Calculus Refresher

CMPUT 261: Introduction to Artificial Intelligence

GBC §4.1, 4.3

Lecture Outline

- Recap
- 2. Gradient-based Optimization & Gradients
- 3. Numerical Issues

After this lecture, you should be able to:

-
-
-
-

• Apply the chain rule of calculus to functions of one or multiple arguments • Explain the advantages and disadvantages of the method of differences • Describe the numerical problems with softmax and how to solve them • Explain why log probabilities are more numerically stable than probabilities

Loss Minimization

Example: Predict the temperature

- *Dataset:* temperatures $y^{(l)}$ from a random sample of days *y*(*i*)
- *• Hypothesis class:* Always predict the *same value μ*
- *• Loss function:*

 $L(\mu) =$ 1 *n*

In supervised learning, we choose a hypothesis to minimize a loss function

Optimization

Optimization: finding a value of x that **minimizes** $f(x)$

• Temperature example: Find μ that makes $L(\mu)$ small

 m akes $f(x)$ smaller

- For **discrete** domains, this is just **hill climbing**: Iteratively choose the neighbour that has minimum *f*(*x*)
- For **continuous** domains, neighbourhood is less well-defined
-
- $x^* = \arg \min f(x)$ *x*

Gradient descent: Iteratively move from current estimate in the direction that

- The derivative $f'(x) =$ of a function $f(x)$ is the **slope** of f at point *x d dx f*(*x*)
- When $f'(x) > 0$, *f* increases with small enough increases in *x*
- When $f'(x) < 0$, f decreases with small enough increases in *x*

Multiple Inputs

Example:

Predict the temperature **based on** pressure and humidity

- *Hypothesis class:* Linear regression: $h(\mathbf{x}; \mathbf{w}) = w_0 + w_1 x_1 + w_2 x_2$
- *• Loss function:*

•
$$
\left(x_1^{(1)}, x_2^{(1)}, y^{(1)}\right), \dots, \left(x_1^{(m)}, x_2^{(m)}, y^{(m)}\right) = \left\{(\mathbf{x}^{(i)}, y^{(i)}) \mid 1 \le i \le m\right\}
$$

$$
L(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - h(\mathbf{x}^{(i)}; \mathbf{w}))^{2}
$$

Partial Derivatives

Partial derivatives: How much does $f(\mathbf{x})$ change when we **only change one** of its inputs x_i ?

• Can think of this as the derivative of a **conditional** function $g(x_i) = f(x_1, ..., x_i, ..., x_n)$:

. $f(\mathbf{x}) =$ *d* $d x_i$ $g(x_i)$

Gradient

• The gradient of a function $f(\mathbf{x})$ is just a vector that contains all of its partial derivatives:

Gradient Descent

- The gradient of a function tells how to change every element of a vector to increase the function
	- If the partial derivative of x_i is positive, increase x_i

- This only works for sufficiently small changes (**why?**)
- **Question:** How much should we change \mathbf{x}^{old} ?

 $\mathbf{x}^{new} = \mathbf{x}^{old} - \eta \sum f(\mathbf{x}^{old})$. **learning rate**

• **Gradient descent:**

Iteratively choose new values of x in the (opposite) direction of the gradient:

Where Do Gradients Come From?

- Analytic expressions / direct derivation
- 2. Method of differences
- 3. The Chain Rule (of Calculus)

Question: How do we compute the gradients we need for gradient descent?

Analytic Expressions: 1D Derivatives

$$
(y(i) - \mu)^2
$$

$$
\left[y(i)^2 - 2y(i)\mu + \mu^2\right]
$$

d dμ $L(\mu) =$ 1 *n*

$$
\frac{1}{i} \sum_{i=1}^{n} \left[-2y(i) + 2\mu \right]
$$

Analytic Expressions: Multiple Arguments

To analytically find the gradient of a multi-input function, find the partial derivative for each of the inputs (and then collect in a vector).

$$
L(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - \mathbf{w}^T \mathbf{x}^{(i)})^2
$$

=
$$
\frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - w_1 x_1^{(i)} - w_2 x_2^{(i)})
$$

