (µ, σ2)

with µ = ω>x connecting the two expressions. This way of formulating linear regression
will allow us (i) to generalize the framework to non-linear relationships between the features
and the target as well as (ii) to use the error distributions other than Gaussian.

7.1 Exponential transfer and the Poisson distribution

We will start first with an example of a GLM, before moving on to the general class and
general definition. Assume that data points correspond to cities in the world—described
by some numerical features—and that the target variable is the number of sunny days
observed in a particular year. The target variable y may look like a Poisson distribution,
given features x. It would be more natural, therefore, to model p(y|x) = Poisson(λ), where
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λ > 0 is the parameter (mean) of the Poisson distribution: E[y|x] = λ. However, because
λ ∈ R+, it would not be appropriate to model λ with ω>x ∈ R. Rather, we would like
to transfer our linear prediction with some function f to adjusts the range of the linear
combination of features to the domain of the parameters of the probability distribution.

We can do so by introducing an exponential transfer for this Poisson distribution, and
more generically, later any invertible transfer function f . If we can instead estimate ω such
that λ = eω

>x, then we can guarantee our estimates are in the correct range. Alternatively,
one can consider that we are learning a linear weighting of features to learn a transformed
parameter, log(λ) = ω>x. This simple modification is why these models are called gener-
alized linear models, because the key component is a still a linear weighting. We formalize
the types of distributions and transfers that can be considered in the below sections, but
first finish off this example with Poisson regression to provide a concrete example.

To establish the GLM model for Poisson regression, we assume (1) an exponential trans-
fer between the expectation of the target and linear combination of features, and (2) the
Poisson distribution for the target variable.

1. E[y|x] = exp
(
ω>x

)
or log(E[y|x]) = ω>x

2. p(y|x) = Poisson(λ)

Exploiting the fact that E [y|x] = λ, we connect the two formulas using λ = eω
>x. The

resulting probability distribution is

p(y|x) = eω
>xy · e−eω>x

y!

for any y ∈ N.
We can use maximum likelihood estimation to find the parameters of the regression

model. The log-likelihood function has the form

ll(w) =
n∑
i=1

lli(w)

lli(w) = w>xiyi − ew>xi − ln yi!

Our goal is to minimize the negative log-likelihood: minw−ll(w). It is easy to see that
∇ll(w) = 0 does not have a closed-form solution. Therefore, unlike linear regression, we
will have to use gradient descent. We could choose to use first-order or second-order gradient
descent, and batch or stochastic gradient descent. The key step in any of these is to first
compute the gradient for one sample. We start by deriving the partial derivative of the
negative log-likelihood for one sample

−∂lli(w)
∂wj

= ew>xixij − xijyi

= xij
(
ew>xi − yi

)
.

The gradient for one sample is

−∇lli(w) = xi · (pi − yi)
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where pi = ew>xi is the prediction. Notice that pi − yi corresponds to a prediction error,
for sample i. The batch gradient is

−∇ll(w) = −
n∑
i=1
∇lli(w)

=
n∑
i=1

xi (pi − yi) (7.1)

= X> (p− y)

where p is a vector with elements pi = ew>xi , where p− y is an error vector.
Commonly, one would now just do stochastic or batch gradient descent. For stochastic

gradient descent, each step consists of using the gradient for one sample (i.e., −lli(wt))
and for batch gradient descent, each step consists of using the gradient for all samples (i.e.,
−ll(wt)). We can additionally consider the Hessian matrix, both to evaluate the properties
of the stationary points as well as to allow for second-order gradient descent—though it is
likely too expensive if d is large. The second partial derivative of the negative log likelihood
function for one sample is

−∂
2lli(w)
∂wj∂wk

= xije
w>xixik

= xijpixik

with
− ∂

2ll(w)
∂wj∂wk

= −
n∑
i=1

∂2lli(w)
∂wj∂wk

.

For P an n× n diagonal matrix with pi on the diagonal, the Hessian matrix is therefore

H−ll(w) = X>PX. (7.2)

This matrix is positive definite if X is not low-rank, which would mean there is only one
stationary point and that it is the global minimum. In fact, we know that the objective
for Poisson regression is convex, even if X is not full rank, and so all stationary points are
global minima.

Exercise 8: Is there one global minimum if X is not full rank? �

Exercise 9: What is the second-order update for Poisson regression? �

7.2 Exponential family distributions

In the previous section, we used a specific example to illustrate how to generalize beyond
Gaussian distributions. The approach more generally extends to any exponential family
distribution. For simplicity, here we focus on the natural exponential family, which is
sufficient for most generalized linear models. The natural exponential family is a class of
probability distributions with the following form

p(x|θ) = exp (θx− a(θ) + b(x))
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where θ ∈ R is the parameter to the distribution, a : R → R is a log-normalizer function
and b : R → R is a function of only x that will typically be ignored in our optimization
because it is not a function of θ. Many of the often encountered (families of) distributions
are members of the exponential family; e.g. exponential, Gaussian, Gamma, Poisson, or the
binomial distributions. Therefore, it is useful to generically study the exponential family to
better understand commonalities and differences between individual member functions.

Example 17: The Poisson distribution can be expressed as

p(x|λ) = exp (x log λ− λ− log x!) ,

where λ ∈ R+ and X = N0. Thus, θ = log λ, a(θ) = eθ, and b(x) = − log x!. �

Now let us get some further insight into the properties of the exponential family param-
eters and why this class is convenient for estimation. The function a(θ) is typically called
the log-partitioning function or simply a log-normalizer. It is called this because

a(θ) = log
ˆ
X

exp (θx+ b(x)) dx

and so plays the role of ensuring that we have a valid density:
´
X p(x)dx = 1. Importantly,

for many common GLMs, the derivative of a corresponds to the transfer function. For
example, for Poisson regression, the transfer function is f(θ) = exp(θ), and the derivative
of a is eθ. Therefore, as we discuss below, the log-normalizer for an exponential family
informs what transfer f should be used.

The properties of this log-normalizer are also key for estimation of generalized linear
models. It can be derived that

∂a(θ)
∂θ

= E [X]

∂2a(θ)
∂θ2 = V[X]

7.3 Formalizing generalized linear models

We shall now formalize the generalized linear models. The two key components of GLMs
can be expressed as

1. E[y|x] = f(ω>x) or g(E[y|x]) = ω>x where g = f−1

2. p(y|x) is an Exponential Family distribution

The function f is called the transfer function and g is called the link function. For Poisson
regression, f is the exponential function, and as we shall see for logistic regression, f is
the sigmoid function. The transfer function adjusts the range of ω>x to the domain of Y ;
because of this relationship, link functions are usually not selected independently of the dis-
tribution for Y . The generalization to the exponential family from the Gaussian distribution
used in ordinary least-squares regression, allows us to model a much wider range of target
functions. GLMs include three widely used models: linear regression, Poisson regression
and logistic regression, which we will talk about in the next chapter about classification.
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To relate these more clearly to exponential family distributions, we have to consider
conditional distributions. Each p(y|x) is an exponential family distribution, with parameter
θ = x>w. When learning w—by maximizing likelihood—we are learning the parameter θi
for each sample (xi, yi). The general negative log-likelihood is

−ll(w) = − log
n∏
i=1

eθiyi−a(θ)+b(yi)

= −
∑
i

(θiyi − a(θ) + b(yi))

= −
∑
i

lli(w)

with gradients

−∂lli(w)
∂wj

= ∂a(θi)
∂wj

− ∂θi
∂wj

yi

= ∂a(θi)
∂θi

∂θi
∂wj

− ∂θi
∂wj

yi

=
(
∂a(θi)
∂θi

− yi
)
∂θi
∂wj

.

As was clear for Poisson regression, there is no guarantee of a closed-form solution for
w. Therefore, GLM formulations usually use iterative techniques, like gradient descent.
Hence, a single mechanism can be used for a wide range of link functions and probability
distributions, using these above gradients.

This update can be made more concrete, using the most common setting for GLMs.
Importantly, this setting only requires knowledge of the transfer function f , without explic-
itly needing to know the log-normalized a. This simplification arises from the connection
between the transfer f and the log-normalizer a alluded to above. We have discussed that
the transfer function f is chosen to reflect the range of the output variable y. However,
the choice should have other properties as well. In particular, we would like to ensure that
the g provides a smooth, convex negative log-likelihood, to simplify optimization. Usefully,
the parameter a of the exponential family distribution provides us with just such a choice:
f = ∇a. Because ∂θi

∂wj
= xij for θi = x>i w, we get that

−∂lli(w)
∂wj

=
(
∂a(θi)
∂θi

− yi
)
∂θi
∂wj

= (f(θi)− yi)xij
=
(
f(x>i w)− yi

)
xij

Therefore, given the appropriate transfer f for the desired exponential family distribution,
the stochastic gradient descent update is simply

wt+1 = wt − ηt
(
f(x>i wt)− yi

)
xi
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and the batch gradient descent update is

wt+1 = wt − ηt
n∑
i=1

(
f(x>i wt)− yi

)
xi

= wt − ηtX> (p− y)

where pi = f(x>i wt). To examine the Hessian, the second partial derivative of the negative
log likelihood function for one sample is

−∂
2lli(w)
∂wj∂wk

= xij
∂f(θi)
∂θi

xik.

For D an n×n diagonal matrix with ∂f(θi)
∂θi

on the diagonal, the Hessian matrix is therefore

H−ll(w) = −X>DX. (7.3)

As in Poisson regression, this matrix is guaranteed to be positive semi-definite, and further
positive definite if X is not low-rank.

Remark: The common setting of f = ∇a for GLMs has a connection to widely used
objectives called Bregman divergences. These divergences are written asDa(ŷ||y), indicating
the difference between ŷ and y, where the divergence is parametrized by a. The minimization
of this Bregman divergence corresponds to the minimization of the negative log-likelihood
of the corresponding natural exponential family:

argmin
θ

Da(x||g(θ)) = argmin
θ
− ln p(x|θ).

See [20, Section 2.2] and [2] for more details about this relationship.
Note that the chosen link does not necessarily have to correspond to the derivative of

a. Rather, this provides a mechanism for ensuring a nice loss function, since Bregman
divergences have nice properties, including being convex in the first argument. However,
this does not mean that any other link will necessarily result in an undesirable loss function.
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Chapter 8

Linear Classifiers

Suppose we are interested in building a linear classifer f : Rd → {−1,+1}. Linear classifiers
try to find the relationship between inputs and outputs by constructing a linear function
(a point, a line, a plane or a hyperplane) that splits Rd into two half-spaces. The two half-
spaces act as decision regions for the positive and negative examples, respectively. Given
a data set D = {(xi, yi)}ni=1 consisting of positive and negative examples, there are many
ways in which linear classifiers can be constructed. For example, a training algorithm may
explicitly work to position the decision surface in order to separate positive and negative
examples according to some problem-relevant criteria; e.g., it may try to minimize the
fraction of examples on the incorrect side of the decision surface. Alternatively, the goal of
the training algorithm may be to directly estimate the posterior distribution p(y|x), in which
case the algorithm is more likely to rely on the formal parameter estimation principles; e.g.,
it may maximize the likelihood. An example of a classifier with a linear decision surface is
shown in Figure 8.1.

To simplify the formalism in the following sections, we will add a component x0 = 1 to
each input (x1, . . . , xd). This extends the input space to X = Rd+1 but, fortunately, it also
leads us to a simplified notation in which the decision boundary in Rd can be written as
w>x = 0, where w = (w0, w1, . . . , wd) is a set of weights and x = (x0 = 1, x1, . . . , xd) is any
element of the input space. Nevertheless, we should remember that the actual inputs are
d-dimensional.

Earlier in the introductory remarks, we presented a classifier as a function f : X → Y
and have transformed the learning problem into approximating p(y|x). In the case of

( , )x1 1y

( , )xi yi( , )x2 2y

w w w x0 1 2 2+ +x1 0=

x1

x2

+
+

+

+

+

+

+

+ +

Figure 8.1: A data set in R2 consisting of nine positive and nine negative examples. The
gray line represents a linear decision surface in R2. The decision surface does not perfectly
separate positives from negatives.
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linear classifiers, our flexibility is restricted because our method must learn the posterior
probabilities p(y|x) and at the same time have a linear decision surface in Rd. This, however,
can be achieved if p(y|x) is modeled as a monotonic function of w>x; e.g., tanh(w>x) or
(1 + e−w>x)−1. Of course, a model trained to learn posterior probabilities p(y|x) can be
seen as a “soft” predictor or a scoring function s : X → [0, 1]. Then, the conversion from s
to f is a straightforward application of the maximum a posteriori principle: the predicted
output is positive if s(x) ≥ 0.5 and negative if s(x) < 0.5. More generally, the scoring
function can be any mapping s : X → R, with thresholding applied based on any particular
value τ .

8.1 Logistic regression

Let us consider binary classification in Rd, where X = Rd+1 and Y = {0, 1}. Logistic re-
gression is a Generalized Linear Model, where the distribution over Y given x is a Bernoulli
distribution, and the transfer function is the sigmoid function, also called the logistic func-
tion,

σ(t) =
(
1 + e−t

)−1

plotted in Figure 8.2. In the same terminology as for GLMs, the transfer function is the
sigmoid and the link function—the inverse of the transfer function— is the logit function
logit(x) = ln x

1−x , with

1. E[y|x] = σ(ω>x)

2. p(y|x) = Bernoulli(α) with α = E[y|x].

The Bernoulli distribution, with α a function of x, is

p(y|x) =


(

1
1+e−ω>x

)y(
1− 1

1+e−ω>x

)1−y

for y = 1

for y = 0
(8.1)

= σ(x>w)y(1− σ(x>w))1−y

where ω = (ω0, ω1, . . . , ωd) is a set of unknown coefficients we want to recover (or learn).
Notice that our prediction is σ(ω>x), and that it satisfies

p(y = 1|x) = σ(ω>x).

Therefore, as with many binary classification approaches, our goal is to predict the proba-
bility that the class is 1; given this probability, we can infer p(y = 0|x) = 1− p(y = 1|x).

8.1.1 Predicting class labels

The function learned by logistic regression returns a probability, rather than an explicit
prediction of 0 or 1. Therefore, we have to take this probability estimate and convert it to
a suitable prediction of the class. For a previously unseen data point x and a set of learned
coefficients w, we simply calculate the posterior probability as

P (Y = 1|x,w) = 1
1 + e−w>x .
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Figure 8.2: Sigmoid function in [−5, 5] interval.

If P (Y = 1|x,w) ≥ 0.5 we conclude that data point x should be labeled as positive (ŷ = 1).
Otherwise, if P (Y = 1|x,w∗) < 0.5, we label the data point as negative (ŷ = 0). The
predictor maps a (d+ 1)-dimensional vector x = (x0 = 1, x1, . . . , xd) into a zero or one.

As we discuss in Chapter 10, however, this threshold need not be 0.5. In some cases, one
might care more about failing to identify a positive (e.g., failing to identify a disease); in
such a case, it may be safer to err on the side of a smaller threshold, so that more instances
are labeled as positive. Further, the probability values themselves can be reflective: even if
both classifiers produce good accuracies, it is preferable to have a classifier that consistently
produces probabilities near 0.9 and 0.1, rather than less confident probabilities that hover
around 0.5. This reason for this is that small perturbations are expected to have more
impact on the second classifier, which could suddenly erroneously swap the labeling on an
instance. To quantify this aspect of the prediction, other measures—such as the reported
operating curve—are preferred, which we discuss in Section 10.4. For now, we will assume
this simpler thresholding and leave more advanced evaluation of classification algorithms to
later.

