
Markov Decision Processes

CMPUT 261: Introduction to Artificial Intelligence

S&B §3.0-3.5

Lecture Outline

1. Recap & Logistics

2. Markov Decision Processes

3. Returns & Episodes

4. Policies & Value Functions

5. Bellman Equations

After this lecture, you should be able to:
• define a Markov decision process
• represent a problem as a Markov

decision process
• define a policy
• explain whether a task is episodic or

continuing
• give expressions for the state-value

function and the action-value function
• state the Bellman optimality

equations
• give expressions for episodic and

discounted continuing returns

Assignment #3

• Assignment 3 is due tonight, 11:59pm

• Late submissions until Monday night (March 27, 11:59pm)
with 20% deduction

Recap: Deep Learning
• Feedforward neural networks are extremely flexible parametric models that can be trained by

gradient descent

• Convolutional neural networks add pooling and convolution operations
• Vastly more efficient to train on vision tasks, due to fewer parameters and domain-appropriate

invariances

• Recurrent neural networks process elements of a sequence one at a time, while maintaining state
• Same function with same parameters applied to each (element + state)

• Transformers process elements of a sequence in parallel
• Each output element depends on weighed sum of transformed input elements, using same

parameters
• Weights are dot product of input element's key and output element's query
• Keys and queries are computed using the same parameters for all elements

Recap: Supervised Learning
Neural networks are typically used to solve supervised learning
tasks: Selecting a hypothesis that maps from input
features to target features.

h : X → Y

Training
Examples Model

Loss
Metric

̂yLy

x

Training time

Population Model
x ̂y

Test time

Example: CanBot
• CanBot's job is to find and recycle empty cans

• At any given time, its battery charge is either high or low

• It can do three actions: search for cans, wait, or recharge

• Goal: Find cans efficiently without running out of battery charge

Questions:

1. Is this an instance of a supervised learning problem?

2. Is this an instance of a search problem?

Reinforcement Learning

In a reinforcement learning task, an agent learns how to act based on
feedback from the environment.

• The agent's actions may change the environment

• The "right answer" is not known

• The task may be either episodic or continuing

• The agent makes decisions online: determines how to act while interacting
with the environment

Interacting with the Environment
At each time

1. Agent receives input denoting
current state

2. Agent chooses action

3. Next time step, agent receives
reward and new state ,
chosen according to a
distribution

t = 1,2,3,…

St

At

Rt+1 St+1

p(s′ , r ∣ s, a)

48 Chapter 3: Finite Markov Decision Processes

these actions and presenting new situations to the agent.1 The environment also gives
rise to rewards, special numerical values that the agent seeks to maximize over time
through its choice of actions.

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in a Markov decision process.

More specifically, the agent and environment interact at each of a sequence of discrete
time steps, t = 0, 1, 2, 3,2 At each time step t, the agent receives some representation
of the environment’s state, St 2 S, and on that basis selects an action, At 2 A(s).3 One
time step later, in part as a consequence of its action, the agent receives a numerical
reward , Rt+1 2 R ⇢ R, and finds itself in a new state, St+1.4 The MDP and agent
together thereby give rise to a sequence or trajectory that begins like this:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . (3.1)

In a finite MDP, the sets of states, actions, and rewards (S, A, and R) all have a finite
number of elements. In this case, the random variables Rt and St have well defined
discrete probability distributions dependent only on the preceding state and action. That
is, for particular values of these random variables, s0 2 S and r 2 R, there is a probability
of those values occurring at time t, given particular values of the preceding state and
action:

p(s0, r |s, a)
.
= Pr{St =s0, Rt =r | St�1 =s, At�1 =a}, (3.2)

for all s0, s 2 S, r 2 R, and a 2 A(s). The function p defines the dynamics of the MDP.
The dot over the equals sign in the equation reminds us that it is a definition (in this
case of the function p) rather than a fact that follows from previous definitions. The
dynamics function p : S ⇥ R ⇥ S ⇥ A ! [0, 1] is an ordinary deterministic function of four
arguments. The ‘|’ in the middle of it comes from the notation for conditional probability,

1We use the terms agent, environment, and action instead of the engineers’ terms controller, controlled
system (or plant), and control signal because they are meaningful to a wider audience.

2We restrict attention to discrete time to keep things as simple as possible, even though many of the
ideas can be extended to the continuous-time case (e.g., see Bertsekas and Tsitsiklis, 1996; Doya, 1996).