=
$$
\frac{1}{n} \sum_{i=1}^{n} w_1^2 x_1^{(i)2} + 2w_1 w_2 x_1^{(i)} x_2^{(i)}
$$

2

 $x_1^{(i)}x_2^{(i)} - 2w_1x_1^{(i)}y + w_2^2x_2^{(i)2} - 2w_2x_2^{(i)}y + y^2$

Analytic Expressions: Multiple Arguments

To analytically find the gradient of a multi-input function, find the partial derivative for each of the inputs (and then collect in a vector).

$$
L(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} w_1^2 x_1^{(i)2} + 2w_1 w_2 x_1^{(i)} x_2^{(i)} - 2w_1 x_1^{(i)} y + w_2^2 x_2^{(i)2} - 2w_2 x_2^{(i)} y + y^2
$$

$$
2w_2x_1^{(i)}x_2^{(i)} - 2x_1^{(i)}y
$$

$$
\frac{\partial}{\partial w_2} L(w_1, w_2) = \frac{1}{n} \sum_{i=1}^n 2w_2 x_2^{(i)2} - 2w_1 x_1^{(i)} x_2^{(i)} + 2x_2^{(i)} y
$$

Analytic Expressions: Multiple Arguments

To analytically find the gradient of a multi-input function, find the partial derivative for each of the inputs (and then collect in a vector).

$$
\nabla L(w_1, w_2) = \begin{bmatrix} \frac{\partial L}{\partial w_1} \\ \frac{\partial L}{\partial w_2} \end{bmatrix} = \begin{bmatrix} \frac{1}{n} \sum_{i=1}^n 2w_1 x_1^{(i)2} + 2w_2 x_1^{(i)} x_2^{(i)} - 2x_1^{(i)} y \\ \frac{1}{n} \sum_{i=1}^n 2w_2 x_2^{(i)2} - 2w_1 x_1^{(i)} x_2^{(i)} + 2x_2^{(i)} y \end{bmatrix}
$$

Method of Differences

 ∂ ∂w_i

(for "sufficiently" tiny ϵ)

Question: Why would we ever do this?

Question: What are the drawbacks?

Chain Rule (of Calculus): 1D Derivatives

i.e.,
$$
h(x) = f(g(x)) \implies h'(x) = f'(g(x))g'(x)
$$

dz dx

- If we know formulas for the derivatives of **components** of a function, then we can build up the derivative of their composition mechanically
- Most prominent example: **Back-propagation** in neural networks

= *dz dy dy dx*

Chain Rule (of Calculus): Multiple Intermediate Arguments

What if $h(x) = f(g_1(x), g_2(x))$?

dh dx = ∂*f* ∂*g*¹

Question: Why do we add the partials via the two arguments?

$$
\frac{dg_1}{dx} + \frac{\partial f}{\partial g_2} \frac{dg_2}{dx}
$$

Chain Rule (of Calculus): Multiple Arguments

For multiple outputs, things look more complicated, but it's the same idea:

$$
h(w_1, w_2) = f(g_1(w_1, w_2), g_2(w_1, w_2))
$$

\n
$$
\nabla h(w_1, w_2) = \begin{bmatrix} | & | & | \\ \nabla_{\mathbf{w}} g_1(w_1, w_2) & \nabla_{\mathbf{w}} g_2(w_1, w_2) \\ | & | & | \end{bmatrix} \nabla_{g(\mathbf{w})} f(g_1(w_1, w_2), g_2(w_1, w_2))
$$

\n
$$
= \begin{bmatrix} \frac{\partial g_1(w_1, w_2)}{\partial w_1} & \frac{\partial g_2(w_1, w_2)}{\partial w_1} \\ \frac{\partial g_1(w_1, w_2)}{\partial w_2} & \frac{\partial g_2(w_1, w_2)}{\partial w_2} \end{bmatrix} \begin{bmatrix} \frac{\partial f(g_1(w_1, w_2), g_2(w_1, w_2))}{\partial g_1(w_1)} \\ \frac{\partial f(g_1(w_1, w_2), g_2(w_1, w_2))}{\partial g_2(w_2)} \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} \frac{\partial f(g_1(w_1, w_2), g_2(w_1, w_2))}{\partial g_1(w_1)} & \frac{\partial g_1(w_1, w_2)}{\partial w_1} + \frac{\partial f(g_1(w_1, w_2), g_2(w_1, w_2))}{\partial g_2(w_2)} & \frac{\partial g_2(w_1, w_2)}{\partial w_1} \\ \frac{\partial f(g_1(w_1, w_2), g_2(w_1, w_2))}{\partial g_1(w_1)} & \frac{\partial g_1(w_1, w_2)}{\partial w_2} + \frac{\partial f(g_1(w_1, w_2), g_2(w_1, w_2))}{\partial g_2(w_2)} & \frac{\partial g_2(w_1, w_2)}{\partial w_2} \end{bmatrix}
$$