Notice that the logistic regression classifier is a linear classifier, despite the fact that
the sigmoid is non-linear. This is because P (Y = 1|x,w) ≥ 0.5 only when w>x ≥ 0. The
expression w>x = 0 represents the equation of a hyperplane that separates positive and
negative examples.

8.1.2 Maximum likelihood estimation for logistic regression

Because logistic regression is a GLM, we can use the generic gradient descent algorithm
derived in Section 7.3 with transfer f = σ, with the following gradient of the negative
log-likelihood per sample

−∂lli(w)
∂wj

=
(
σ(x>i w)− yi

)
xij .

Even though we know the final update, as an exercise, we will explicitly derive the
maximum likelihood solution. As before, assume that the data set D = {(xi, yi)}ni=1 is an
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i.i.d. sample from a fixed but unknown probability distribution p(x, y) = p(y|x)p(x). The
data is generated by randomly drawing a point x according to p(x) and then sets its class
label Y according to the Bernoulli distribution in (8.1). The negative log-likelihood for this
dataset is −ll(w) =

∑n
i=1−lli(w) where

lli(w) = log p(yi|x)

= yi log σ(w>xi) + (1− yi) log
(
1− σ(w>xi)

)
=
(
yi log

( 1
1 + e−w>xi

)
+ (1− yi) log

(
1− 1

1 + e−w>xi

))
.

The negative of the log-likelihood with this lli is typically referred to as the cross-entropy.
From here, you could take the derivative of each component in this sum, using the chain

rule for the sigmoid. For the first component, with pi = σ(θi),

∂yi log σ(w>xi)
∂wj

= yi
∂ log σ(θi)

∂θi

∂θi
wj

= yi
∂ log pi
∂pi

∂pi
∂θi

∂θi
wj

= yi
1
pi

∂pi
∂θi

∂θi
wj

= yi
1
pi
σ(θi)(1− σ(θi))xij

= yi(1− σ(θi))xij

because
∂σ(θi)
∂θi

= σ(θi)(1− σ(θi)).

You can verify this step for yourself, but explicitly plugging in the definition of σ. For the
second component, following similar steps, we get

∂(1− yi) log(1− σ(w>xi))
∂wj

= (yi − 1)σ(θi)xij

Summing these together and taking the negative, we end up with the gradient (pi − yi)xij .
For further practice taking gradients of these objectives, we could have slightly rear-

ranged the objective before taking the gradient. This would lead to another path to derive
the update rule for logistic regression, which we go through now. Notice first that(

1− 1
1 + e−w>xi

)
= e−w>xi

1 + e−w>xi

giving

ll(w) =
n∑
i=1

(
− yi · log

(
1 + e−w>xi

)
+ (1− yi) · log

(
e−w>xi

)
− (1− yi) · log

(
1 + e−w>xi

) )
=

n∑
i=1

(
(yi − 1) w>xi + log

( 1
1 + e−w>xi

))
.
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Again, unlike linear regression, its clear there is no closed-form solution to ∇ll(w) = 0.
Thus, we have to proceed with iterative optimization methods. We initialize w0 usually
to a random vector, or potentially with the linear regression solution which provides a
much better initial point. Because the objective is convex, the initialization only affects the
number of steps, but should not prevent the gradient descent from converging to a global
minimum. The stochastic gradient descent update is

wt+1 = wt − ηt
(
σ(x>i wt)− yi

)
xi

and the batch gradient descent update is

wt+1 = wt − ηt
n∑
i=1

(
σ(x>i wt)− yi

)
xi

= wt − ηtX> (σ(Xwt)− y)

where we overload the definition of σ when applied to a vector to mean that it individually
applies to each element in that vector: σ(v) = [σ(v1), . . . , σ(vn)]. The Hessian is H−ll(w) =
−X>DX where D is a n× n diagonal matrix with pi(1− pi) on the diagonal (see (7.3)).

Weighted conditional likelihood function

In certain situations, it may be justified to allow for unequal importance of each data point.
This modifies the conditional likelihood function to

l(w) =
n∏
i=1

pciyii · (1− pi)ci(1−yi) ,

where 0 ≤ ci ≤ 1 is a cost for data point i. Taking that C = diag (c1, c2, . . . , cn) we can
now express the gradient of the negative log-likelihood as

−∇ll(w) = X>C (p− y)

and the Hessian as

H−ll(w) = −X>CP (I−P) X.

It is interesting to observe that the Hessian remains positive semi-definite. Thus, the update
rule is expected to converge to a global minimum.

8.1.3 Issues with minimizing Euclidean distance

A natural question is why we went down this route for linear classification. Instead of
explicitly assuming P (Y = 1|x,w) is a Bernoulli distribution and computing the maximum
likelihood solution for σ(x>w) = E[Y |x] = P (Y = 1|x,w), we could have simply decided
to use σ(x>w) to predict targets y ∈ {0, 1} and then tried to minimize their difference,
using our favorite loss (the squared loss). Unfortunately, this more haphazard problem
specification results in a non-convex optimization. In fact, there is a result that using
the Euclidean error for the sigmoid transfer gives exponentially many local minima in the
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number of features [1]. For interest about this alternate route, we will show that this
direction leads to a non-convex optimization.

Let the error function with Euclidean distance now be written as

Err(w) =
n∑
i=1

(yi − pi)2 . pi = σ(x>i w), ei = yi − pi

The minimization of Err(w) is formally expressed as

w∗ = arg min
w

{Err(w)}

= arg min
w

{
n∑
i=1

(yi − pi)2
}
. (8.2)

Similar to the maximum likelihood process, our goal will be to calculate the gradient vector
and the Hessian of the error function. The partial derivatives of the error function can be
calculated as follows

∂Err(w)
∂wj

= ∂

∂wj

n∑
i=1

e2
i

=
n∑
i=1

2 · ei ·
∂ei
∂wj

= 2 ·
n∑
i=1

(
yi −

1
1 + e−w>xi

)
· 1

(1 + e−w>xi)2 · e
−w>xi · (−xij)

= −2 ·
n∑
i=1

xij ·
1

1 + e−w>xi
·
(

1− 1
1 + e−w>xi

)
·
(
yi −

1
1 + e−w>xi

)
= −2f>j P (I−P) (y− p) .

This provides the gradient vector in the following form

∇Err(w) = −2X>P (I−P) (y− p) .

Matrix J = P (I−P) X is referred to as Jacobian. In general, Jacobian is an n× d matrix
calculated as

JErr(w) =


∂e1
∂w1

∂e1
∂w2

· · · ∂e1
∂wd... . . .

∂en
∂w1

∂en
∂wd

 .

The second partial derivative of the error function can be found as

∂2Err(w)
∂wj∂wd

= 2 ·
n∑
i=1

∂ei
∂wd

· ∂ei
∂wj

+ ei ·
∂2ei

∂wj∂wd

= 2 ·
n∑
i=1

xij ·
(
p2
i (1− pi)2 + pi · (1− pi) · (2pi − 1) · (yi − pi)

)
· xik.
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Figure 8.3: Naive Bayes graphical model, with three features.

Thus, the Hessian can be computed as

HErr(w) = 2X> (I−P)>P>P (I−P) X + 2X> (I−P)>P>E(2P− I)X
= 2J>J + 2J>E(2P− I)X,

where P = diag {p}, E = diag {e} is a diagonal matrix containing elements Eii = ei = yi−pi
and I is an identity matrix.

We can now see that the Hessian is not guaranteed to be positive semi-definite. This
means that Err(w) is not convex, i.e. it must have multiple minima with different values
of the objective function. Finding a global optimum depends on how favorable the initial
solution w(0) is and how well the weight update step can escape local minima to find better
ones. Minimization of this non-convex function, however, will be much more problematic
than the convex cross-entropy.

8.2 Naive Bayes Classifier

Naive Bayes classification is a generative approach to prediction. So far, we have discussed
discriminative approaches (linear regression, logistic regression), which attempt to learn
p(y|x). For a generative setting, we learn p(x, y) = p(x|y)p(y). As you can imagine,
this can be a more difficult undertaking, as we also need to learn the distribution over the
features themselves. For naive Bayes, we significantly simply learning this joint distribution
by making a strong assumption: the features are conditionally independent given the label.
This assumption is demonstrated by the graphical model in Figure 8.3.

As with discriminative classifiers, like logistic regression, the decision rule for labeling a
point as class c (i.e., y = 1) is

argmax
c∈{1,...,k}

p(y = c|x)

where p(y = 1|x) ∝ p(x|y = 1)p(y = 1). For two classes, this corresponds to picking class 1
if p(y = 1|x) ≥ p(y = 0|x).

To start, we will assume a simpler setting with binary features, and then address contin-
uous features. Note that naive Bayes is a linear classifier for binary features; more generally,
however, it is not necessarily a linear classifier. Note that a linear classifier is one in which
the two classes are separated by a linear plane, i.e., the decision boundary is according to
some linear combination of features.
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8.2.1 Binary features and linear classification

Let D = {(xi, y}ni=1 be an input data set, where X = {0, 1}d and Y = {0, 1}. Under the
naive Bayes assumption, the features are independent given the class label. Therefore, we
can write

p(x|y) =
d∏
i=1

p(xi|y).

A suitable choice for this simpler univariate probabilities is a Bernoulli distribution, since
each xj is binary, giving

p(xj |y = c) = p
xj
j,c(1− pj,c)

1−xj

The parameters for the Bernoulli distributions are pj,c = p(xj = 1|y = c), with a different
parameter pj,c for each class value c and for each feature. We can easily learn this parameter
from data by calculating

pj,c = number of times xj = 1 for class c
number of datapoints labeled as class c .

Similarly, we can learn the prior pc = p(y = c) using

pc = p(y = c) = number of datapoint labeled as class c
total number of datapoints .

Notice that this approach could also be accomplished for more classes than just two. The
prediction on a new point x is then

max
c∈Y

p(y = c|x) = max
c∈Y

p(x|y = c)p(y = c)

= max
c∈Y

d∏
j=1

p(xj |y = c)p(y = c)

= max
c∈Y

d∏
j=1

pj,cpc

Exercise 10: The solution above is intuitive, and comes from similarly deriving the
maximum likelihood solution. Assuming that you have n datapoints and the chosen distri-
bution p(xi|y) is Bernoulli as described above, derive the maximum likelihood parameters
pj,c, pc for j = 1, . . . , d, c = 0, 1. To make things simpler, use the log of the likelihood. �

Linear classification boundary with binary features and targets

Interestingly, naive Bayes classifier with binary features and two classes is a linear classifier.
This is somewhat surprising, as this generative approach looks very different from what
we did before. To see why this is the case, notice that the classifier will make a positive
decision when

p(y = 1|x) ≥ p(y = 0|x)
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that is, when

p(x|y = 1)p(y = 1) ≥ p(x|y = 0)p(y = 0)

We will shorten this notation using p(y = 0) = p(0), p(x|y = 0) = p(x|0), etc. Using the
naive Bayes assumption, we now have

p(1)
d∏
j=1

p(xj |1) ≥ p(0)
d∏
j=1

p(xj |0)

which, after applying a logarithm, then becomes

log p(1) +
d∑
j=1

log p(xj |1) ≥ log p(0) +
d∑
j=1

log p(xj |0)

Let us now investigate class-conditional probabilities p(xj |y), when y ∈ {0, 1}. Recall that
each feature is Bernoulli distributed, i.e.

p(xj |1) = p
xj
j,1(1− pj,1)1−xj

and

p(xj |0) = p
xj
j,0(1− pj,0)1−xj

where parameters pj,c are estimated from the training set. Taking p(y = c) = pc, we have

d∑
j=1

xj log pj,1(1− pj,0)
(1− pj,1)pj,0

+
d∑
j=1

log 1− pj,1
1− pj,0

+ log p1
p0
≥ 0

We can write the previous expression as

w0 +
d∑
j=1

wjxj ≥ 0

where

w0 = log p1
p0

+
d∑
j=1

log 1− pj,1
1− pj,0

wj = log pj,1(1− pj,0)
(1− pj,1)pj,0

j ∈ {1, 2, . . . , d}

Therefore, in the case of binary features, naive Bayes is a linear classifier.

8.2.2 Continuous naive Bayes

For continuous features, a Bernoulli distribution is no longer appropriate for p(xj |y) and we
need to choose a different conditional distribution p(x|y). A common choice is a Gaussian
distribution, now with a different mean and variance for each feature and class, µj,c, σ2

j,c:

p(xj |y = c) = (2πσ2
j,c)−1/2 exp

(
−(xj − µj,c)2

2σ2
j,c

)
.
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Since y is still discrete, we can approximate p(y) using counts as before. The maximum
likelihood mean and variance parameters correspond to the sample mean and sample co-
variance for each given class separately. This involves computing the mean and variance of
feature j across the datapoints labeled with class c:

µj,c =
∑n
i=1 1(yi = c)xj

number of datapoints labeled as class c

σ2
j,c =

∑n
i=1 1(yi = c)(xj − µj,c)2

number of datapoints labeled as class c

Exercise 11: Derive the maximum likelihood formulation for a Gaussian naive Bayes
model, and check that the solution does in fact match the sample mean and variance for
each feature and class separately, as above. �

8.3 Multinomial logistic regression

Now let us consider discriminative multiclass classification, where X = Rd and Y =
{1, 2, . . . , k}. This setting arises naturally in machine learning, where there is often more
than two categories. For example, if we want to predict the blood type (A, B, AB and O) of
an individual, then we have four classes. Here we discuss multiclass classification where we
only want to label a datapoint with one class out of k. In other settings, one might want to
label a datapoint with multiple classes; this is briefly mentioned at the end of this section.

We can nicely generalize to this setting using the idea of multinomials and the cor-
responding link function, as with the other generalized linear models. The multinomial
distribution is a member of the exponential family. We can write

p(y|x) = 1
y1! . . . yk!

p(y1 = 1|x)y1 . . . , p(yk = 1|x)yk (8.3)

where the usual numerator n! = 1 because n =
∑k
j=1 yj = 1 since we can only have one class

value. As with logistic regression, we can parametrize p(yj = 1|x) = σ(x>wj). However,
we must also ensure that

∑k
j=1 p(yj = 1|x) = 1. To do so, we “pivot" around the final class,

p(yk = 1|x) = 1−
∑k−1
j=1 p(yj = 1|x) and only explicitly learn w1, . . . ,wk−1. Note that these

models are not learned independently, because they are tied by the probability for the last
class. The parameters can be represented as a matrix W ∈ Rd×k where W = [w1, . . . ,wk]
is composed of k weight vectors with wk = 0. We will see why we fix wk = 0.