3To simplify notation, we sometimes assume the special case in which the action set is the same in all
states and write it simply as A.

4We use Rt+1 instead of Rt to denote the reward due to At because it emphasizes that the next
reward and next state, Rt+1 and St+1, are jointly determined. Unfortunately, both conventions are
widely used in the literature.

This interaction between agent

and environment produces a trajectory:

S0, A0, R1, S1, A1, R2, S2, A2, R3, …

Markov Decision Process
Definition:
A Markov decision process is a tuple , where

• is a set of states,

• is a set of actions,

• is a set of rewards,

• defines the dynamics of the process, and

• the probabilities from completely characterize the environment's
dynamics

(𝒮, 𝒜, ℛ, p)

𝒮

𝒜

ℛ ∈ ℝ

p(s′ , r ∣ s, a) ∈ [0,1]

p

Dynamics
The four-argument dynamics function returns the probability of every state transition:

It is often convenient to use shorthand notation rather than the full four-argument
dynamics function:

p(s′ , r |s, a) ≐ Pr(St = s′ , Rt = r |St−1 = s, At−1 = a)

p(s′ |s, a) ≐ Pr(St = s′ |St−1 = s, At−1 = a) = ∑
r∈ℛ

p(s′ , r |s, a)

r(s, a) ≐ 𝔼[Rt |St−1 = s, At−1 = a] = ∑
r∈ℛ

r ∑
s′ ∈𝒮

p(s′ , r |s, a)

r(s, a, s′) ≐ 𝔼[Rt |St−1 = s, At−1 = a, St = s′] = ∑
r∈ℛ

r
p(s′ , r |s, a)
p(s′ |s, a)

CanBot as a
Reinforcement Learning Agent

Question: How can we represent CanBot as a reinforcement learning agent?

• Need to define states, actions, rewards, and dynamics

52 Chapter 3: Finite Markov Decision Processes

Example 3.3 Recycling Robot

A mobile robot has the job of collecting empty soda cans in an o�ce environment. It
has sensors for detecting cans, and an arm and gripper that can pick them up and place
them in an onboard bin; it runs on a rechargeable battery. The robot’s control system
has components for interpreting sensory information, for navigating, and for controlling
the arm and gripper. High-level decisions about how to search for cans are made by a
reinforcement learning agent based on the current charge level of the battery. To make a
simple example, we assume that only two charge levels can be distinguished, comprising
a small state set S = {high, low}. In each state, the agent can decide whether to (1)
actively search for a can for a certain period of time, (2) remain stationary and wait
for someone to bring it a can, or (3) head back to its home base to recharge its battery.
When the energy level is high, recharging would always be foolish, so we do not include it
in the action set for this state. The action sets are then A(high) = {search, wait} and
A(low) = {search, wait, recharge}.
The rewards are zero most of the time, but become positive when the robot secures an
empty can, or large and negative if the battery runs all the way down. The best way to
find cans is to actively search for them, but this runs down the robot’s battery, whereas
waiting does not. Whenever the robot is searching, the possibility exists that its battery
will become depleted. In this case the robot must shut down and wait to be rescued
(producing a low reward). If the energy level is high, then a period of active search can
always be completed without risk of depleting the battery. A period of searching that
begins with a high energy level leaves the energy level high with probability ↵ and reduces
it to low with probability 1 � ↵. On the other hand, a period of searching undertaken
when the energy level is low leaves it low with probability � and depletes the battery
with probability 1 � �. In the latter case, the robot must be rescued, and the battery is
then recharged back to high. Each can collected by the robot counts as a unit reward,
whereas a reward of �3 results whenever the robot has to be rescued. Let rsearch and
rwait, with rsearch > rwait, respectively denote the expected number of cans the robot
will collect (and hence the expected reward) while searching and while waiting. Finally,
suppose that no cans can be collected during a run home for recharging, and that no cans
can be collected on a step in which the battery is depleted. This system is then a finite
MDP, and we can write down the transition probabilities and the expected rewards, with
dynamics as indicated in the table on the left:

s a s
0

p(s
0 |s, a) r(s, a, s

0
)

high search high ↵ rsearch

high search low 1 � ↵ rsearch

low search high 1 � � �3

low search low � rsearch

high wait high 1 rwait

high wait low 0 -

low wait high 0 -

low wait low 1 rwait

low recharge high 1 0

low recharge low 0 -

search

high low
1, 0

search

recharge

wait

wait

�, rsearch

↵, rsearch 1�↵, rsearch

1��, �3

1, rwait

1, rwait

Note that there is a row in the table for each possible combination of current state, s,
action, a 2 A(s), and next state, s