Approximating Real Numbers

- Computers store real numbers as **finite number** of bits
- **Problem:** There are an infinite number of real numbers in any interval
- Real numbers are encoded as **floating point numbers**:
	- $1.001...011011 \times 2^{1001...0011}$ *significand exponent*
	- *Single precision:* 24 bits significand, 8 bits exponent
	- *Double precision:* 53 bits significand, 11 bits exponent
- Deep learning typically uses single precision!

Underflow

 $1.001...011010 \times 2$ 1001…0011 *exponent*

- down to zero
	- rounded up to zero
- Sometimes that's okay! (Almost every number gets rounded)
- Often it's not (**when?**)
	- Denominators: causes divide-by-zero
	- log: returns -inf
	- log(negative): returns nan

significand

• Positive numbers that are smaller than $1.00...01 \times 2^{-1111...1111}$ will be rounded

• Negative numbers that are bigger than $-1.00...01 \times 2^{-1111...1111}$ will be

Overflow

-
- Numbers smaller than $-1.111...1111 \times 2^{1111}$ will be rounded down to negative infinity
- exp is used very frequently
	- Underflows for very negative inputs
	- Overflows for "large" positive inputs
	- 89 counts as "large"

$1.001...011010 \times 2$ 1001…0011 *exponent*

significand

• Numbers bigger than 1.111...1111 \times 2¹¹¹¹ will be rounded up to **infinity**

Addition/Subtraction 1. 001…011010 *significand* $\times 2$

• Adding a small number to a large number can have no effect (**why**?)

Example:

 $>> A+1$ array([1., 1.], dtype=float32)

 $>> A = np.array([0., 1e-8])$ >>> A = np.array([0., 1e-8]).astype('float32') >>> A.argmax() 1 \gg (A + 1).argmax() 0 1e-8 is not the smallest possible float32

 $2^{-24} \approx 5.9 \times 10^{-8}$

$exp(x_i)$ $\sum_{i=1}^n$ $\sum_{j=1}^{n} \exp(x_j)$

Softmax $softmax(\mathbf{x})_i =$

- Softmax is a very common function
- distribution
	- Question: Why not normalize them directly without \exp ?
- But exp overflows very quickly:

Solution:
$$
softmax(\mathbf{z})
$$
 where $\mathbf{z} = \mathbf{x} - \max_j x_j$

• Used to convert a vector of activations (i.e., numbers) into a **probability**

j

Log

 $log(p_1p_2p_3...p_n) = log p_1 + ... + log p_n$

• Dataset likelihoods shrink exponentially quickly in the number of datapoints

• **Example:**

- Likelihood of a sequence of 5 fair coin tosses = $2^{-5} = 1/32$
- Likelihood of a sequence of 100 fair coin tosses = 2^{-100}
- **Solution:** Use log-probabilities instead of probabilities

• log-prob of 1000 fair coin tosses is $1000\log{0.5}\approx-693$

General Solution

• **Question:** What is the most general solution to numerical problems?

• Standard libraries

• PyTorch, Theano, Tensorflow, etc. detect common unstable expressions • scipy, numpy have stable implementations of many common patterns

-
- (e.g., softmax, logsumexp, sigmoid)

Summary

- Gradients are just vectors of partial derivatives
	- Gradients point "uphill"
- **Chain Rule of Calculus** lets us compute derivatives of function compositions using derivatives of simpler functions
- Learning rate controls how fast we walk uphill
- Deep learning is fraught with **numerical** issues:
	- Underflow, overflow, magnitude mismatches
	- Use standard implementations whenever possible