The transfer (inverse of the link) for this setting is the softmax transfer

softmax(x>W) =
[

exp(x>w1)∑k
j=1 exp(x>wj)

, . . . ,
exp(x>wk)∑k
j=1 exp(x>wj)

]

=
[

exp(x>w1)
1> exp(x>W) , . . . ,

exp(x>wk)
1> exp(x>W)

]

and the prediction is softmax(x) = ŷ ∈ [0, 1]k, which gives the probability in each entry of
being labeled as that class, where ŷ>1 = 1 signifying that the probabilities sum to 1. Note
that this model encompasses the binary setting for logistic regression, because σ(x>w) =
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(1 + exp(−x>w))−1 = exp(x>w)
1+exp(x>w) . The weights for multinomial logistic regression with two

classes are then W = [w, 0] giving

p(y = 0|x) = exp(x>w)
1> exp(x>W)

= exp(x>w)
exp(x>w) + exp(x>0)

= exp(x>w)
exp(x>w) + 1

= σ(x>w).

Similarly, for k > 2, by fixing wk = 0, the other weights w1, . . . ,wk−1 are learned to ensure
that p(y = k|x) = exp(x>wk)

1> exp(x>W) = 1
1+
∑k−1

j=1 exp(x>wj)
and that

∑k
j=1 p(y = j|x) = 1.

With the parameters of the model parameterized by W and the softmax transfer, we
can determine the maximum likelihood formulation. By plugging in the parameterization
into Equation (8.3), taking the negative log of that likelihood and dropping constants, we
arrive at the following loss for samples (x1,y1), . . . , (xn,yn)

min
W∈Rd×k:W:k=0

n∑
i=1

log
(
1> exp(x>i W)

)
− x>i Wyi

with gradient

∇
n∑
i=1

(
log

(
1> exp(x>i W)

)
− x>i Wyi

)
=

n∑
i=1

exp(x>i W)>x>i
1> exp(x>i W)

− xiy>i .

As before, we do not have a closed form solution for this gradient, and will use iterative
methods to solve for W. Note that here, unlike previous methods, we have a constraint on
part of the variable. However, this was solely written this way for convenience. We do not
optimize W:k, as it is fixed at zero; one can rewrite this minimization and gradient to only
apply to the W:(1:k−1). This corresponds to initializing W:k = 0, and then only using the
first k − 1 columns of the gradient in the update to W:(1:k−1).

The final prediction softmax(x>W) ∈ [0, 1] gives the probabilities of being in a class.
As with logistic regression, to pick one class, the highest probability value is chosen. For
example, with k = 4, we might predict [0.1 0.2 0.6 0.1] and so decide to classify the point
into class 3.

Remark about overlapping classes: If you want to predict multiple classes for a data-
point x, then a common strategy is to learn separate binary predictors for each class. Each
predictor is queried separately, and a datapoint will label each class as 0 or 1, with poten-
tially more than one class having a 1. Above, we examined the case where the datapoint
was exclusively in one of the provided classes, by setting n = 1 in the multinomial.
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Chapter 9

Representations for machine learning

At first, it might seem that the applicability of linear regression and classification to real-
life problems is greatly limited. After all, it is not clear whether it is realistic (most of the
time) to assume that the target variable is a linear combination of features. Fortunately,
the applicability of linear regression is broader than originally thought. The main idea is to
apply a non-linear transformation to the data matrix x prior to the fitting step, which then
enables a non-linear fit. Obtaining such a useful feature representation is a central problem
in machine learning.

We will first examine fixed representations for linear regression: polynomial curve fitting
and radial basis function (RBF) networks. Then, we will discuss learning representations.

9.1 Radial basis function networks and kernel representa-
tions

The idea of radial basis function (RBF) networks is a natural generalization of the poly-
nomial curve fitting and approaches from the previous Section. Given data set D =
{(xi, yi)}ni=1, we start by picking p points to serve as the “centers” in the input space
X . We denote those centers as c1, c2, . . . , cp. Usually, these can be selected from D or
computed using some clustering technique (e.g. the EM algorithm, K-means).

When the clusters are determined using a Gaussian mixture model, the basis functions
can be selected as

φj(x) = e−
1
2 (x−cj)TΣ−1

j (x−cj),

where the cluster centers and the covariance matrix are found during clustering. When
K-means or other clustering is used, we can use

φj(x) = e
−‖x−cj‖2

2σ2
j ,

where σj ’s can be separately optimized; e.g. using a validation set. In the context of
multidimensional transformations from x to Φ, the basis functions can also be referred to
as kernel functions, i.e. φj (x) = kj (x, cj). Matrix

Φ =


φ0(x1) φ1(x1) · · · φp(x1)
φ0(x2) φ1(x2)

... . . .

φ0(xn) φp(xn)
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Figure 9.1: Radial basis function network.

is now used as a new data matrix. For a given input x, the prediction of the target y will
be calculated as

f(x) = w0 +
p∑
j=1

wjφj (x)

=
p∑
j=0

wjφj (x)

where φ0 (x) = 1 and w is to be found. It can be proved that with a sufficiently large
number of radial basis functions we can accurately approximate any function. As seen in
Figure 9.1, we can think of RBFs as neural networks.

RBF networks and kernel representations are highly related. The main distinction is that
kernel representations use any kernel function for the similarity measure k(x, cj) = φj(x),
where radial basis functions are one example of a kernel. In addition, if an RBF kernel is
chosen, for kernel representations typical the centers are selected from the training dataset.
For RBF networks, the selection of the centers is left generally as an important step, where
they can be selected from the training set but can also be selected in other ways.

9.2 Learning representations

There are many approaches to learning representations. Two dominant approaches are
(semi-supervised) matrix factorization techniques and neural networks. Neural networks
build on the generalized linear models we have discussed, stacking multiple generalized
linear models together. Matrix factorization techniques (e.g., dimensionality reduction,
sparse coding) typically factorize the input data into a dictionary and a new representation
(a basis). We will first discuss neural networks, and then discuss the many unsupervised
and semisupervised learning techniques that are encompassed by matrix factorizations.
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Figure 9.3: Standard two-layer neural network.

9.2.1 Neural networks

Neural networks are a form of supervised representation learning. As before, the goal is to
learn a function of inputs, f , to produce a prediction of the target: f(x). The addition of
hidden layers, with non-linear activation functions, enables learning of nonlinear functions f .
For some intuition, one can consider that all the first hidden layers constitute representation
layer, with learning on the last layer corresponding to supervised prediction part. Figure
9.2 shows the graphical model for the generalized linear models we discussed in the previous
chapters, where the weights and corresponding transfer can be thought of as being on the
arrows (as they are not random variables). Figure 9.3 shows a neural network with one
hidden-layer; this is called a two-layer neural network, as there are two layers of weights.

In the figure, the neural network inputs a 4-dimensional feature vector x = [x1, x2, x3, x4]
(i.e., d = 4) and outputs a 2-dimensional prediction y = [y1, y2] (i.e., m = 2). The hid-
den layer consists of a mapping from x to a new representation that is 5-dimensional (i.e.,
k1 = 5 as per the notation below). For the neural network, let each node in this hidden
representation be indexed by k ∈ {1, . . . , 5}. Each hk consists of a transformation of a linear
weighting of x, such as a sigmoid transfer: hk = σ

(∑d
j=1 xjwkj

)
= σ (xwk) where wk ∈ Rd

is the weights on the first layer used to produce the kth node in the hidden representation.

Example 18: For a simple example, consider d = 1 (i.e., one input observation), m = 1
(i.e., one output), k1 = 2 (i.e., 2-dimensional hidden layer) and a sigmoid transfer to get
the first hidden layer. Assume we are given one instance (x, y). Then input observation x
is transformed into

h = [h1, h2], with h1 = σ(xw(2)
1 ) and h2 = σ(xw(2)

2 ) for w(2)
1 , w

(2)
2 ∈ R.

To avoid transpose notation, we used x ∈ R1×d to give one row of the data matrix X ∈ Rn×d,
and row vector h ∈ R1×k1 . We use the superscript notation to distinguish between the
weights in the first and last layer. It may seem counter-intuitive why we label w(2) for the
input layer, and w(1) for the output layer, but you will see below it makes notation simpler
to start indexing from the output layer.

Once we have h, we can pretend that h is the new input representation and go ahead
and learn a (generalized) linear model on this last layer. Let’s consider two cases: y ∈ R
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and y ∈ {0, 1}. If y ∈ R, we use linear regression for this last layer and so learn weights
w(2) ∈ R2 such that hw(2) approximates the true output y. If y ∈ {0, 1}, we use logistic
regression for this last layer and so learn weights w(2) ∈ R2 such that σ(hw(2)) approximates
the true output y. �

Now we consider the more general case with any d, k1,m. To provide some intuition
for this more general setting, we will begin with one hidden layer, for the sigmoid transfer
function and cross-entropy output loss. For logistic regression we estimated W ∈ Rd×m,
with f(xW) = σ(xW) ≈ y. We will predict an output vector y ∈ Rm, because it will make
later generalizations more clear-cut and make notation for the weights in each layer more
uniform. When we add a hidden layer, we have two parameter matrices W(2) ∈ Rd×k1 and
W(1) ∈ Rk1×m, where k1 is the dimension of the hidden layer

h = σ(xW(2)) =


σ(xW(2)

:1 )
σ(xW(2)

:2 )
...

σ(xW(2)
:k1

)

 ∈ Rk1

where the sigmoid function is applied to each entry in xW(2) and hW(1). This hidden layer
is the new set of features and again you will do the regular logistic regression optimization
to learn weights on h:

p(y = 1|x) = σ(hW(1)) = σ(σ(xW(2))W(1)).

With the probabilistic model and parameter specified, we now need to derive an al-
gorithm to obtain those parameters. As before, we take a maximum likelihood approach
and derive gradient descent updates. This composition of transfers seems to complicate
matters, but we can still take the gradient w.r.t. our parameters. We simply have more
parameters now: W(2) ∈ Rk1×d,W(1) ∈ R1×k1 . Once we have the gradient w.r.t. each
parameter matrix, we simply take a step in the direction of the negative of the gradient, as
usual. The gradients for these parameters share information; for computational efficiency,
the gradient is computed first for W(1), and duplicate gradient information sent back to
compute the gradient for W(2). This algorithm is typically called back propagation, which
we describe next.

In general, we can compute the gradient for any number of hidden layers. Denote
each differentiable transfer function f1, . . . , fH , ordered with f1 as the output transfer, and
k1, . . . , kH−1 as the hidden dimensions with H−1 hidden layers. Then the output from the
neural network is

f1
(
f2
(
. . . fH−1

(
fH
(
xW(H)

)
W(H−1)

)
. . .
)

W(1)
)

where W(1) ∈ Rk1×m, W(2) ∈ Rk2×k1 , . . . ,W(H) ∈ Rd×kH−1 .

Backpropagation algorithm

We will start by deriving back propagation for two layers; the extension to multiple layers
will be more clear given this derivation. Due to the size of the network, we will often learn
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with stochastic gradient descent. Therefore, we will first compute this gradient assuming
we only have one sample (x,y).

The back-propagation algorithm is simply gradient descent on a non-convex objective,
with a careful ordering of computation to avoid repeating computation. In particular, one
first propagates forward and computes variable h = f2(xW(2)) ∈ R1×k and then ŷ =
f1(f2(xW(2))W(1)) = f1(hW(1)). We then compute the error between our prediction ŷ
and the true label. We take the gradient of this error (loss) w.r.t. to our parameters; in this
case, for efficient computation, the best ordering is to compute the gradient w.r.t. to the
last parameter W(1) first, and then W(2). This is the reason for the term back-propagation,
since the error is propagated backward from the last layer first.

The choices then involve picking the transfers at each layer, the number of hidden nodes
and the loss for the last layer. The matching convex loss L(·, y) depends on the chosen
p(y|x) and corresponding transfer function for the last layer of the neural network, just as
with generalized linear models. For ease of notation, we define this error function as

Err(W(1),W(2)) def=
m∑
k=1

L(f1(f2(xW(2))W(1)
:k ),yk)

for one sample (x,y). For example, for p(y = 1|x) Gaussian and identity transfer f2, we get
Err(W(1),W(2)) = (f2(xW(2))W(1) − y)2. If p(y = 1|x) is a Bernoulli distribution, then
we would chose the logistic regression loss (the cross entropy).

As before, we will compute gradients of the loss w.r.t. our parameters. First, we take
the partial derivative w.r.t. the parameters W(1) (assuming W(2) is fixed).

∂Err(W(1),W(2))
∂W(1)

jk

= ∂L(f1(f2(xW(2))W(1)),y)
∂W(1)

jk

=
(
∂L(ŷk,yk)

∂ŷk

)
∂ŷk
∂W(1)

jk

. ŷk = f1(hW(1)
:k )

where only ŷk is affected by W(1)
jk in the loss, and so the gradient for the others is zero.

Continuing,

∂Err(W(1),W(2))
∂W(1)

jk

=
(
∂L(ŷk,yk)

∂ŷk

)
∂f1(θ(1)

k )
∂θ

(1)
k

∂θ
(1)
k

∂W(1)
jk

. θ
(1)
k = hW(1)

:k

=
(
∂L(ŷk,yk)

∂ŷk

)
∂f1(θ(1)

k )
∂θ

(1)
k

hj

At this point these equations are abstract; but they are simple to compute for the losses
and transfers we have examined. For example, for L(ŷk,yk) = 1

2(ŷk − yk)2, and f2 the
identity, we get

∂L(ŷk,yk)
∂ŷk

= (ŷk − yk)

∂f1(θ(1)
k )

∂θ
(1)
k

= 1
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giving

∂Err(W(1),W(2))
∂W(1)

jk

=
(
∂L(ŷk,yk)

∂ŷk

)
∂f1(θ(1)

k )
∂θ

(1)
k

hj = (ŷk − yk)hj .

The gradient update is as usual with W(1) = W(1) − α(ŷ− y)h> for some step-size α.
Next, we compute the partial gradient with respect to W(2). Now, however, the entire

output variable y ∈ R1×m is affected by the choice of W(2)
ij for all i ∈ {1, . . . , k2}, j ∈

{1, . . . , k1}. Therefore, we need to take the partial derivative w.r.t. all of y.

∂Err(W(1),W(2))
∂W(2)

ij

= ∂
∑m
k=1 L(f1(f2(xW(2))W(1)

:k ),yk)
∂W(2)

ij

=
m∑
k=1

∂L(ŷk,yk)
∂ŷk

∂ŷk
∂W(2)

ij

. ŷk = f1(hW(1)
:k ) = f1(θ(1)

k )

=
m∑
k=1

∂L(ŷk,yk)
∂ŷk

∂f1(θ(1)
k )

∂θ
(1)
k

∂θ
(1)
k

∂W(2)
ij

.

Continuing,

∂θ
(1)
k

∂W(2)
ij

= ∂hW(1)
:k

∂W(2)
ij

= ∂
∑k
l=1 hlW

(1)
lk

∂W(2)
ij

= ∂
∑k
l=1 f2(xW(2)

:l )W(1)
lk

∂W(2)
ij

=
k∑
l=1

W(1)
lk

∂f2(xW(2)
:l )

∂W(2)
ij

= W(1)
jk

∂f2(xW(2)
:j )

∂W(2)
ij

because ∂f2(xW(2)
:l )

∂W(2)
ij

= 0 for l 6= j. Now continuing the chain rule

∂f2(xW(2)
:j )

∂W(2)
ij

=
∂f2(θ(2)

j )

∂θ
(2)
j

∂θ
(2)
j

∂W(2)
ij

. θ
(2)
j = xW(2)

:j

=
∂f2(θ(2)

j )

∂θ
(2)
j

xi.