0. Some transitions have zero probability of occurring,
so no expected reward is specified for them. Shown on the right is another useful way of

(Image: Sutton & Barto, 2018)

Reward Hypothesis

Definition: Reward hypothesis

An agent's goals and purposes can be entirely represented as the maximization
of the expected value of the cumulative sum of a scalar signal.

Returns for Episodic Tasks

Answer: The return is a random variable. In an episodic task, we want to
maximize its expected value .

Gt
𝔼[Gt]

Question:
What does "maximize the expected value of the cumulative sum of rewards" mean?

Definition: A task is episodic if it ends after some finite number of time
steps in a special terminal state .

T
ST

Definition: The return after time is the sum of rewards received after
time : .

Gt t
t Gt ≐ Rt+1 + Rt+2 + Rt+3 + … + RT

Returns for Continuing Tasks
Definition: A task is continuing if it does not end (i.e.,).

• In a continuing task, we can't just maximize the sum of rewards (why?)

• Instead, we maximize the discounted return:

• Returns are recursively related to each other:

T = ∞

Gt ≐ Rt+1 + γRt+2 + γ2Rt+3 + …

=
∞

∑
k=0

γkRt+k+1

Gt ≐ Rt+1 + γRt+2 + γ2Rt+3 + …
= Rt+1 + γGt+1

 is the discount factorγ ≤ 1

Policies

• Markov assumption: The state incorporates all of the necessary
information about the history up until this point

• i.e., Probabilities of future rewards & transitions are the same from
state regardless of how you got there

• So the agent can choose its actions based only on

• This is called a (memoryless) policy: is
the probability of taking action given that the current state is

St

St

π(a ∣ s) ∈ [0,1]
a s

Question: How should an agent in a Markov decision process choose its actions?

State-Value Function
• Once you know the policy and the dynamics , you can compute the

probability of every possible state transition starting from any given state

• It is often valuable to know the expected return starting from a given state
 under a given policy (why?)

• The state-value function returns this quantity:

π p

s π

vπ

vπ(s) ≐ 𝔼π[Gt |St = s]

= 𝔼π [
∞

∑
k=0

γkRt+k+1 St = s]
∀t

Using State-Value Function
Question: Suppose state transitions are deterministic. Does it make sense to always
choose the action that leads to the next state with the highest ? s′ vπ(s)

vπ = 2

vπ = 5 X:5
L:1

R:1
X:2

Using State-Value Function

Not always; the reward for the transition itself is also important!

vπ = 2

vπ = 5 X:5
L:1

R:999 X:2

Question: Suppose state transitions are deterministic. Does it make sense to always
choose the action that leads to the next state with the highest ? s′ vπ(s)

Action-Value Function
The action-value function estimates the expected return starting
from state if we

1. Take action in state , and then

2. Follow policy for every state afterward

qπ(s, a) Gt
s

a St = s

π St+1

qπ(s, a) ≐ 𝔼π[Gt |St = s, At = a]

= 𝔼π [
∞

∑
k=0

γkRt+k+1 St = s, At = a]

Question: 
How is this any
different from the
state-value
function ?vπ(s)

Bellman Equations
Value functions satisfy a recursive consistency condition
called the Bellman equation:

vπ(s) ≐ 𝔼π[Gt |St = s]

= 𝔼π[Rt+1 + γGt+1 |St = s]

= 𝔼π[Rt+1 ∣ St = s] + γ𝔼π[Gt+1 ∣ St = s]

= ∑
a

∑
s′

∑
r

Pr[St+1 = s′ , Rt+1 = r, At = a ∣ St = s][r + γ𝔼π[Gt+1 |St+1 = s′]]

= ∑
a

∑
s′

∑
r

Pr[St+1 = s′ , Rt+1 = r ∣ St = s, At = a] Pr[At = a ∣ St = s][r + γ𝔼π[Gt+1 |St+1 = s′]]

