
Training Neural Networks

CMPUT 261: Introduction to Artificial Intelligence

GBC §6.5

Lecture Outline
1. Recap & Logistics

2. Gradient Descent for Neural Networks

3. Automatic Differentiation

4. Back-Propagation

After this lecture, you should be able to:
• trace an execution of forward-mode automatic differentiation
• trace an execution of backward-mode automatic differentiation
• construct a finite numerical algorithm for a given computation
• explain why automatic differentiation is more efficient than the method of finite differences
• explain why automatic differentiation is more efficient than symbolic differentiation
• explain why backward mode automatic differentiation is more efficient for typical deep

learning applications

Logisitics

• Assignment #3 was released last week

• Due Thursday, March 23

• Submit via eClass

• Midterm marks are available on eclass

• Cc all of the TAs if you have questions about the marking

Recap: Nonlinear Features

Generalized linear model: Activation function of linear combination of inputs

Extension: Learn a generalized linear model on richer inputs

1. Define a feature mapping 𝜙(x) that returns functions of the original inputs

2. Learn a linear model of the features instead of the inputs

g

y = f(x; w) = g(wTx) = g (
n

∑
i=1

wixi)

y = f(x; w) = g(wTϕ(x)) = g (
n

∑
i=1

wi[ϕ(x)]i)

Recap:
Feedforward Neural Network

• A neural network is many units
composed together

• Feedforward neural network:
Units arranged into layers

• Each layer takes outputs of
previous layer as its inputs

h1

h2

y
x2

x1

h1(x; w(1), b(1)) = g (b(1) +
n

∑
i=1

w(1)
i xi)

y(x; w, b) = g (b(y) +
n

∑
i=1

w(y)
i hi(xi; w(i), b(i)))

Recap: Chain Rule of Calculus

i.e,

if and

If we know formulas for the derivatives of components of a function, then we can
build up the derivative of their composition mechanically

dz
dx

=
dz
dy

dy
dx

z = h(x) = f(g(x)) y = g(x)

h(x) = f(g(x)) ⟹ h′ (x) = f′ (g(x))g′ (x)

Chain Rule of Calculus:
Multiple Intermediate Arguments

What if ?

i.e.,

h(x) = f(g1(x), g2(x))

dh
dx

=
∂f

∂g1

dg1

dx
+

∂f
∂g2

dg2

dx

h′ (x) = g′ 1(x)
∂f(t1, t2)

∂t1 t1 = g1(x)
t2 = g2(x)

+ g′ 2(x)
∂f(t1, t2)

∂t2 t1 = g1(x)
t2 = g2(x)

Recap: Training Neural Networks
• Specify a loss and a set of training examples:

• Training by gradient descent:

1. Compute loss on training data:

2. Compute gradient of loss:

3. Update parameters to make loss smaller:

L

E = (x(1), y(1)), . . . , (x(n), y(n))

L(W, b) = ∑
i

ℓ (f(x(i); W, b), y(i))

∇L(W, b)

[Wnew

bnew] = [Wold

bold] − η∇L(Wold, bold)

Prediction Target

Loss function 
(e.g., squared error)

Three Representations
1. As a formula:

2. As a computational graph:

f(x, y) = (xy + sin x + 4)(3y2 + 6)

example from [Bücker et al., 2006]

×

×

×

+

+
+

y

x

sqr

sin 4

3

6

f(x, y)

A function can be represented in multiple ways:f(x, y)

3. As a finite numerical algorithm

s1 = x
s2 = y
s3 = s1 × s2

s4 = sin(s1)
s5 = s3 + s4

s6 = s5 + 4
s7 = sqr(s2)
s8 = 3 × s7

s9 = s8 + 6
s10 = s6 × s9

Symbolic Differentiation

• We can differentiate a nested formula by recursively applying the chain rule
to derive a new formula for the gradient

• Problem: This can result in a lot of repeated subexpressions

• Question: What happens if the nested function is defined piecewise?

z = f(y)
y = f(x)
x = f(w)

z = f(f(f(w)))
∂z
∂w

=
∂z
∂y

∂y
∂x

∂x
∂w

= f′ (f(f(w)))f′ (f(w))f′ (w)

f(w) = {w if w > 0
0 otherwise.

Automatic Differentiation:
Forward Mode

• The forward mode converts a finite numerical algorithm for computing a function into an
augmented finite numerical algorithm for computing the function's derivative

• For each step, a new step is constructed representing the derivative of the corresponding
step in the original program:

• To compute the partial derivative , set and and run augmented algorithm

• This takes roughly twice as long to run as the original algorithm (why?)

s1 = x
s2 = y
s3 = s1 + s2
s4 = s1 × s2

⋮

⟹
s′ 1 = 1
s′ 2 = 0
s′ 3 = s′ 1 + s′ 2

s′ 4 = s1 × s′ 2 + s′ 1 × s2
⋮

∂sn

∂s1
s′ 1 = 1 s′ 2 = 0

Forward Mode Example

s′ 1 = 0
s′ 2 = 1
s′ 3 = s1 × s′ 2 + s′ 1 × s2 = 2
s′ 4 = cos(s1) × s′ 1 = 0
s′ 5 = s′ 3 + s′ 4 = 2
s′ 6 = s′ 5 = 2
s′ 7 = s′ 2 × 2 × s2 = 16
s′ 8 = 3 × s′ 7 = 48
s′ 9 = s′ 8 = 48
s′ 10 = s6 × s′ 9 + s′ 6 × s9 = 1357.632

×

×

×

+

+
+

y

x

sqr

sin 4

3

6

f(x, y)

s1 = x = 2
s2 = y = 8
s3 = s1 × s2 = 16
s4 = sin(s1) ≈ 0.034
s5 = s3 + s4 = 16.034
s6 = s5 + 4 = 20.034
s7 = sqr(s2) = 64
s8 = 3 × s7 = 192
s9 = s8 + 6 = 198

s10 = s6 × s9 = 3966.732

Let's compute using forward mode:
∂f
∂y

x=2,y=8

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

Question: What is the
problem with this approach
for neural networks?