Putting this back together, we get

∂Err(W(1),W(2))
∂W(2)

ij

=
m∑
k=1

∂L(ŷk,yk)
∂ŷk

∂f1(θ(1)
k )

∂θ
(1)
k

∂θ
(1)
k

∂W(2)
ij

=
m∑
k=1

∂L(ŷk,yk)
∂ŷk

∂f1(θ(1)
k )

∂θ
(1)
k

W(1)
jk

∂f2(θ(2)
j )

∂θ
(2)
j

xi.
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Notice that some of gradient is the same as for W(1), i.e.

δ
(1)
k = ∂L(ŷk,yk)

∂ŷk
∂f1(θ(1)

k )
∂θ

(1)
k

Computing these components only needs to be done once for W(1), and this information
propagated back to get the gradient for W(2). The difference is in the gradient ∂θ(1)

∂W(2) ,
because h relies on W(2). For W(1), h = f2(xiW(2)) is a constant, and so does not affect
the gradient for W(1). The final gradient is

∂Err(W(1),W(2))
∂W(2)

ij

=
(

m∑
k=1

δ
(1)
k W(1)

jk

)
∂f2(θ(2)

j )

∂θ
(2)
j

xi

=
(
W(1)

j: δ
(1)
) ∂f2(θ(2)

j )

∂θ
(2)
j

xi

If another layer is added before W(2), then the information propagated backward is

δ
(2)
j =

(
W(1)

j: δ
(1)
) ∂f2(θ(2)

j )

∂θ
(2)
j

and xi is replaced with h(2)
i . The gradient for W(3)

ij is

(
W(2)

j: δ
(2)
) ∂f3(θ(3)

j )

∂θ
(3)
j

xi

Example 19: Let p(y = 1|x) be a Bernoulli distribution, with f1 and f2 both sigmoid
functions. The loss is the cross-entropy. We can derive the two-layer update rule with these
settings, by plugging-in above.

L(ŷ, y) = −y log(ŷ)− (1− y) log(1− ŷ) . cross-entropy
∂L(ŷ, y)
∂ŷ

= −y
ŷ

+ 1− y
1− ŷ

f2(xW(2)
:j ) = σ(xW(2)

:j ) = 1
1 + exp(−xW(2)

:j )

f1(hW(1)
:k ) = σ(hW(1)

:k ) = 1
1 + exp(−hW(1)

:k )
∂σ(θ) = σ(θ)(1− σ(θ))

Now we can compute the backpropagation update by first propagating forward

h = σ(xW(2))
ŷ = σ(hW(1))
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Figure 9.4: Matrix factorization of data matrix X ∈ Rn×d.

and then propagating the gradient back

δ
(1)
k = ∂L(ŷk,yk)

∂ŷk
∂f1(θ(1)

k )
∂θ

(1)
k

=
(
−yk

ŷk
+ 1− yk

1− ŷk

)
ŷk(1− ŷk)

= −yk(1− ŷk) + (1− yk)ŷk
= ŷk − yk

∂

∂W(1)
jk

= δ
(1)
k hj

δ
(2)
j =

(
W(1)

j: δ
(1)
)

hj(1− hj)
∂

∂W(2)
ij

= δ
(2)
j xi

The update simply consists of stepping in the direction of these gradients, as is usual for
gradient descent. We start with some initial W(1) and W(2) (say filled with random values),
and then apply the gradient descent rules with these gradients. �

9.2.2 Unsupervised learning and matrix factorization

Another strategy to obtaining a new representation is through matrix factorization. The
data matrix X is factorized into a dictionary D and a basis or new representation H (see
Figure 9.4). In fact, many unsupervised learning algorithms (e.g., dimensionality reduction,
sparse coding) and semi-supervised learning algorithms (e.g., supervised dictionary learning)
can actually be formulated as matrix factorizations. We will look at k-means clustering
and principal components analysis as an example. The remaining algorithms are simply
summarized in the below table. This general approach to obtaining a new representation
using factorization is called dictionary learning.

K-means clustering is an unsupervised learning problem to group data points into k
clusters by minimizing distances to the mean of each cluster. This problem is not usually
thought of as a representation learning approach, because the cluster number is not typically
used as a representation. However, we nonetheless start with k-means because it is an
intuitive example of how these unsupervised learning algorithms can be thought of as matrix
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Figure 9.5: K-means clustering as a matrix factorization for data matrix X ∈ Rn×d.

factorization. Further, the clustering approach can be seen as a representation learning
approach, because it is a learned discretization of the space. We will discuss this view of
k-means after discussing it as a matrix factorization.

Imagine that you have two clusters (k = 2), with data dimension d = 3. Let d1 be the
mean for cluster 1 and d2 the mean for cluster 2. The goal is to minimize the squared `2
distance of each data point x to its cluster center

‖x−
2∑
i=1

1 (x in cluster i) di‖22 = ‖x− hD‖22

where h = [1 0] or h = [0 1] and D = [d1 ; d2]. An example is depicted in Figure 9.5.
For a point x = [0.1 − 3.1 2.4], h = [1 0], meaning it is placed in cluster 1 with mean
d1 = [0.2 − 3.0 2.0]. It would incur more error to place x in cluster 2 which has a mean
that is more dissimilar: d2 = [1.2 0.1 − 6.3].

The overall minimization is defined across all the samples, giving loss

min
H∈{0,1}n×k,1H=1

D∈Rk×d

‖X−HD‖2F .

Different clusters vectors h are learned for each x, but the dictionary of means is shared
amongst all the data points. The specified optimization should pick dictionary D of means
that provides the smallest distances to points in the training dataset.

Principal components analysis (PCA) is a standard dimensionality reduction tech-
nique, where the input data x ∈ R1×d is projected into a lower dimensional h ∈ R1×k

spanned by the space of principal components. These principal components are the direc-
tions of maximal variance in the data. To obtain these k principal components D ∈ Rk×d,
the common solution technique is to obtain the singular value decomposition of the data
matrix X = UΣV> ∈ Rn×d, giving

D = V>k ∈ Rk×d

H = UkΣk ∈ Rn×k

where Σk ∈ Rk×k consists of the top largest k singular values (in descending order) and
Uk ∈ Rn×k and Vk ∈ Rk×d are the corresponding singular vectors, i.e., Uk = U:,1:k and
Vk = V:,1:k. The new representation for X (using PCA) is this H. Note that PCA does
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not subselect features, but rather creates new features: The generated h is not a subset of
the original x.

This dimensionality reduction technique can also be formulated as a matrix factorization.
The corresponding optimization has been shown to be

min
D∈Rk×d,H∈Rn×k

‖X−HD‖2F

One simple way to see why is to recall the well-known Eckart-Young-Mirsky theorem that
the rank k matrix X̂ that best approximates X, in terms of minimal Frobenius norm, is
X̂ = UkΣkV>k .

As with k-means clustering, it may be hard to immediately see why h generated by PCA
could be useful as a representation. In fact, PCA is often used for visualization, and so is not
always used for representation learning. For visualization, the projection is often aggressive
to two or three dimensions. In general, however, the projection to lower dimensions has
the property that it removes noise and maintains only the most meaningful directions.
This projection, therefore, helps speed learning by reducing the number of features and
promoting generalization, by preventing overfitting to the noise.

Sparse coding takes a different approach, where the input data is expanded into a sparse
representation. Sparse coding is biologically motivated [15], based on sparse activations for
memory in the mammalian brain. Another interpretation is that sparse coding effectively
discretizes the space, like k-means clustering, but with overlapping clusters and an associ-
ated magnitude of how much a point belongs to that cluster.

A common strategy to obtain sparse representations is to use a sparse regularizer on the
learned representation h. This corresponds to the optimization

min
D∈Rk×d,H∈Rn×k

‖X−HD‖2F + λ
k∑
i=1
‖H:i‖1 + λ

k∑
i=1
‖Di:‖22

As discussed in Section 5.4.2, the `1 regularizer promotes zeroed entries, and so prefers H
with as many zeros as possible. A regularizer is also added to D, to ensure that D does not
become too large; otherwise, all the weight in DH would be shifted to D. As an exercise,
see if you can explain why, and what this means for identifiability.

In general, there are many variants of unsupervised learning algorithms that actually
correspond to factorizing the data matrix; additional details are given in Appendix D. We
additionally give details on how to learn these factorizations in the appendix. As with
previous algorithms, they are simply gradient descent on the (matrix) variables. The only
distinction here is that it is common to use block coordinate descent, instead of the more
standard gradient descent algorithm. This distinction is minor, and it would be perfectly
valid to use standard gradient descent.
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Chapter 10

Evaluation of Learning Algorithms

The majority of this book has focused on algorithm derivation and obtaining models, but we
have yet to address how to evaluate these models. The maximum likelihood formalism for
deriving learning algorithms provides some consistency results, where in the limit of samples
we can discuss the convergence point of an estimator. In practice, however, we would like
to evaluate the algorithms based on a finite sample. Imagine a setting where you learn two
models, say using logistic regression with two different regularization parameters. Which
of these two models is “better"? What does it even mean to say better? Do you want
to say the model is better for this problem (data setting), or across multiple problems?
Are we trying to compare algorithms or models obtained from a specific instance of an
algorithm? How can we be confident that the measured performance accurately reflects the
performance we expect to see on new data? These questions are largely separate from our
previous questions of effectively optimizing a specified objective, and rather starts to ask
questions about the properties of that objective and about empirical properties of learned
models.

In this chapter, we provide theoretical and empirical tools to better evaluate the prop-
erties of learning algorithms. We begin with some basic finite-sample theoretical results,
that relate the complexity of the model class to the number of samples required to obtain a
reasonable estimate of expected error (generalization error). This section will also introduce
the ideas of optimizing over a function class, and our goals for obtaining the best model in
terms of generalization error. The area dealing with these types of theoretical characteri-
zations is called statistical learning theory. We will discuss one result using concentration
inequalities and Rademacher complexity to characterize model-class complexity; for further
information, you could consider this tutorial on the topic [7].

Then, we will discuss how to compare algorithms empirically. In most real-world set-
tings, you will choose between algorithms based on their performance on available data.
You want this choice to be reflective of how well those algorithms will perform on new data.
Towards this goal, we will discuss how to split data and how to use statistical significance
tests to provide some level of confidence that one algorithm or model is better than another,
under some specific criteria. We will rarely be able to make strong conclusions based on
experiments, but we can build up some evidence on the algorithm properties.

These tools are arguably the most critical aspects of properly using machine learning
algorithms in practice. One can learn a complex model, but without any understanding of
how it is expected to perform in practice on new data, it is not viable to actual use these
models. Whether an algorithm is used for scientific purposes or deployed in real systems,
have an understanding of its properties both theoretically and empirically is key to obtain
expected outcomes. This chapter only begins to scratch the surface of these tools, with
the goal to pique your interest and direct you towards more material for learning about
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evaluation.

10.1 A brief introduction to generalization bounds

Our goal throughout this book has been to obtain a function, based on a set of examples,
that predicts accurately: produces low expected error across the space of possible examples.
We cannot, however, measure the expected error. Statistically, we know that with a suffi-
cient sample, we can approximate an expectation. Here, we quantify this more carefully for
learned functions.

Our goal more precisely is to select a function from a function class H to minimize a
loss function ` : R× R→ [0,∞) in expectation over all pairs (x, y)

min
f∈H

E[`(f(X), Y )].

For example, in linear regression, H = {f : Rd → R | f(x) = x>w, for any w ∈ Rd}. This
space of functions H represents all possible linear functions of inputs x ∈ Rd, to produce a
scalar output. Our goal in linear regression was to minimize a proxy to the true expected
error, i.e., the sample error: 1

n

∑n
i=1 `(f(xi), yi). Now a natural question to ask is: does this

sample error provide an accurate estimate of the true expected error? And what does it
tell us about the true generalization performance, i.e., true expected error?

Let’s start with a simple example, using linear regression. Assume a bounded function
class H, where H = {f : Rd → R | f(x) = x>w, for any w ∈ Rd such that ‖w‖2 ≤ Bw}
for some finite scalar Bw > 0. Assume the input features come from a bounded space,
such that for all x, ‖x‖2 ≤ Bx for some finite scalar Bx > 0, and further that the outputs
y ∈ [−By, By] for some By > 0. Assume we use loss `(ŷ, y) = 1

2(ŷ − y)2, which is (locally)
Lipschitz continuous for our bounded region, with Lipschitz constant c = By +BxBw. This
is because |ŷ| ≤ BxBw and∣∣∣∣d`(ŷ, y)

dŷ

∣∣∣∣ = |ŷ − y| ≤ |ŷ|+ |y| ≤ By +BxBw.

Further, because y ∈ [−By, By], we know the loss is bounded as

`(ŷ, y) = 1
2(ŷ − y)2 ≤ 1

2(B2
y +B2

xB
2
w).

For approximate error

Êrr(f) = 1
n

n∑
i=1

`(f(xi), yi)

and true error

Err(f) = E[`(f(X), Y )] =
ˆ
X×Y

p(x, y)`(f(x), y)dxdy

using Equation 10.2 below, we get that with probability 1− δ, for δ ∈ (0, 1],

Err(f) ≤ Êrr(f) + 2cBxBw√
n

+ 1
2(B2

y +B2
xB

2
w)

√
ln(1/δ)

2n . (10.1)
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With increasing samples n, the second two terms disappear and the sample error ap-
proaches the true expected error. This bound show the rate at which this discrepancy dis-
appears. For a higher confidence—small δ making ln(1/δ) larger—more samples are need
for the third term to be small. This third term is obtained using concentration inequalities,
which enable us to state the rate at which a sample mean gets close to its expected value.
For possibly large values of features or learned weights, the second term can be big and can
again require the more samples. The second term reflects the properties of our function
class: a simpler class, with small bounded weights, can have a more accurate estimate of
the loss on a smaller number of samples. More generally, this complexity measure is called
the Rademacher complexity.1 For the linear functions above, with bounded `2 norms for x,
w, the Rademacher complexity is bounded as Rn(H) ≤ BxBy/

√
n (see [10, Equation 3]).

In the next few sections, we provide a generalization result for more general functions,
as well as required background to determine that result.

10.1.1 Concentration inequalities

We will examine the use of concentration inequalities with one common example: Ho-
effding’s inequality. For the generalization bound below, a generalization is used, called
McDiarmid’s inequality.

For i.i.d. random variables X1, . . . , Xn, such that 0 ≤ Xi ≤ 1, let X̄ = 1
n

∑n
i=1Xi be

the sample average. Then Hoeffding’s inequality states that for any ε

Pr(X̄ − E[X̄] ≥ ε) ≤ exp(−2nε2).

We start by setting this probability value to δ, so that we can say with probability δ,
Pr(X̄ − E[X̄] ≥ function(δ)). We can solve for ε in terms of δ, to get

δ = exp(−2nε2) =⇒ ε = ±

√
ln(1/δ)

2n .