= ∑
a

π(a |s)∑
s′

∑
r

p(s′ , r |s, a)[r + γ𝔼π[Gt+1 |St+1 = s′]]

= ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[r + γvπ(s′)]

Gt ≐ Rt+1 + γRt+2 + γ2Rt+3 + …
= Rt+1 + γ (Rt+2 + γRt+3 + …)
= Rt+1 + γGt+1

• is the unique solution to 's Bellman equation

• There is also a Bellman equation for 's action-value function

vπ π

π

𝔼[A + cB] = 𝔼[A] + c𝔼[B]

∎

Backup Diagrams
Backup diagrams help to visualize the flow of information back to a state
from its successor states or action-state pairs:

vπ(s) ≐ 𝔼π[Gt |St = s]

= ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[r + γvπ(s′)]

3.5. Policies and Value Functions 59

These kinds of methods are presented in Chapter 5. Of course, if there are very many
states, then it may not be practical to keep separate averages for each state individually.
Instead, the agent would have to maintain v⇡ and q⇡ as parameterized functions (with
fewer parameters than states) and adjust the parameters to better match the observed
returns. This can also produce accurate estimates, although much depends on the nature
of the parameterized function approximator. These possibilities are discussed in Part II
of the book.

A fundamental property of value functions used throughout reinforcement learning and
dynamic programming is that they satisfy recursive relationships similar to that which
we have already established for the return (3.9). For any policy ⇡ and any state s, the
following consistency condition holds between the value of s and the value of its possible
successor states:

v⇡(s)
.
= E⇡[Gt | St =s]

= E⇡[Rt+1 + �Gt+1 | St =s] (by (3.9))

=
X

a

⇡(a|s)
X

s0

X

r

p(s0, r |s, a)
h
r + �E⇡[Gt+1|St+1 =s0]

i

=
X

a

⇡(a|s)
X

s0,r

p(s0, r |s, a)
h
r + �v⇡(s0)

i
, for all s 2 S, (3.14)

where it is implicit that the actions, a, are taken from the set A(s), that the next states,
s0, are taken from the set S (or from S

+ in the case of an episodic problem), and that
the rewards, r, are taken from the set R. Note also how in the last equation we have
merged the two sums, one over all the values of s0 and the other over all the values of r,
into one sum over all the possible values of both. We use this kind of merged sum often
to simplify formulas. Note how the final expression can be read easily as an expected
value. It is really a sum over all values of the three variables, a, s0, and r. For each triple,
we compute its probability, ⇡(a|s)p(s0, r |s, a), weight the quantity in brackets by that
probability, then sum over all possibilities to get an expected value.

⇡

s

s0

⇡

rp

a

Backup diagram for v⇡

Equation (3.14) is the Bellman equation for v⇡. It expresses
a relationship between the value of a state and the values of
its successor states. Think of looking ahead from a state to its
possible successor states, as suggested by the diagram to the
right. Each open circle represents a state and each solid circle
represents a state–action pair. Starting from state s, the root
node at the top, the agent could take any of some set of actions—
three are shown in the diagram—based on its policy ⇡. From
each of these, the environment could respond with one of several next states, s0 (two are
shown in the figure), along with a reward, r, depending on its dynamics given by the
function p. The Bellman equation (3.14) averages over all the possibilities, weighting each
by its probability of occurring. It states that the value of the start state must equal the
(discounted) value of the expected next state, plus the reward expected along the way.

The value function v⇡ is the unique solution to its Bellman equation. We show in
subsequent chapters how this Bellman equation forms the basis of a number of ways to

(Image: Sutton & Barto, 2018)

GridWorld

• At each cell, can go north, south,
east, west

• Try to go off the edge: reward of -1

• Leaving state A: takes you to state Aʹ,
reward of +10

• Leaving state B: takes you to state Bʹ,
reward of +5

60 Chapter 3: Finite Markov Decision Processes

compute, approximate, and learn v⇡. We call diagrams like that above backup diagrams
because they diagram relationships that form the basis of the update or backup operations
that are at the heart of reinforcement learning methods. These operations transfer
value information back to a state (or a state–action pair) from its successor states (or
state–action pairs). We use backup diagrams throughout the book to provide graphical
summaries of the algorithms we discuss. (Note that, unlike transition graphs, the state
nodes of backup diagrams do not necessarily represent distinct states; for example, a
state might be its own successor.)