Forward Mode Performance

• To compute the full gradient of a function of inputs requires computing
 partial derivatives

• In forward mode, this requires forward passes

• For our toy examples, that means running the forward pass twice

• Neural networks can easily have thousands of parameters

• We don't want to run the network thousands of times for each gradient
update!

m
m

m

Automatic Differentiation:
Backward Mode

• Forward mode sweeps through the graph:

• For each , computes for each

• The numerator varies, and the denominator is fixed
• Backward mode does the opposite:

• For each , computes the local gradient

• The numerator is fixed, and the denominator varies

• At the end, we have computed for each input

si s′ i =
∂si

∂s1
si

si si =
∂sn

∂si

xi =
∂sn

∂xi
xi

s1 = x
s2 = y
s3 = s1 × s2

s4 = sin(s1)
s5 = s3 + s4

s6 = s5 + 4
s7 = sqr(s2)
s8 = 3 × s7

s9 = s8 + 6
s10 = s6 × s9

} }∂s3

∂s1
∂s4

∂s1

{{∂s10

∂s8

∂s10

∂s7

Automatic Differentiation:
Local Derivatives

The augmented algorithm computes local derivatives in reverse order:

s10 =
∂s10

∂s10
= 1

s9 =
∂s10

∂s9
= s10s6

s8 =
∂s10

∂s8
=

∂s10

∂s9

∂s9

∂s8
= s91

s7 =
∂s10

∂s7
=

∂s10

∂s8

∂s8

∂s7
= s83

s6 =
∂s10

∂s6
= s9

⋮

s1 = x
s2 = y
s3 = s1 × s2

s4 = sin(s1)
s5 = s3 + s4

s6 = s5 + 4
s7 = sqr(s2)
s8 = 3 × s7

s9 = s8 + 6
s10 = s6 × s9

∂ final output
∂ immediate output

∂ immediate output
∂ self

×

×

×

+

+
+

y

x

sqr

sin 4

3

6

f(x, y)

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

Automatic Differentiation:
Local Derivatives (2)

s1 = x
s2 = y
s3 = s1 × s2

s4 = sin(s1)
s5 = s3 + s4

s6 = s5 + 4
s7 = sqr(s2)
s8 = 3 × s7

s9 = s8 + 6
s10 = s6 × s9

s6 =
∂s10

∂s6
= s9

s5 =
∂s10

∂s5
=

∂s10

∂s6

∂s6

∂s5
= s61

s4 =
∂s10

∂s4
=

∂s10

∂s5

∂s5

∂s4
= s51

s3 =
∂s10

∂s3
=

∂s10

∂s5

∂s5

∂s3
= s51

s2 =
∂s10

∂s2
=

∂s10

∂s3

∂s3

∂s2
+

∂s10

∂s7

∂s7

∂s2
= s3s1 + s72s2

s1 =
∂s10

∂s1
=

∂s10

∂s3

∂s3

∂s1
+

∂s10

∂s4

∂s4

∂s1
= s3s2 + s4 cos s1

One term for each immediate output

×

×

×

+

+
+

y

x

sqr

sin 4

3

6

f(x, y)

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

Backward Mode Example

×

×

×

+

+
+

y

x

sqr

sin 4

3

6

f(x, y)

s1 = x = 2
s2 = y = 8
s3 = s1 × s2 = 16
s4 = sin(s1) ≈ 0.034
s5 = s3 + s4 = 16.034
s6 = s5 + 4 = 20.034
s7 = sqr(s2) = 64
s8 = 3 × s7 = 192
s9 = s8 + 6 = 198

s10 = s6 × s9 = 3966.732

Let's compute and using backward mode:
∂f
∂x

x=2,y=8

∂f
∂y

x=2,y=8

s10 = 1
s9 = s10s6 = 20.034

s8 = s91 = 20.034
s7 = s83 = 60.102

s6 = s9 = 198
s6 = s9 = 198

s5 = s61 = 198

s4 =
∂s10

∂s4
=

∂s10

∂s5

∂s5

∂s4
= s51 = 198

s3 =
∂s10

∂s3
=

∂s10

∂s5

∂s5

∂s3
= s51 = 198

s2 = s3s1 + s72s2 ≃ 1357.632
s1 = s3s2 + s4 cos s1 ≃ 1781.9

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

Back-Propagation

Back-propagation is simply automatic differentiation in backward mode, used to
compute the gradient of the loss function with respect to its parameters :

1. At each layer, compute the local gradients of the layer's computations

2. These local gradients will be used as inputs to the next layer's local gradient
computations

3. At the end, we have a partial derivative for each of the parameters, which we can
use to take a gradient step

L(W, b) = ∑
i

ℓ (f(x(i); W, b), y(i))

∇W,bL W, b

Summary
• The loss function of a deep feedforward networks is simply a very nested

function of the parameters of the model

• Automatic differentiation can compute these gradients more efficiently
than symbolic differentiation or finite-differences numeric computations

• Symbolic differentiation is interleaved with numeric computation

• In forward mode, m sweeps are required for a function of m parameters

• In backward mode, only a single sweep is required

• Back-propagation is simply automatic differentiation applied to neural
networks in backward mode