We can either set ε to
√

ln(1/δ)
2n or −

√
ln(1/δ)

2n , to bound X̄ to be near E[X̄] from both above

and below. We get that with probability 1− δ,
∣∣∣X̄ − E[X̄]

∣∣∣ ≤ |ε| = √
ln(1/δ)

2n .
This concentration inequality makes few assumptions about the random variables, and

does not require any distributional assumptions. Consequently, the rate of convergence to
the true mean is only 1/

√
n. Faster rates can be obtained with more assumptions.

10.1.2 Complexity of a function class

Rademacher complexity of a function class characterizes the overfitting ability of functions,
on a particular sample. Function class that are typically more complex are more likely
to be able to fit random noise, and so have higher Rademacher complexity. The empirical
Rademacher complexity, for a sample {z1, . . . , zn}—where typically we consider zi = (xi, yi)

1If you have heard of VC dimension, we will discuss the connection between Rademacher and VC dimen-
sion below. They both play a role in identifying the complexity of a function class.
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— is defined as2

R̂n(H) = E
[
max
f∈H

1
n

n∑
i=1

σif(xi)
]

where the expectation is over i.i.d. random variables σ1, . . . , σn chosen uniformly from
{−1, 1}. This choice reflects how well the function class can correlate with this random noise.
Consider for example if f(x) predicts 1 or -1, as in binary classification. If there exists a
function in the class of functions that can perfectly match the sign of the randomly sampled
σi, then that function produces the highest value

∑n
i=1 σif(xi). The empirical Rademacher

complexity for a function class is high, if for any randomly sampled σi, there exists such
a function within the function class (can be a different function for each σ1, . . . , σn). The
Rademacher complexity is the expected empirical Rademacher complexity, over all possibly
samples of n instances.

For function classes with high Rademacher complexity, error on the training set is un-
likely to be reflective of the generalization error, until there is a sufficient number of samples.
This is reflected in the generalization bound in Section 10.1.3.

Connection to VC dimension: The complexity of a function class can also be char-
acterized by the VC dimension. The idea of VC dimension to characterize the number of
points that can be separated (or shattered) by a function class. Simple functions have low
VC dimension, because they are not complex enough to separate many points. More com-
plex functions, that enable complex boundaries, have higher VC dimension. For example,
for functions of the form f((x1, x2)) = sign(x1w1 + x2w2 + w0), the VC dimension is 3;
more generally, for x ∈ Rd, the VC dimension is d + 1. VC dimension is a similar idea to
Rademacher complexity, but it is restricted to binary classifiers. For this reason, we directly
discuss the Rademacher complexity, which for binary classifiers can be bounded in terms of
the VC dimension. By Sauer’s Lemma, we can typically bound the Rademacher complexity
of a hypothesis class by

√
2VC-dimension lnn

n .

10.1.3 Generalization bounds

The generalization bound for a class of models can be obtained by combining the con-
centration inequalities to bound deviation from the mean for fewer samples, and using the
Rademacher complexity to bound the difference between the sample error and true expected
error across all functions in the function class. We additionally need to restrict the set of
losses. We assume that the losses are Lipschitz with constant c, meaning that they do not
change too quickly in a region, with c indicating the rate of change. Further, we also assume
that the loss is bounded by b, i.e., attains values in [−b, b]. As above, if {z1, . . . , zn} is i.i.d.,
then with probability 1− δ, for every f ∈ H,

E[`(f(X), Y )] ≤ 1
n

n∑
i=1

`(f(xi), yi) + 2cRn(H) + b

√
ln(1/δ)

2n (10.2)

For a more precise theorem statement and a proof, see [3, Theorem 7] and [10, Theorem 1].
2Here we are being a bit loose and using maximum instead of supremum, to avoid burdening the reader

with new terminology. We usually deal with function classes H where using the supremum is equivalent
to using the maximum. The supremum is used when a set does not contain a maximal point (e.g., [0, 1)),
where the supremum provides the closest upper bound (e.g., 1 for [0, 1)).
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10.2 Comparison of Learning Algorithms

To empirically evaluate algorithms, we can consider a setting with one or more algorithms
on one or more datasets. Depending on the setting, different evaluations will be employed.
For a nice overview of evaluation for machine learning algorithms, see [9].

For now, let’s start with a simple case, where we compare two algorithms and use
the binomial test. Suppose we have a set of learning problems D1,D2, . . .Dm and wish
to compare learning algorithms a1 and a2. We can carry out such a comparison using
a counting test as follows: for each data set both algorithms are evaluated in terms of
the chosen performance measure and the algorithm with a higher performance accuracy is
awarded a win, while the other one is given a loss (in case of exactly the same performance,
we can provide a win/loss randomly).

D1 D2 D3 D4 Dm−1 Dm
a1 1 0 1 1 · · · 0 1
a2 0 1 0 0 1 0

Table 10.1: A counting test where learning algorithms a1 and a2 are compared on a set of
m independent data sets. An algorithm with a better performance on a particular data set
collects a win (1), whereas the other algorithm collects a loss (0).

We are now interested in providing statistical evidence that say algorithm a1 is better
than algorithm a2. Suppose a1 has k wins out of m and algorithm a2 has m − k wins, as
shown in Table 10.1. We would like to evaluate the null hypothesis H0 that algorithms a1
and a2 have the same performance by providing an alternative hypothesis H1 that algorithm
a1 is better than a2. In short,

H0: quality(a1) = quality(a2)
H1: quality(a1) > quality(a2)

If the null hypothesis is true, the win/loss on each data set will be equally likely and
determined by minor variation. Therefore, the probability of a win on any data set will be
roughly equal to p = 1/2. Now, we can express the probability that algorithm a1 collected
k wins or more under the null hypothesis using binomial distribution

P =
m∑
i=k

(
m

i

)
pi(1− p)m−i

and refer to it as the P-value. This value is the probability of k wins, plus the probability of
k+1 wins, up to the probability ofm wins, under the null hypothesis. A typical approach in
these cases is to establish a significance value, say, α = 0.05 and reject the null hypothesis if
P ≤ α. If the P-value is greater than α we say that there is insufficient evidence for rejecting
H0. For sufficiently low P-values, we may conclude that there is sufficient evidence that
algorithm a1 is better than algorithm a2.

The choice of the significance threshold α is somewhat arbitrary. Typically, 5% is a
reasonable value, but lower values indicate that the particular situation of k wins out of
m was so unlikely, that we can consider the evidence for rejecting H0 very strong. Being

109



able to reject the null hypothesis provides some confidence that the result did not occur by
chance.

More generally, we can consider other statistical significance tests based on the distri-
butions of the performance measures. In the above example, a binomial distribution was
appropriate. If instead we considered the actual errors on the datasets, then we have pairs
of real values. In this case, a common choice is the paired t-test, if both errors appear
to be distributed normally and if they have similar variance. The paired t-test takes in
the sampled differences between the algorithms (line 3 in Table 10.2), d1, . . . , dm. Because
again our null hypothesis is that the algorithms perform equally, under the null hypothesis
the mean of these differences is 0. If the differences are normally distributed, then for the
sample average d̄ = 1

m

∑m
i=1 di and sample standard deviation Sd =

√
1

m−1
∑m
i=1(di − d̄)2,

the random variable t = d̄−0
Sd/
√
m

is distributed according to the Student’s t-distribution.
The Student’s t-distribution is approximately like a normal distribution, with a degrees-of-
freedom parameter m− 1 that makes the distribution look more like a normal distribution
as m becomes larger.

We can now ask about the probability of this random variable T , relative to the com-
puted statistic. If we only care about knowing if algorithm 1 is better than algorithm 2,
we conduct a one-tailed test. If the probability that T is larger than t, i.e., p = Pr(T > t),
is small, then we obtain some evidence that algorithm 1 is better than algorithm 2. To
test if algorithm 1 is better than algorithm 2, we can swap the order of the difference; if
p = Pr(T > −t) is small, then we obtain some evidence that algorithm 2 is better than
algorithm 1. These are both one-tailed tests, reflecting the probabilities at one end of the
tails of the distribution. A two-tailed test instead asks if the two algorithms are different;
in this case, one would use p = Pr(T > |t|).

D1 D2 D3 D4 Dm−1 Dm
a1 0.11 0.08 0.15 0.12 · · · 0.07 0.09
a2 0.10 0.09 0.11 0.12 · · · 0.10 0.09
d 0.01 -0.01 0.04 0.0 · · · -0.03 0.0

Table 10.2: A table of errors for two learning algorithms a1 and a2 are compared on a set
of m independent data sets. The last row contains the differences, which are used for the
paired t-test.

If the paired samples are not normally distributed, other tests are more suitable. Further,
there are some tests that do not make distributional assumptions, and rather are non-
parametric. For a summary of which test to use in different settings, see [9, Section 6.3]

10.3 Obtaining samples of error

A key step in comparing algorithms is to obtain valid measures of performance for the
comparison. So far, we have assumed that these are given. One approach to obtain unbiased
samples of the error is to keep a hold-out test set. Imagine m samples are set in reserve,
on which the algorithms are not trained and which we cannot look at until we are ready to
evaluate. We can train two models on the training set, and then obtain m paired samples
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of error. We can then use the paired t-test to make claims about if the two models are
statistically significantly different for the problem.

However, there are two key disadvantages to using a hold-out test set. First, usually
we want to use all the data for training. Unless there is more data than can be used,
keeping a hold-out test set is typically not practical. Even in this age of huge datasets,
we still typically want to learn on as much (quality) data as possible. Second, once this
hold-out test set has been used for evaluation, we cannot use it again because it will not
provide an unbiased estimate of the expected error. For example, after getting performance
of your models on that test set, one could go back and adjust meta-parameters such as the
regularization parameters. However, once you have done this, the test-set has influenced
the learned models and is likely to produce an optimistic estimate of performance on new
data. Therefore, this hold-out test-set can only be used once.

An alternative approach to obtain estimates of error is to use resampling techniques
from the whole dataset. Two common resampling techniques are k-fold cross-validation and
bootstrap resampling. In the first, the data is partitioned into k disjoint sets (folds). The
model is trained on k− 1 of the folds, and tested on the other fold; this is repeated k times
where each fold acts as the test fold. This approach simulates the common learning setting
where the training and test sets are disjoint. The resulting k performance estimates are
mostly independent, with some dependency introduced due to dependencies between the
training sets across the k runs. There is some additional bias introduced from the fact that
we do not run the model on the entire training set, but rather get an estimate of the error
for the algorithm trained on n−(n/k). For any final models that will be put into production
after performing these evaluations, we will likely train on the entire set of n instances.

The bootstrap resample treats the data uses the idea behind bootstrapping: the data
constitutes a reasonable model of the data. By sampling from the data, it is like sampling
from the distribution that generated the data. To generate training/test splits, the data
is sampled with replacement to create the training set, and the remaining unused samples
used for test. If k resamples are obtained, we again get k performance measures and can
obtain a sample average of performance across different splits and use statistical significance
test.

To better understand the properties of these two approaches, see the thorough and
accessible explanation in [8, Chapter 5].

10.4 Performance measures for Classification Models

In classification, there are a variety of performance measures to reflect the relative impor-
tance of incorrect predictions for either class. For example, it can be more detrimental to
predict a patient is not sick if they are actually sick (False Negative), resulting in a decision
not to run further diagnostics and so causing serious complications from not treating the
illness. When training and evaluating classification algorithms, these preferences need to
be encoded. Table 10.3 summarizes some of the terminology for discussing performance of
classification models.
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Name Symbol Definition

Classification error error error = fp+fn
tp+fp+tn+fn

Classification accuracy accuracy accuracy = 1− error

True positive rate tpr tpr = tp
tp+fn

False negative rate fnr fnr = fn
tp+fn

True negative rate tnr tnr = tn
tn+fp

False positive rate fpr fpr = fp
tn+fp

Precision pr pr = tp
tp+fp

Recall rc rc = tp
tp+fn

Table 10.3: Some classification measures.
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Appendix A

Additional material for probability theory

A.1 Axioms of probability

We can derive other properties from the basic definition of the set of measurable events (the sigma
algebra) and probability distributions. The definition of sigma field requires that E be closed under
both finite and countably infinite number of basic set operations (union, intersection, complementa-
tion and set difference). The operations union and complementation are in the definition. For inter-
section, we can use De Morgan’s laws: ∪Ai = (∩Aci )

c and ∩Ai = (∪Aci )
c. Any intersection of sets in

E must again be in E because E is closed under union and complementation. Therefore, a sigma field
is also closed under intersection. Similarly for set difference, we can write A1−A2 = (A1∩A2)c∩A1,
which then implies A1−A2 ∈ E because A1∩A2 ∈ F =⇒ (A1∩A2)c ∈ F =⇒ (A1∩A2)c∩A1 ∈ F .
Because E is non-empty, we observe that all the above conditions imply that Ω ∈ E and ∅ ∈ E ,
where ∅ is the empty set.

For probability distribution P : E → [0, 1], we required

1. P (Ω) = 1

2. A1, A2, . . . ∈ E , Ai ∩Aj = ∅ ∀i, j ⇒ P (∪∞i=1Ai) =
∑∞
i=1 P (Ai)

The tuple (Ω, E , P ) is called the probability space. It seems intuitive that the second condition
could be replaced with a union of finite sets (the simpler requirement of additivity rather than σ-
additivity). However, for sigma fields, closure under finite unions may not result in closure under
infinite unions.

The beauty of these axioms lies in their compactness and elegance. Many useful expressions can
be derived from the axioms of probability. For example, it is obvious that P (∅) = 0 or P (Ac) =
1−P (A). Similarly, closure under infinite unions of disjoint sets (σ-additivity) implies finite closure
(additivity), because the remaining sets can be set to the empty set∅: ∀A1, A2 ∈ E with A1∩A2 = ∅,
set Ai = ∅ for i > 2 to get P (A1 ∪ A2) = P (∪∞i=1Ai) =

∑∞
i=1 P (Ai) = P (A1) + P (A2). Another

formula that is particularly important can be derived by considering a partition of the sample space;
i.e., a set of k non-overlapping sets {Bi}ki=1 such that Ω = ∪ki=1Bi. That is, if A is any set in Ω and
if {Bi}ki=1 is a partition of Ω it follows that

P (A) = P (A ∩ Ω)
= P

(
A ∩

(
∪ki=1Bi

))
= P

(
∪ki=1(A ∩Bi)

)
(A.1)

=
∑k
i=1P (A ∩Bi) ,

where the last line followed from the axioms of probability. We will refer to this expression as the
sum rule. Another important expression, shown here without a derivation, is that P (A ∪ B) =
P (A) + P (B)− P (A ∩B).
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A.2 A few more useful pmfs
We provide a few more examples of pmfs here, mainly for the purpose that additional concrete
examples can be beneficial for understanding. We will not further use these pmfs in these notes.

The Binomial distribution is used to describe a sequence of n independent and identically dis-
tributed (i.i.d.) Bernoulli trials. At each value k in the sample space the distribution gives the
probability that the success happened exactly k times out of n trials, where of course 0 ≤ k ≤ n.
More formally, given Ω = {0, 1, . . . , n}, for ∀k ∈ Ω the binomial pmf is defined as

p(k) =
(
n

k

)
αk(1− α)n−k,

where α ∈ (0, 1), as before, is the parameter indicating the probability of success in a single trial.
Here, the binomial coefficient (

n

k

)
= n!
k!(n− k)!

enumerates all ways in which one can pick k elements from a list of n elements (e.g., there are 3
different ways in which one can pick k = 2 elements from a group of n = 3 elements). We will
refer to a binomial distribution with parameters n and α as Binomial(n, α). The experiment leading
to a binomial distribution can be generalized to a situation with more than two possible outcomes.
This experiment results in a multidimensional probability mass function (one dimension per possible
outcome) called the multinomial distribution.