Example 3.5: Gridworld Figure 3.2 (left) shows a rectangular gridworld representation
of a simple finite MDP. The cells of the grid correspond to the states of the environment. At
each cell, four actions are possible: north, south, east, and west, which deterministically
cause the agent to move one cell in the respective direction on the grid. Actions that
would take the agent o↵ the grid leave its location unchanged, but also result in a reward
of �1. Other actions result in a reward of 0, except those that move the agent out of the
special states A and B. From state A, all four actions yield a reward of +10 and take the
agent to A0. From state B, all actions yield a reward of +5 and take the agent to B0.

3.7. VALUE FUNCTIONS 63

s,as

a

s'

r

a'

s'

r

(b)(a)

Figure 3.4: Backup diagrams for (a) v⇡ and (b) q⇡.

the states of the environment. At each cell, four actions are possible: north,
south, east, and west, which deterministically cause the agent to move one
cell in the respective direction on the grid. Actions that would take the agent
o� the grid leave its location unchanged, but also result in a reward of �1.
Other actions result in a reward of 0, except those that move the agent out
of the special states A and B. From state A, all four actions yield a reward of
+10 and take the agent to A�. From state B, all actions yield a reward of +5
and take the agent to B�.

Suppose the agent selects all four actions with equal probability in all
states. Figure 3.5b shows the value function, v⇡, for this policy, for the dis-
counted reward case with � = 0.9. This value function was computed by solv-
ing the system of equations (3.10). Notice the negative values near the lower
edge; these are the result of the high probability of hitting the edge of the grid
there under the random policy. State A is the best state to be in under this pol-
icy, but its expected return is less than 10, its immediate reward, because from
A the agent is taken to A�, from which it is likely to run into the edge of the
grid. State B, on the other hand, is valued more than 5, its immediate reward,
because from B the agent is taken to B�, which has a positive value. From B� the
expected penalty (negative reward) for possibly running into an edge is more

3.3 8.8 4.4 5.3 1.5

1.5 3.0 2.3 1.9 0.5

0.1 0.7 0.7 0.4 -0.4

-1.0 -0.4 -0.4 -0.6 -1.2

-1.9 -1.3 -1.2 -1.4 -2.0

A B

A'

B'+10

+5

Actions

(a) (b)

Figure 3.5: Grid example: (a) exceptional reward dynamics; (b) state-value
function for the equiprobable random policy.

Figure 3.2: Gridworld example: exceptional reward dynamics (left) and state-value function
for the equiprobable random policy (right).

Suppose the agent selects all four actions with equal probability in all states. Figure 3.2
(right) shows the value function, v⇡, for this policy, for the discounted reward case with
� = 0.9. This value function was computed by solving the system of linear equations
(3.14). Notice the negative values near the lower edge; these are the result of the high
probability of hitting the edge of the grid there under the random policy. State A is the
best state to be in under this policy, but its expected return is less than 10, its immediate
reward, because from A the agent is taken to A0, from which it is likely to run into the
edge of the grid. State B, on the other hand, is valued more than 5, its immediate reward,
because from B the agent is taken to B0, which has a positive value. From B0 the expected
penalty (negative reward) for possibly running into an edge is more than compensated
for by the expected gain for possibly stumbling onto A or B.

Exercise 3.14 The Bellman equation (3.14) must hold for each state for the value function
v⇡ shown in Figure 3.2 (right) of Example 3.5. Show numerically that this equation holds
for the center state, valued at +0.7, with respect to its four neighboring states, valued at
+2.3, +0.4, �0.4, and +0.7. (These numbers are accurate only to one decimal place.) ⇤
Exercise 3.15 In the gridworld example, rewards are positive for goals, negative for
running into the edge of the world, and zero the rest of the time. Are the signs of these

(Image: Sutton & Barto, 2018)

GridWorld

60 Chapter 3: Finite Markov Decision Processes

compute, approximate, and learn v⇡. We call diagrams like that above backup diagrams
because they diagram relationships that form the basis of the update or backup operations
that are at the heart of reinforcement learning methods. These operations transfer
value information back to a state (or a state–action pair) from its successor states (or
state–action pairs). We use backup diagrams throughout the book to provide graphical
summaries of the algorithms we discuss. (Note that, unlike transition graphs, the state
nodes of backup diagrams do not necessarily represent distinct states; for example, a
state might be its own successor.)