The geometric distribution is also used to model a sequence of independent Bernoulli trials with
the probability of success α. At each point k ∈ Ω, it gives the probability that the first success
occurs exactly in the k-th trial. Here, Ω = {1, 2, . . .} and for ∀k ∈ Ω

p(k) = (1− α)k−1α,

where α ∈ (0, 1) is a parameter. The geometric distribution, Geometric(α), is defined over an infinite
sample space; i.e., Ω = N.

For the hypergeometric distribution, consider a finite population of N elements of two types
(e.g., success and failure), K of which are of one type (e.g., success). The experiment consists of
drawing n elements, without replacement, from this population such that the elements remaining
in the population are equiprobable in terms of being selected in the next draw. The probability of
drawing k successes out of n trials can be described as

p(k) =
(
K
k

)
·
(
N−K
n−k

)(
N
n

) ,

where 0 ≤ n ≤ N and k ≤ n. The hypergeometric distribution is intimately related to the binomial
distribution where the elements are drawn with replacement (α = K/N). There, the probability
of drawing a success does not change in subsequent trials. We will refer to the hypergeometric
distribution as Hypergeometric(n,N,K).

A.3 A few more useful pdfs
As mentioned above, we provide a few more pdfs to provide concrete examples, though we will not
explicitly use these pdfs in the notes.

The lognormal distribution is a modification a normal distribution. Here, for Ω = (0,∞) the
lognormal density can be expressed as

p(ω) = 1
ω
√

2πσ2
e−

1
2σ2 (lnω−µ)2

,
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where µ ∈ R and σ > 0 are parameters. We will refer to this distribution as Lognormal(µ, σ2) or
lnN (µ, σ2).

The Gumbel distribution belongs to the class of extreme value distributions. Its probability
density function is defined on Ω = R as

p(ω) = 1
β
e−

ω−α
β e−e

−ω−α
β
,

where α ∈ R is the location parameter and β > 0 is the scale parameter. We will refer to this
distribution as Gumbel(α, β).

The Pareto distribution is useful for modeling events with rare occurrences of extreme values.
Its probability density function is defined on Ω = [ωmin,∞) as

p(ω) = αωmin

ωα+1 ,

where α > 0 is a parameter and ωmin > 0 is the minimum allowed value for ω. We will refer to the
Pareto distribution as Pareto(α, ωmin). It leads to a scale-free property when α ∈ (0, 2].

A.4 Random Variables

In many situations, we would like to use probabilistic modeling on sets (e.g., a group of people)
where elements can be associated with various descriptors. For example, a person may be associated
with his/her age, height, citizenship, IQ, or marital status and we may be interested in events related
to such descriptors. In other situations, we may be interested in transformations of sample spaces
such as those corresponding to digitizing an analog signal from a microphone into a set of integers
based on some set of voltage thresholds. The mechanism of a random variable facilitates addressing
all such situations in a simple, rigorous and unified manner.

A random variable is a variable that, from the observer’s point of view, takes values non-
deterministically, with generally different preferences for different outcomes. Mathematically, how-
ever, it is defined as function that maps one sample space into another, with a few technical caveats
we will introduce later. Let us motivate the need for random variables. Consider a probability space
(Ω, E , P ), where Ω is a set of people and let us investigate the probability that a randomly selected
person ω ∈ Ω is happy (we may assume we have a diagnostic method to assess any person’s status).
We start by defining an event A as

A = {ω ∈ Ω : Status(ω) = happy}

and simply calculate the probability of this event. This is a perfectly legitimate approach, but it
can be much simplified using the random variable mechanism. We first note that, technically, our
diagnostic method corresponds to a function Status : Ω → S that maps the sample space Ω to a
new binary sample space S = {happy, not happy}. More interestingly, our approach also maps the
probability distribution P to a new probability distribution PStatus that is defined on some sigma
algebra of S; say, EStatus (for the mapping to work as expected, EStatus has to be the power set of S).
We can now see that we can calculate PStatus({happy}) from the probability of the aforementioned
event A; i.e., PStatus({happy}) = P (A). This is a cluttered notation so we may wish to simplify it
by using P (Status = happy), where Status is a “random variable”.

We will use capital letters X,Y, . . . to denote random variables (such as Status) and lowercase
letters x, y, . . . to indicate elements (such as “happy”) of the new spaces X ,Y . . . Generally, we
will write probabilities as P (X = x), which is a notational relaxation from P ({ω : X(ω) = x}), or
P (X ≤ x) for P ({ω : X(ω) ≤ x}) when the co-domain X is continuous. We will also refer to the
corresponding probability mass or density functions as p(x) or pX(x) when when we need to be more
explicit about the random variable. This will indeed happen when x takes a particular value; say,
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for x = 1, we will write pX(1). Before we proceed to formally define random variables, we shall look
at two illustrative examples.

Example 20: [Consecutive tosses of a fair coin.] Consider a process of three coin tosses and two
random variables, X and Y , defined on the sample space. We define X as the number of heads in
the first toss and Y as the number of heads over all three tosses. Our goal is to find the probability
spaces that are created after the transformations.

First, Ω = {HHH,HHT,HTH,HTT,THH,THT,TTH,TTT} and
ω HHH HHT HTH HTT THH THT TTH TTT

X(ω) 1 1 1 1 0 0 0 0
Y (ω) 3 2 2 1 2 1 1 0

Let us only focus on variable Y . Clearly, Y : Ω → {0, 1, 2, 3} but we also need to find EY and
PY . To calculate PY , a simple approach is to find its pmf p(y). For example, let us calculate
pY (2) = PY ({2}) as

PY ({2}) = P (Y = 2)
= P ({ω : Y (ω) = 2})
= P ({HHT,HTH,THH})

= 3
8 ,

because of the uniform distribution in the original space (Ω, E , P ). In a similar way, we can calculate
that P (Y = 0) = P (Y = 3) = 1/8, and that P (Y = 1) = 3/8. In this example, we took that
E = P(Ω) and EY = P(Y). As a final note, we mention that all the randomness is defined in the
original probability space (Ω, E , P ) and that the new probability space (Y, EY , PY ) simply inherits
it through a deterministic transformation. �

Example 21: [Quantization] Consider (Ω, E , P ) where Ω = [0, 1], E = B(Ω), and P is induced by a
uniform pdf. Define X : Ω→ {0, 1} as

X(ω) =
{

0 ω ≤ 0.5
1 ω > 0.5

and find the transformed probability space.
Technically, we have changed the sample space to X = {0, 1}. For an event space EX = P(X ) =

{∅, {0}, {1}, {0, 1}} we would like to understand the new probability distribution PX . We have

pX(0) = PX({0})
= P (X = 0)
= P ({ω : ω ∈ [0, 0.5]})

= 1
2

and

pX(1) = PX({1})
= P (X = 1)
= P ({ω : ω ∈ (0.5, 1]})

= 1
2

From here we can easily see that PX({0, 1}) = 1 and PX(∅) = 0, and so PX is indeed a probability
distribution. Again, PX is naturally defined using P . Thus, we have transformed the probability
space (Ω, E , P ) into (X , EX , PX). �
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A.4.1 Formal definition of random variable
We now formally define a random variable. Given a probability space (Ω, E , P ), a random variable
X is a function X : Ω → X such that for every A ∈ B (X ) it holds that {ω : X (ω) ∈ A} ∈ E . It
follows that

PX (A) = P ({ω : X (ω) ∈ A}) .

It is important to mention that, by default, we defined the event space of a random variable to be
the Borel field of X . This is convenient because a Borel field of a countable set Ω is its power set.
Thus, we are working with the largest possible event spaces for both discrete and continuous random
variables.

Consider now a discrete random variable X defined on (Ω, E , P ). As we can see from the previous
examples, the probability distribution for X can be found as

p (x) = PX({x})
= P ({ω : X (ω) = x})

for ∀x ∈ X . The probability of an event A can be found as

PX (A) = P ({ω : X (ω) ∈ A})

=
∑
x∈A

p(x)

for ∀A ⊆ X .
The case of continuous random variables is more complicated, but reduces to an approach that

is similar to that of discrete random variables. Here we first define a cumulative distribution function
(cdf) as

FX(t) = PX ({x : x ≤ t})
= P ({ω : X(ω) ≤ t})
= P (X ≤ t) ,

where P (X ≤ t), as before, presents a minor abuse of notation. If the cumulative distribution
function is differentiable, the probability density function of a continuous random variable is defined
as

p (x) = dFX (t)
dt

∣∣∣∣
t=x

.

Alternatively, if p(x) exists, then

FX (t) =
ˆ t

−∞
p (x) dx,

for each t ∈ R. Our focus will be exclusively on random variables that have their probability density
functions; however, for a more general view, we should always keep in mind “if one exists” when
referring to pdfs.

The probability that a random variable will take a value from interval (a, b] can now be calculated
as

PX((a, b]) = P (a < X ≤ b)

=
ˆ b

a

p (x) dx

= FX (b)− FX (a) ,
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which follows from the properties of integration.
Suppose now that random variable X transforms probability space (Ω, E , P ) into (X ,B(X ), PX).

To describe the resulting probability space, we commonly use probability mass and density functions
inducing PX . For example, if PX is induced by a Gaussian distribution with parameters µ and σ2,
we use

X : N (µ, σ2) or X ∼ N (µ, σ2).

Both notations indicate that the probability density function for the random variable X is

p(x) = 1√
2πσ2

e−
1

2σ2 (x−µ)2
.

The Gaussian density implicitly defined that X = R. This point however is superficial because we
can always extend the domain of a density function to R and set p(x) = 0 wherever the original
function was not defined.

A group of d random variables {Xi}di=1 defined on the same probability space (Ω, E , P ) is called
a random vector or a multivariate (multidimensional) random variable. We have already seen an
example of a random vector provided by random variables (X,Y ) in Example 20. A generalization
of a random vector to infinite sets is referred to as a random process or stochastic process; i.e.,
{Xi : i ∈ T }, where T is an index set usually interpreted as a set of time indices. In the case of
discrete time indices (e.g., T = N) the random process is called a discrete-time random process;
otherwise (e.g., T = R) it is called a continuous-time random process. There are many models in
machine learning that deal with temporally-connected random variables (e.g., autoregressive models
for time series, Markov chains, hidden Markov models, dynamic Bayesian networks). The language
of random variables, through stochastic processes, nicely enables formalization of these models. Most
of these notes, however, will deal with simpler settings only requiring (i.i.d.) multivariate random
variables.

Example 22: [Three tosses of a fair coin for joint probabilities.] Consider the two random variables
from Example 20 and calculate their probability spaces, joint and marginal distributions. Recall X
is the number of heads in the first toss and Y is the number of heads over all three tosses.

A joint probability mass function p(x, y) = P (X = x, Y = y) is shown below

Y
0 1 2 3

X
0 1/8 1/4 1/8 0
1 0 1/8 1/4 1/8

but let us step back for a moment and show how we can calculate it. Let us consider two sets
A = {HHH, HHT, HTH, HTT} and B = {HHT, HTH, THH}, corresponding to the events that
the first toss was heads and that there were exactly two heads over the three tosses, respectively.
Now, let us look at the probability of the intersection of A and B

P (A ∩B) = P ({HHT,HTH})

= 1
4

We can represent the probability of the logical statement X = 1 ∧ Y = 2 as

pXY (1, 2) = P (X = 1, Y = 2)
= P (A ∩B)
= P ({HHT,HTH})

= 1
4 .
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The marginal probability distribution can be found in a straightforward way as

p (x) =
∑
y∈Y

p (x, y) ,

where Y = {0, 1, 2, 3} . Thus,

pX (0) =
∑
y∈Y

pXY (0, y)

= 1
2 .

We note for the end that in the discrete case we have |X | · |Y| − 1 free parameters (because the sum
must equal 1) to fully describe the joint distribution p(x, y). Asymptotically, this corresponds to an
exponential growth of the number of entries in the table with the number of random variables (d).
For example, if |Xi| = 2 for ∀Xi, there are 2d − 1 free elements in the joint probability distribution.
Estimating such distributions from data is intractable and is one form of the curse of dimensionality.

�

A.4.2 Example of conditional independence
We show that independence and conditional independence do not imply each in other, in two simple
examples from Figure A.1. This example is mostly algebraic, and is a useful exercise to indicate
this property, but does not provide much intuition about why this occurs. The d-separation rules
given in Section A.6 further explain why you can have these different dependencies. We have already
provided an example of X and Y that are conditionally independent given Z, but not independent,
in Example 7. We provide one more example here for when two variables X and Y are independent,
but not conditionally independent given Z. The key is that the information in Z couples X and Y ,
whereas in Example 7, knowing Z (the bias of the coin) decoupled X and Y (two flips of the biased
coin).

Example 23: Consider a setting where you try to predict the price of a house. You have many
samples of previous house prices, but without any associated features. Let X and Y be the price of
two different houses. Without any additional information, these two variables are independent—in
fact, we can consider them as i.i.d. samples from some underlying distribution over house prices.
However, if we are now given an addition piece of information that both houses share, then they
become dependent. Let Z correspond to the variable that the two houses are in the same neighbor-
hood (i.e., a 0 or 1 variable). If Z = 1, then knowing the price of X definitely influences what the
distribution over prices are for Y . The addition of this feature makes these two random variables
conditionally dependent. �

A.4.3 Additional information for expectations and moments
In this section, we provide a few additional examples of expectations of functions of a random variable
that are often considered—enough so to be given names. Recall that for a function f : X → R,
we have the expected value E [f(X)] =

∑
f(x)p(x). Using f(x) = xk results in the k-th moment,

f(x) = log 1/p(x) gives the well-known entropy function H(X), or differential entropy for continuous
random variables, and f(x) = (x− E [X])2 provides the variance of a random variable X, denoted
by V [X]. Interestingly, the probability of some event A ⊆ X can also be expressed in the form of
expectation; i.e.,

P (A) = E [1(X ∈ A)] ,
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Figure A.1: Independence vs. conditional independence using probability distributions in-
volving three binary random variables. Probability distributions are presented using factor-
ization p(x, y, z) = p(x)p(y|x)p(z|x, y), where all constants a, b, c, d, e ∈ [0, 1]. (A) Vari-
ables X and Y are independent, but not conditionally independent given Z. When c = 0,
Z = X⊕Y , where ⊕ is an “exclusive or” operator. (B) Variables X and Z are conditionally
independent given Y , but are not independent.
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f(x) Symbol Name

x E[X] Mean

(x− E [X])2 V [X] Variance

xk E[Xk] k-th moment; k ∈ N

(x− E [X])k E[(X − E [X])k] k-th central moment; k ∈ N

etx MX(t) Moment generating function

eitx ϕX(t) Characteristic function

log 1
p(x) H(X) (Differential) entropy

log p(x)
q(x) D(p||q) Kullback-Leibler divergence(

∂
∂θ log p(x|θ)

)2
I(θ) Fisher information

Table A.1: Some important expectation functions E [f(X)] for a random variable X de-
scribed by its distribution p(x). Function q(x) in the definition of the Kullback-Leibler di-
vergence is non-negative and must sum (integrate) to 1; i.e., it is a probability distribution
itself. The Fisher information is defined for a family of probability distributions specified by
a parameter θ. Note that the moment generating function may not exist for some distribu-
tions and all values of t; however, the characteristic function always exists, even when the
density function does not.

where

1(t) =
{

1 t is true
0 t is false

(A.2)

is an indicator function. With this, it is possible to express the cumulative distribution function as
FX(t) = E[1(X ∈ (−∞, t])].

Function f(x) inside the expectation can also be complex-valued. For example, ϕX(t) = E[eitX ],
where i is the imaginary unit, defines the characteristic function of X. The characteristic function
is closely related to the inverse Fourier transform of p(x) and is useful in many forms of statistical
inference. Several expectation functions are summarized in Table A.1.

Example 24: [Three tosses of a fair coin (yet again).] Consider two random variables from Examples
3 and 5, and calculate the expectation and variance for both X and Y . Then calculate E [Y |X = 0].

We start by calculating E [X] = 0 · pX(0) + 1 · pX(1) = 1
2 . Similarly,

E [Y ] =
3∑
y=0

y · pY (y)

= pY (1) + 2pY (2) + 3pY (3)

= 3
2
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f(x, y) Symbol Name

(x− E [X]) (y − E [Y ]) Cov[X,Y ] Covariance
(x−E[X])(y−E[Y ])√

V [X]V [Y ]
Corr[X,Y ] Correlation

log p(x,y)
p(x)p(y) I(X;Y ) Mutual information

log 1
p(x,y) H(X,Y ) Joint entropy

log 1
p(x|y) H(X|Y ) Conditional entropy

Table A.2: Some important expectation functions E [f(X,Y )] for two random variables,
X and Y , described by their joint distribution p(x, y). Mutual information is sometimes
referred to as average mutual information.

The conditional expectation can be found as

E [Y |X = 0] =
3∑
y=0

y · pY |X(y|0)

= pY |X(1|0) + 2pY |X(2|0) + 3pY |X(3|0)
= 1

where p(y|x) = p(x, y)/p(x).
�

A.5 Mixtures of distributions
In previous sections we saw that random variables are often described using particular families of
probability distributions. This approach can be generalized by considering mixtures of distributions;
i.e., linear combinations of other probability distributions. As before, we shall only consider random
variables that have their probability mass or density functions.

Given a set of m probability distributions, {pi(x)}mi=1, a finite mixture distribution function, or
mixture model, p(x) is defined as

p(x) =
m∑
i=1

wipi(x), (A.3)

where w = (w1, w2, . . . , wm) is a set of non-negative real numbers such that
∑m
i=1 wi = 1. We refer

to w as mixing coefficients or, sometimes, as mixing probabilities. A linear combination with such
coefficients is called a convex combination. It is straightforward to verify that a function defined in
this manner is indeed a probability distribution.

Here we will briefly look into the basic expectation functions of the mixture distribution. Sup-
pose {Xi}mi=1 is a set of m random variables described by their respective probability distributions
{pXi(x)}mi=1. Suppose also that a random variable X is described by a mixture distribution with co-
efficients w and probability distributions {pXi(x)}mi=1. Then, assuming continuous random variables
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X: Bernoulli(®)

Y : Gaussian(¹ , ¾  )2

Figure A.2: A digital signal communication system with additive noise.

defined on R, the expectation function is given as

E [f(X)] =
ˆ +∞

−∞
f(x)pX(x)dx

=
ˆ +∞

−∞
f(x)

m∑
i=1

wipXi(x)dx

=
m∑
i=1

wi

ˆ +∞

−∞
f(x)pXi(x)dx

=
m∑
i=1

wiE[f(Xi)].

We can now apply this formula to obtain the mean, when f(x) = x and the variance, when f(x) =
(x− E[X])2, of the random variable X as

E[X] =
m∑
i=1

wiE[Xi],

and

V [X] =
m∑
i=1

wiV [Xi] +
m∑
i=1

wi (E[Xi]− E[X])2
,

respectively.

Example 25: Signal communications. Consider transmission of a single binary digital signal (bit)
over a noisy communication channel shown in Figure A.2. The magnitude of the signal X emitted
by the source is equally likely to be 0 or 1 Volt. The signal is sent over a transmission line (e.g.,
radio communication, optical fiber, magnetic tape) in which a zero-mean normally distributed noise
component Y is added to X. Derive the probability distribution of the signal Z = X+Y that enters
the receiver.

We will consider a slightly more general situation whereX : Bernoulli(α) and Y : Gaussian(µ, σ2).
To find p(z) we will use characteristic functions of random variables X, Y and Z, written as
ϕX(t) = E[eitX ], ϕY (t) = E[eitY ] and ϕZ(t) = E[eitZ ]. Without derivation we write

ϕX(t) = 1− α+ αeit

ϕY (t) = eitµ−
σ2t2

2
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and subsequently

ϕZ(t) = ϕX+Y (t)
= ϕX(t) · ϕY (t)

=
(
1− α+ αeit

)
· eitµ−σ

2t2
2

= αeit(µ+1)−σ2t2
2 + (1− α)eitµ−σ

2t2
2 .

By performing integration on ϕZ(t) we can easily verify that

p(z) = α · 1√
2πσ2

e−
1

2σ2 (z−µ−1)2
+ (1− α) · 1√

2πσ2
e−

1
2σ2 (z−µ)2

,

which is a mixture of two normal distributionsN (µ+1, σ2) andN (µ, σ2) with coefficients w1 = α and
w2 = 1− α, respectively. Observe that a convex combination of random variables Z = w1X + w2Y
does not imply pZ(x) = w1pX(x) + w2pY (x).

�

A.6 Graphical representation of probability distributions
We saw earlier that a joint probability distribution can be factorized using the chain rule from
Equation (1.2). Such factorizations can be visualized using a directed graph representation, where
nodes represent random variables and edges depict dependence. For example,

p(x, y, z) = p(x)p(y|x)p(z|x, y)

is shown in Figure A.3A. Graphical representations of probability distributions using directed acyclic
graphs, together with conditional probability distributions, are called Bayesian networks or belief
networks. They facilitate interpretation as well as effective statistical inference.

Visualizing relationships between variables becomes particularly convenient when we want to
understand and analyze conditional independence properties of variables. Figure A.3B shows the
the same factorization of p(x, y, z) where variable Z is independent of X given Y . To carefully
determine conditional independence and dependence properties, however, one usually uses the d-
separation rules for belief networks. Though often relationships are intuitive, sometimes dependence
properties can get more complicated due to multiple relationships between nodes. For example, in
Figure A.4A, two nodes do not have an edge, but are conditionally dependent through another node.
On the other hand, in Figure A.4B, the absence of an edge does imply conditional independence. We
will not further examine d-separation rules at this time; they can easily be found in any standard
textbook on graphical models.

Belief networks have a simple, formal definition. Given a set of d random variables X =
(X1, . . . , Xd), belief networks factorize the joint probability distribution of X as

p(x) =
d∏
i=1

p
(
xi|xParents(Xi)

)
,

where Parents(X) denotes the immediate ancestors of node X in the graph. In Figure A.3B, node
Y is a parent of Z, but node X is not a parent of Z.

It is important to mention that there are multiple (how many?) ways of factorizing a distribution.
For example, by reversing the order of variables p(x, y, z) can be also factorized as

p(x, y, z) = p(z)p(y|z)p(x|y, z),
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Figure A.3: Bayesian network: graphical representation of two joint probability distribu-
tions for three discrete (binary) random variables (X,Y, Z) using directed acyclic graphs.
The probability mass function p(x, y, z) is defined over {0, 1}3. (A) Full factorization; (B)
Factorization that shows and ensures conditional independence between Z and X, given Y .
Each node is associated with a conditional probability distribution. In discrete cases, these
conditional distributions are referred to as conditional probability tables.
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A.

B.

X Yis independent of , but not given Z

X Yand are dependent, but conditionally independent given Z

≠

Figure A.4: Two examples of Bayesian networks. (A) A model where the lack of an edge
between nodes does not indicate independence. Given information about Z, X and Y are
actually dependent; i.e., they are conditionally dependent through Z. (B) A model where
the lack of an edge between nodes does indicate independence. Given information about Z,
X and Y are conditionally independent. We will see this representation later under Naive
Bayes models.

which has a different graphical representation and its own conditional probability distributions, yet
the same joint probability distribution as the earlier factorization. Selecting a proper factorization
and estimating the conditional probability distributions from data will be discussed in detail later.

Undirected graphs can also be used to factorize probability distributions. The main idea here is
to decompose graphs into maximal cliques C (the smallest set of cliques that covers the graph) and
express the distribution in the following form

p(x) = 1
Z

∏
C∈C

ψC(xC),

where each ψC(xC) ≥ 0 is called the clique potential function and

Z =
ˆ

x

∏
C∈C

ψC(xC)dx,

is called the partition function, used strictly for normalization purposes. In contrast to conditional
probability distributions in directed acyclic graphs, the clique potentials usually do not have condi-
tional probability interpretations and, thus, normalization is necessary. One example of a maximum
clique decomposition is shown in Figure A.5.

The potential functions are typically taken to be strictly positive, ψC(xC) > 0, and expressed
as

ψC(xC) = exp (−E(xC)) ,

where E(xC) is a user-specified energy function on the clique of random variables XC . This leads
to the probability distribution of the following form

p(x) = 1
Z

exp
(∑
C∈C

logψC(xC)
)
.
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X1 X2

X3 X4

X5 X6 X7

X8

X X X X2 3 4, , }
C1

= {X1,

X X X2 5, }
C2

= {

X X6}C3
= {X5,

X X X7 8, }
C4

= {X6,

Figure A.5: Markov network: graphical representation of a probability distribution using
maximum clique decomposition. Shown is a set of eight random variables with their interde-
pendency structure and maximum clique decomposition (a clique is fully connected subgraph
of a given graph). A decomposition into maximum cliques covers all vertices and edges in
a graph with the minimum number of cliques. Here, the set of variables is decomposed into
four maximal cliques C = {C1, C2, C3, C4}.

As formulated, this probability distribution is called the Boltzmann distribution or the Gibbs dis-
tribution.

The energy function E(x) must be lower for values of x that are more likely. It also may involve
parameters that are then estimated from the available training data. Of course, in a prediction
problem, an undirected graph must be created to also involve the target variables, which were here
considered to be a subset of X.

Consider now any probability distribution over all possible configurations of the random vector
X with its underlying graphical representation. If the following property

p (xi|x−Xi) = p
(
xi|xN(Xi)

)
(A.4)

is satisfied, the probability distribution is referred to as Markov network or a Markov random field.
In the equation above

X−Xi = (X1, . . . , Xi−1, Xi+1, . . . , Xd)

and N(X) is a set of random variables neighboring X in the graph; i.e., there exists an edge between
X and every node in N(X). The set of random variables in N(X) is also called the Markov blanket
of X.

It can be shown that every Gibbs distribution satisfies the property from Equation (A.4) and,
conversely, that for every probability distribution for which Equation (A.4) holds can be represented
as a Gibbs distribution with some choice of parameters. This equivalence of Gibbs distributions and
Markov networks was established by the Hammersley-Clifford theorem.
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Appendix B

Optimization background

B.1 Basic rules for gradients

For derivatives, there are useful rules that you are familiar with, such as d
dwaw = a, d

dww
2 = 2w

and d
dwe

w = ew. We can similarly write down such rules for the multivariate setting, to simplify
computation of gradients without having to go resort to computing each partial derivative. Each of
the following rules can be verified by computing partial derivatives, with the rules you are used to
for the univariate case. We summarize the key rules for this document here; for a more complete
reference, see the matrix cookbook [16].

Some of these rules are summarized in Table B.1. This list is not comprehensive, but does
enable some additional rules to be derived. For example, to obtain the derivative for the function
f(x) = x>A, one can first obtain the derivative for f(x)> = A>x and then take its transpose
because (

∇f(x)
)> = ∇

(
f(x)>

)
.

Therefore, because ∇f(x)> = A>, we get that ∇f(x) = A.

f(x) ∂f
∂x

x>x 2x
Ax A

x>Ax Ax + A>x

Table B.1: Useful derivative formulas of vectors with respect to vectors. The derivative of
vector-valued function f : Rd×1 → Rm×1 with respect to vector x ∈ Rd×1 is an m×d matrix
M with components Mij = ∂yj/∂xi, i ∈ {1, 2, . . . , d} and j ∈ {1, 2, . . . ,m}. A derivative of
scalar with respect to a vector, where m = 1, is a special case of this situation that results
in an d × 1 column vector. Note that in the table, m is not the same for each row. For
example, f(x) = x>x is a scalar, whereas for a general matrix A ∈ Rm×d, f(x) = Ax is a
m-dimensional vector.
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Appendix C

Linear algebra background

C.1 An Algebraic Perspective
Another powerful tool for analyzing and understanding linear regression comes from linear and
applied linear algebra. In this section we take a detour to address fundamentals of linear algebra
and then apply these concepts to deepen our understanding of regression. In linear algebra, we are
frequently interested in solving the following set of equations, given below in a matrix form

Ax = b. (C.1)

Here, A is an m× n matrix, b is an m× 1 vector, and x is an n× 1 vector that is to be found. All
elements of A, x, and b are considered to be real numbers. We shall start with a simple scenario
and assume A is a square, 2× 2 matrix. This set of equations can be expressed as

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

For example, we may be interested in solving

x1 + 2x2 = 3
x1 + 3x2 = 5

This is a convenient formulation when we want to solve the system, e.g. by Gaussian elimination.
However, it is not a suitable formulation to understand the question of the existence of solutions.
In order for us to do this, we briefly review the basic concepts in linear algebra.

C.1.1 The four fundamental subspaces
The objective of this section it to briefly review the four fundamental subspaces in linear algebra
(column space, row space, nullspace, left nullspace) and their mutual relationship. We shall start
with our example from above and write the system of linear equations as[

1
1

]
x1 +

[
2
3

]
x2 =

[
3
5

]
.

We can see now that by solving Ax = b we are looking for the right amounts of vectors (1, 1) and
(2, 3) so that their linear combination produces (3, 5); these amounts are x1 = −1 and x2 = 2. Let
us define a1 = (1, 1) and a2 = (2, 3) to be the column vectors of A; i.e. A = [a1 a2]. Thus, Ax = b
will be solvable whenever b can be expressed as a linear combination of the column vectors a1 and
a2.

All linear combinations of the columns of matrix A constitute the column space of A, C(A), with
vectors a1 . . .an being a basis of this space. Both b and C(A) lie in the m-dimensional space Rm.
Therefore, what Ax = b is saying is that b must lie in the column space of A for the equation to have
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solutions. In the example above, if columns of A are linearly independent1, the solution is unique,
i.e. there exists only one linear combination of the column vectors that will give b. Otherwise,
because A is a square matrix, the system has no solutions. An example of such a situation is[

1 2
1 2

] [
x1
x2

]
=
[

3
5

]
,

where a1 = (1, 1) and a2 = (2, 2). Here, a1 and a2 are (linearly) dependent because 2a1 − a2 = 0.
There is a deep connection between the spaces generated by a set of vectors and the properties of
the matrix A. For now, using the example above, it suffices to say that if a1 and a2 are independent
the matrix A is non-singular (singularity can be discussed only for square matrices), that is of full
rank.