Example 3.5: Gridworld Figure 3.2 (left) shows a rectangular gridworld representation
of a simple finite MDP. The cells of the grid correspond to the states of the environment. At
each cell, four actions are possible: north, south, east, and west, which deterministically
cause the agent to move one cell in the respective direction on the grid. Actions that
would take the agent o↵ the grid leave its location unchanged, but also result in a reward
of �1. Other actions result in a reward of 0, except those that move the agent out of the
special states A and B. From state A, all four actions yield a reward of +10 and take the
agent to A0. From state B, all actions yield a reward of +5 and take the agent to B0.

3.7. VALUE FUNCTIONS 63

s,as

a

s'

r

a'

s'

r

(b)(a)

Figure 3.4: Backup diagrams for (a) v⇡ and (b) q⇡.

the states of the environment. At each cell, four actions are possible: north,
south, east, and west, which deterministically cause the agent to move one
cell in the respective direction on the grid. Actions that would take the agent
o� the grid leave its location unchanged, but also result in a reward of �1.
Other actions result in a reward of 0, except those that move the agent out
of the special states A and B. From state A, all four actions yield a reward of
+10 and take the agent to A�. From state B, all actions yield a reward of +5
and take the agent to B�.

Suppose the agent selects all four actions with equal probability in all
states. Figure 3.5b shows the value function, v⇡, for this policy, for the dis-
counted reward case with � = 0.9. This value function was computed by solv-
ing the system of equations (3.10). Notice the negative values near the lower
edge; these are the result of the high probability of hitting the edge of the grid
there under the random policy. State A is the best state to be in under this pol-
icy, but its expected return is less than 10, its immediate reward, because from
A the agent is taken to A�, from which it is likely to run into the edge of the
grid. State B, on the other hand, is valued more than 5, its immediate reward,
because from B the agent is taken to B�, which has a positive value. From B� the
expected penalty (negative reward) for possibly running into an edge is more

3.3 8.8 4.4 5.3 1.5

1.5 3.0 2.3 1.9 0.5

0.1 0.7 0.7 0.4 -0.4

-1.0 -0.4 -0.4 -0.6 -1.2

-1.9 -1.3 -1.2 -1.4 -2.0

A B

A'

B'+10

+5

Actions

(a) (b)

Figure 3.5: Grid example: (a) exceptional reward dynamics; (b) state-value
function for the equiprobable random policy.

Figure 3.2: Gridworld example: exceptional reward dynamics (left) and state-value function
for the equiprobable random policy (right).

Suppose the agent selects all four actions with equal probability in all states. Figure 3.2
(right) shows the value function, v⇡, for this policy, for the discounted reward case with
� = 0.9. This value function was computed by solving the system of linear equations
(3.14). Notice the negative values near the lower edge; these are the result of the high
probability of hitting the edge of the grid there under the random policy. State A is the
best state to be in under this policy, but its expected return is less than 10, its immediate
reward, because from A the agent is taken to A0, from which it is likely to run into the
edge of the grid. State B, on the other hand, is valued more than 5, its immediate reward,
because from B the agent is taken to B0, which has a positive value. From B0 the expected
penalty (negative reward) for possibly running into an edge is more than compensated
for by the expected gain for possibly stumbling onto A or B.

Exercise 3.14 The Bellman equation (3.14) must hold for each state for the value function
v⇡ shown in Figure 3.2 (right) of Example 3.5. Show numerically that this equation holds
for the center state, valued at +0.7, with respect to its four neighboring states, valued at
+2.3, +0.4, �0.4, and +0.7. (These numbers are accurate only to one decimal place.) ⇤
Exercise 3.15 In the gridworld example, rewards are positive for goals, negative for
running into the edge of the world, and zero the rest of the time. Are the signs of these

60 Chapter 3: Finite Markov Decision Processes

compute, approximate, and learn v⇡. We call diagrams like that above backup diagrams
because they diagram relationships that form the basis of the update or backup operations
that are at the heart of reinforcement learning methods. These operations transfer
value information back to a state (or a state–action pair) from its successor states (or
state–action pairs). We use backup diagrams throughout the book to provide graphical
summaries of the algorithms we discuss. (Note that, unlike transition graphs, the state
nodes of backup diagrams do not necessarily represent distinct states; for example, a
state might be its own successor.)

Example 3.5: Gridworld Figure 3.2 (left) shows a rectangular gridworld representation
of a simple finite MDP. The cells of the grid correspond to the states of the environment. At
each cell, four actions are possible: north, south, east, and west, which deterministically
cause the agent to move one cell in the respective direction on the grid. Actions that
would take the agent o↵ the grid leave its location unchanged, but also result in a reward
of �1. Other actions result in a reward of 0, except those that move the agent out of the
special states A and B. From state A, all four actions yield a reward of +10 and take the
agent to A0. From state B, all actions yield a reward of +5 and take the agent to B0.

3.7. VALUE FUNCTIONS 63

s,as

a

s'

r

a'

s'

r

(b)(a)

Figure 3.4: Backup diagrams for (a) v⇡ and (b) q⇡.

the states of the environment. At each cell, four actions are possible: north,
south, east, and west, which deterministically cause the agent to move one
cell in the respective direction on the grid. Actions that would take the agent
o� the grid leave its location unchanged, but also result in a reward of �1.
Other actions result in a reward of 0, except those that move the agent out
of the special states A and B. From state A, all four actions yield a reward of
+10 and take the agent to A�. From state B, all actions yield a reward of +5
and take the agent to B�.

Suppose the agent selects all four actions with equal probability in all
states. Figure 3.5b shows the value function, v⇡, for this policy, for the dis-
counted reward case with � = 0.9. This value function was computed by solv-
ing the system of equations (3.10). Notice the negative values near the lower
edge; these are the result of the high probability of hitting the edge of the grid
there under the random policy. State A is the best state to be in under this pol-
icy, but its expected return is less than 10, its immediate reward, because from
A the agent is taken to A�, from which it is likely to run into the edge of the
grid. State B, on the other hand, is valued more than 5, its immediate reward,
because from B the agent is taken to B�, which has a positive value. From B� the
expected penalty (negative reward) for possibly running into an edge is more

3.3 8.8 4.4 5.3 1.5

1.5 3.0 2.3 1.9 0.5

0.1 0.7 0.7 0.4 -0.4

-1.0 -0.4 -0.4 -0.6 -1.2

-1.9 -1.3 -1.2 -1.4 -2.0

A B

A'

B'+10

+5

Actions

(a) (b)

Figure 3.5: Grid example: (a) exceptional reward dynamics; (b) state-value
function for the equiprobable random policy.

Figure 3.2: Gridworld example: exceptional reward dynamics (left) and state-value function
for the equiprobable random policy (right).

Suppose the agent selects all four actions with equal probability in all states. Figure 3.2
(right) shows the value function, v⇡, for this policy, for the discounted reward case with
� = 0.9. This value function was computed by solving the system of linear equations
(3.14). Notice the negative values near the lower edge; these are the result of the high
probability of hitting the edge of the grid there under the random policy. State A is the
best state to be in under this policy, but its expected return is less than 10, its immediate
reward, because from A the agent is taken to A0, from which it is likely to run into the
edge of the grid. State B, on the other hand, is valued more than 5, its immediate reward,
because from B the agent is taken to B0, which has a positive value. From B0 the expected
penalty (negative reward) for possibly running into an edge is more than compensated
for by the expected gain for possibly stumbling onto A or B.

Exercise 3.14 The Bellman equation (3.14) must hold for each state for the value function
v⇡ shown in Figure 3.2 (right) of Example 3.5. Show numerically that this equation holds
for the center state, valued at +0.7, with respect to its four neighboring states, valued at
+2.3, +0.4, �0.4, and +0.7. (These numbers are accurate only to one decimal place.) ⇤
Exercise 3.15 In the gridworld example, rewards are positive for goals, negative for
running into the edge of the world, and zero the rest of the time. Are the signs of these

Reward dynamics
State-value function v𝜋 for random policy 

π(a | s) = 0.25
(Image: Sutton & Barto, 2018)

Summary
• Supervised learning models are trained offline using labelled training examples,

and then make predictions

• Reinforcement learning agents choose their actions online, and update their
behaviour based on rewards from the environment

• We can formally represent reinforcement learning environments using
Markov decision processes, for both episodic and continuing tasks

• Reinforcement learning agents maximize expected returns

• Policies map states to (distribution over) actions

• Given a policy , every state has an expected value

• State-value and action-value functions satisfy the Bellman equations

π s vπ(s)