In an equivalent manner to the column space, all linear combinations of the rows of A constitute
the row space, denoted by C(A>), where both x and C(A>) are in Rn. All solutions to Ax = 0
constitute the nullspace of the matrix, N(A), while all solutions of A>y = 0 constitute the so-called
left nullspace of A, N(A>). Clearly, C(A) and N(A>) are embedded in Rm, whereas C(A>) and
N(A) are in Rn. However, the pairs of subspaces are orthogonal (vectors u and v are orthogonal if
u>v = 0); that is, any vector in C(A) is orthogonal to all vectors from N(A>) and any vector in
C(A>) is orthogonal to all vectors from N(A). This is easy to see: if x ∈ N(A), then by definition
Ax = 0, and thus each row of A is orthogonal to x. If each row is orthogonal to x, then so are all
linear combinations of rows.

Orthogonality is a key property of the four subspaces, as it provides useful decomposition of
vectors x and b from Eq. (C.1) with respect to A (we will exploit this in the next Section). For
example, any x ∈ Rn can be decomposed as

x = xr + xn,

where xr ∈ C(A>) and xn ∈ N(A), such that ‖x‖2
2 = ‖xr‖2

2 + ‖xn‖2
2. Similarly, every b ∈ Rm can

be decomposed as

b = bc + bl,

where bc ∈ C(A), bl ∈ N(A>), and ‖b‖2
2 = ‖bc‖2

2 + ‖bl‖2
2.

We mentioned above that the properties of fundamental spaces are tightly connected with the
properties of matrix A. To conclude this section, let us briefly discuss the rank of a matrix and
its relationship with the dimensions of the fundamental subspaces. The basis of the space is the
smallest set of vectors that span the space (this set of vectors is not unique). The size of the basis is
also called the dimension of the space. In the example at the beginning of this subsection, we had
a two dimensional column space with basis vectors a1 = (1, 1) and a2 = (2, 3). On the other hand,
for a1 = (1, 1) and a2 = (2, 2) we had a one dimensional column space, i.e. a line, fully determined
by any of the basis vectors. Unsurprisingly, the dimension of the space spanned by column vectors
equals the rank of matrix A. One of the fundamental results in linear algebra is that the rank of A
is identical to the dimension of C(A), which in turn is identical to the dimension of C(A>).

C.1.2 Minimizing ‖Ax− b‖2
2

Let us now look again at the solutions to Ax = b. In general, there are three different outcomes:

1. there are no solutions to the system

2. there is a unique solution to the system, and

3. there are infinitely many solutions.
1As a reminder, two vectors are independent if their linear combination is zero only when both x1 and

x2 are zero.
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b

e

C( )A
p

Figure C.1: Illustration of the projection of vector b to the column space of matrix A.
Vectors p (bc) and e (bl) represent the projection point and the error, respectively.

These outcomes depend on the relationship between the rank (r) of A and dimensions m and n.
We already know that when r = m = n (square, invertible, full rank matrix A) there is a unique
solution to the system, but let us investigate other situations. Generally, when r = n < m (full
column rank), the system has either one solution or no solutions, as we will see momentarily. When
r = m < n (full row rank), the system has infinitely many solutions. Finally, in cases when r < m
and r < n, there are either no solutions or there are infinitely many solutions. Because Ax = b
may not be solvable, we generalize solving Ax = b to minimizing ‖Ax− b‖2. In such a way, all
situations can be considered in a unified framework.

Let us consider the following example

A =

 1 2
1 3
1 4

 , x =
[
x1
x2

]
, b =

 b1
b2
b3

 ,
which illustrates an instance where we are unlikely to have a solution to Ax = b, unless there is
some constraint on b1, b2, and b3; here, the constraint is b3 = 2b2 − b1. In this situation, C(A) is a
2D plane in R3 spanned by the column vectors a1 = (1, 1, 1) and a2 = (2, 3, 4). If the constraint on
the elements of b is not satisfied, our goal is to try to find a point in C(A) that is closest to b. This
happens to be the point where b is projected to C(A), as shown in Figure C.1. We will refer to the
projection of b to C(A) as p. Now, using the standard algebraic notation, we have the following
equations

b = p + e
p = Ax

Since p and e are orthogonal, we know that p>e = 0. Let us now solve for x

(Ax)>(b−Ax) = 0
x>A>b− x>A>Ax = 0
x>
(
A>b−A>Ax

)
= 0

and thus

x∗ =
(
A>A

)−1
A>b.

This is exactly the same solution as one that minimized the sum of squared errors and maximized
the likelihood. The matrix

A† =
(
A>A

)−1
A>

is called the Moore-Penrose pseudo-inverse or simply a pseudo-inverse. This is an important matrix
because it always exists and is unique, even in situations when the inverse of A>A does not exist.
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This happens when A has dependent columns (technically, A and A>A will have the same nullspace
that contains more than just the origin of the coordinate system; thus the rank of A>A is less than
n). Let us for a moment look at the projection vector p. We have

p = Ax

= A
(
A>A

)−1
A>b,

where A
(
A>A

)−1
A> is the matrix that projects b to the column space of A.

While we arrived at the same result as in previous sections, the tools of linear algebra allow
us to discuss OLS regression at a deeper level. Let us examine for a moment the existence and
multiplicity of solutions to

arg min
x

‖Ax− b‖2 . (C.2)

Clearly, the solution to this problem always exists. However, we shall now see that the solution to
this problem is generally not unique and that it depends on the rank of A. Consider x to be one
solution to Eq. (C.2). Recall that x = xr + xn and that it is multiplied by A; thus, any vector
x = xr + αxn, where α ∈ R, is also a solution. Observe that xr is common to all such solutions;
if you cannot see it, assume there exists another vector from the row space and show that it is not
possible. If the columns of A are independent, the solution is unique because the nullspace contains
only the origin. Otherwise, there are infinitely many solutions. In such cases, what exactly is the
solution found by projecting b to C(A)? Let us look at it:

x∗ = A†b

=
(
A>A

)−1
A>(p + e)

=
(
A>A

)−1
A>p

= xr,

as p = Axr. Given that xr is unique, the solution found by the least squares optimization is the one
that simultaneously minimizes ‖Ax− b‖2 and ‖x‖2 (observe that ‖x‖2 is minimized because the
solution ignores any component from the nullspace). Thus, the OLS regression problem is sometimes
referred to as the minimum-norm least-squares problem.

Let us now consider situations where Ax = b has infinitely many solutions; i.e., when b ∈ C(A).
This usually arises when r ≤ m < n. Here, because b is already in the column space of A, the only
question is what particular solution x will be found by the minimization procedure. As we have seen
above, the outcome of the minimization process is the solution with the minimum L2 norm ‖x‖2.

To summarize, let us first get back to our original notation where X is the matrix and w are the
weights to be found. The goal of the OLS regression problem is to solve Xw = y, if it is solvable.
When d < n this is not a realistic scenario in practice. Thus, we relaxed the requirement and tried
to find the point in the column space C(X) that is closest to y. This turned out to be equivalent
to minimizing the sum of square errors (or Euclidean distance) between n-dimensional vectors Xw
and y. It also turned out to be equivalent to the maximum likelihood solution presented in Section
5.1. When n < d, a usual situation in practice is that there are infinitely many solutions. In these
situations, our optimization algorithm will find the one with the minimum L2 norm.
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Appendix D

Details on unsupervised representation approaches
using factorization

There are many variants of unsupervised learning algorithms that actually correspond to factorizing
the data matrix, which we summarize in in Table D.1. In many cases, they simply correspond to
defining an interesting kernel on X, and then factorizing that kernel (i.e., kernel PCA). If the entry
is empty, this specifies no regularization and no constraints. For a more complete list, see [18] and
[20]). As with the regression setting, we can generalize this Euclidean loss to any convex loss

Lx(H,D,X) =
n∑
i=1

Lx(Hi:D,Xi:)

where above we used

Lx(H,D,X) =
n∑
i=1
‖Hi:D−Xi:‖2

2 = ‖HD−X‖2
F .

Algorithms to learn dictionaries

Our focus remains on prediction, and so we would like to use these representations for supervised
(or semi-supervised) learning. We use a two-stage approach, where first the new representation is
learned in an unsupervised way and then used with supervised learning algorithms. These two stages
could be combined into one step with supervised dictionary learning; see [13] for a discussion about
this more advanced approach.

The most common strategy to learn these dictionary models is to do an alternating minimization
over the variables. The optimization over D and H is not jointly convex; however, it is convex in
each variable separately. The strategy is to fix one variable, say H, and descend in the other, say D,
and then switch, fixing D and descending in H. This alternating minimization continues until the
convergence. Though this is a nonconvex optimization, there is recent evidence that this procedure
actually returns the global minimum (see e.g. [12]). We summarize this procedure in Algorithm 5.

Once the dictionary D and new representation H have been learned, we can learn the supervised
weights W ∈ Rk×m to obtain HW ≈ Y. This can be done with any of the linear regression or
classification approaches we have learned so far.

Finally, we need to know how to use these learned models for out-of-sample prediction (i.e., for
new samples). The matrices D and W contain all the necessary information to perform out-of-
sample prediction, and H does not need to be stored, because it was the representation specific to
the training data. For a new sample xnew, the representation can be obtained using

hnew = argmin
h∈Rk

Lx(hD,x).

With the representation for this sample, we can then predict f(hnewW).
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Algorithm Loss and constraints

CCA ≡ orthonormal PLS
∥∥∥[X(X>X)−1

Y(Y>Y)−1

]
−HD

∥∥∥2

F

Isomap
‖K−HD‖2F

K = −1
2(I− ee′)S(I− ee′)

with Si,j = ‖Xi: −Xj:‖

K-means clustering ‖X−HD‖2F
with H ∈ {0, 1}n×k, H1 = 1

K-medians clustering ‖X−HD‖1,1
with H ∈ {0, 1}n×k, H1 = 1

Laplacian eigenmaps ≡ Kernel LPP ‖K−HD‖2F
for K = L†

Metric multi-dimensional scaling ‖K−HD‖2F
for isotropic kernel K

Normalized-cut
∥∥∥(Λ−1X−HD)Λ1/2

∥∥∥2

F
with H ∈ {0, 1}n×k, H1 = 1

Partial least squares ‖XY′ −DH‖2F

PCA ‖X−HD‖2F

Kernel PCA ‖K−HD‖2F

Ratio cut ‖K−HD‖2F
for K = L†

Figure D.1: Unsupervised learning algorithms that correspond to a matrix factorization.
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Algorithm 5: Alternating minimization for dictionary learning
Input:

inner dimension k
loss L, where L(HD) = Lx(H,D,X)
RD, the regularizer on D
RH , the regularizer on H
the regularization weight λ
convergence tolerance
fixed positive step-sizes ηD, ηH
dataset {x1, . . . ,xn}

Initialization:
D,H← full-rank random matrices with inner dimension k
prevobj ←∞

Loop until convergence within tolerance or reach maximum number of
iterations:

Update D using one step of gradient descent
Update H using one step of gradient descent
currentobj ← L(HD) + λRD(D) + λ

nRH(H)
If |currentobj− prevobj| < tolerance, Then break
prevobj← currentobj

Output:
D,H
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Appendix E

Bayesian estimation

Maximum a posteriori and maximum likelihood approaches report the solution that corresponds
to the mode of the posterior distribution and the likelihood function, respectively. This approach,
however, does not consider the possibility of skewed distributions, multimodal distributions or simply
large regions with similar values of p(f |D). Bayesian estimation addresses those concerns.

The main idea in Bayesian statistics is minimization of the posterior risk

R =
ˆ
F
`(f, f̂) · p(f |D)df,

where f̂ is our estimate and `(f, f̂) is some loss function between two models. When `(f, f̂) = (f−f̂)2

(ignore the abuse of notation), we can minimize the posterior risk as follows

∂

∂f̂
R = 2f̂ − 2

ˆ
F
f · p(f |D)df

= 0

from which it can be derived that the minimizer of the posterior risk is the posterior mean function;
i.e.,

fB =
ˆ
F
f · p(f |D)df

= E[F |D],

where F is a random variable representing the model. We shall refer to fB as the Bayes estimator.
It is important to mention that computing the posterior mean usually involves solving complex inte-
grals. In some situations, these integrals can be solved analytically; in others, numerical integration
is necessary.

Example 26: Let D = {2, 5, 9, 5, 4, 8} yet again be an i.i.d. sample from Poisson(λ0). Suppose the
prior knowledge about the parameter of the distribution can be expressed using a gamma distribution
with parameters k = 3 and θ = 1. Find the Bayesian estimate of λ0.

We want to find E[Λ|D]. Let us first write the posterior distribution as

p(λ|D) = p(D|λ)p(λ)
p(D)

= p(D|λ)p(λ)´∞
0 p(D|λ)p(λ)dλ

,

where, as shown in previous examples, we have that

p(D|λ) = λ
∑n

i=1
xi · e−nλ∏n
i=1 xi!

and

p(λ) = λk−1e−
λ
θ

θkΓ(k) .
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Before calculating p(D), let us first note that
ˆ ∞

0
xα−1e−βxdx = Γ(α)

βα
.

Now, we can derive that

p(D) =
ˆ ∞

0
p(D|λ)p(λ)dλ

=
ˆ ∞

0

λ
∑n

i=1
xi · e−nλ∏n
i=1 xi!

· λ
k−1e−

λ
θ

θkΓ(k) dλ

=
Γ(k +

∑n
i=1 xi)

θkΓ(k)
∏n
i=1 xi!(n+ 1

θ )
∑n

i=1
xi+k

and subsequently that

p(λ|D) = p(D|λ)p(λ)
p(D)

= λ
∑n

i=1
xi · e−nλ∏n
i=1 xi!

· λ
k−1e−

λ
θ

θkΓ(k) ·
θkΓ(k)

∏n
i=1 xi!(n+ 1

θ )
∑n

i=1
xi+k

Γ(k +
∑n
i=1 xi)

=
λk−1+

∑n

i=1
xi · e−λ(n+1/θ) · (n+ 1

θ )
∑n

i=1
xi+k

Γ(k +
∑n
i=1 xi)

.

Finally,

E[Λ|D] =
ˆ ∞

0
λp(λ|D)dλ

=
k +

∑n
i=1 xi

n+ 1
θ

= 5.14

which is nearly the same solution as the MAP estimate found in Example 9. �

It is evident from the previous example that selection of the prior distribution has important
implications on calculation of the posterior mean. We have not picked the gamma distribution by
chance; that is, when the likelihood was multiplied by the prior, the resulting distribution remained
in the same class of functions as the prior. We shall refer to such prior distributions as conjugate
priors. Conjugate priors are also simplifying the mathematics; in fact, this is a major reason for
their consideration. Interestingly, in addition to the Poisson distribution, the gamma distribution is
a conjugate prior to the exponential distribution as well as the gamma distribution itself.
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