
Calculus Refresher

CMPUT 261: Introduction to Artificial Intelligence

GBC §4.1, 4.3

Lecture Outline
1. Recap

2. Gradient-based Optimization & Gradients

3. Numerical Issues

After this lecture, you should be able to:
• Apply the chain rule of calculus to functions of one or multiple arguments
• Explain the advantages and disadvantages of the method of differences
• Describe the numerical problems with softmax and how to solve them
• Explain why log probabilities are more numerically stable than probabilities

Loss Minimization
In supervised learning, we choose a hypothesis to minimize a loss function

Example: Predict the temperature

• Dataset: temperatures from a random sample of days

• Hypothesis class: Always predict the same value

• Loss function:

y(i)

μ

L(μ) =
1
n

n

∑
i=1

(y(i) − μ)2

Optimization
Optimization: finding a value of that minimizes

• Temperature example: Find that makes small

Gradient descent: Iteratively move from current estimate in the direction that
makes smaller

• For discrete domains, this is just hill climbing:
Iteratively choose the neighbour that has minimum

• For continuous domains, neighbourhood is less well-defined

x f(x)

x* = arg min
x

f(x)

μ L(μ)

f(x)

f(x)

Derivatives

• The derivative

of a function is the slope of
at point

• When , increases with
small enough increases in x

• When , decreases
with small enough increases in x

f′ (x) =
d
dx

f(x)

f(x) f
x

f′ (x) > 0 f

f′ (x) < 0 f

-4

-3

-2

-1

0

1

2

3

4

𝜇

a-2.0
a-1.8
a-1.5
a-1.3
a-1.0
a-0.8
a-0.6
a-0.3
a-0.1
a+0.2
a+0.4
a+0.6
a+0.9
a+1.1
a+1.4
a+1.6
a+1.8

L(𝜇) L'(𝜇)

Multiple Inputs
Example:
Predict the temperature based on pressure and humidity

• Dataset:

• Hypothesis class: Linear regression:

• Loss function:

(x(1)
1 , x(1)

2 , y(1)), …, (x(m)
1 , x(m)

2 , y(m)) = {(x(i), y(i)) ∣ 1 ≤ i ≤ m}
h(x; w) = w0 + w1x1 + w2x2

L(w) =
1
n

n

∑
i=1

(y(i) − h(x(i); w))2

Partial Derivatives

Partial derivatives: How much does change when we only change one
of its inputs ?

• Can think of this as the derivative of a conditional function
:

.

f(x)
xi

g(xi) = f(x1, …, xi, …, xn)

∂
∂xi

f(x) =
d

dxi
g(xi)

Gradient

• The gradient of a function is just a vector that contains all of its
partial derivatives:

f(x)

∇f(x) =

∂
∂x1

f(x)

⋮
∂

∂xn
f(x)

Gradient Descent

• The gradient of a function tells how to change every element of a vector to
increase the function

• If the partial derivative of is positive, increase

• Gradient descent:
Iteratively choose new values of x in the (opposite) direction of the gradient:

 .

• This only works for sufficiently small changes (why?)

• Question: How much should we change ?

xi xi

xnew = xold − η∇f(xold)

xold learning rate

Where Do Gradients Come From?

1. Analytic expressions / direct derivation

2. Method of differences

3. The Chain Rule (of Calculus)

Question: How do we compute the gradients we need for gradient descent?

Analytic Expressions:
1D Derivatives

L(μ) =
1
n

n

∑
i=1

(y(i) − μ)2

=
1
n

n

∑
i=1

[y(i)2 − 2y(i)μ + μ2]
d

dμ
L(μ) =

1
n

n

∑
i=1

[−2y(i) + 2μ]

Analytic Expressions:
Multiple Arguments

To analytically find the gradient of a multi-input function, find the
partial derivative for each of the inputs (and then collect in a vector).

L(w) =
1
n

n

∑
i=1

(y(i) − w⊤x(i))2

=
1
n

n

∑
i=1

(y(i) − w1x(i)
1 − w2x(i)

2)
2

=
1
n

n

∑
i=1

w2
1 x(i)2

1 + 2w1w2x(i)
1 x(i)

2 − 2w1x(i)
1 y + w2

2 x(i)2
2 − 2w2x(i)

2 y + y2

Analytic Expressions:
Multiple Arguments

To analytically find the gradient of a multi-input function, find the
partial derivative for each of the inputs (and then collect in a vector).

L(w) =
1
n

n

∑
i=1

w2
1 x(i)2

1 + 2w1w2x(i)
1 x(i)

2 − 2w1x(i)
1 y + w2

2 x(i)2
2 − 2w2x(i)

2 y + y2

∂
∂w1

L(w1, w2) =
1
n

n

∑
i=1

2w1x(i)2
1 + 2w2x(i)

1 x(i)
2 − 2x(i)

1 y

∂
∂w2

L(w1, w2) =
1
n

n

∑
i=1

2w2x(i)2
2 − 2w1x(i)

1 x(i)
2 + 2x(i)

2 y

Analytic Expressions:
Multiple Arguments

To analytically find the gradient of a multi-input function, find the
partial derivative for each of the inputs (and then collect in a vector).

∇L(w1, w2) =
∂L
∂w1

∂L
∂w2

=
1
n ∑n

i=1 2w1x(i)2
1 + 2w2x(i)

1 x(i)
2 − 2x(i)

1 y
1
n ∑n

i=1 2w2x(i)2
2 − 2w1x(i)

1 x(i)
2 + 2x(i)

2 y

Method of Differences

(for "sufficiently" tiny)

Question: Why would we ever do this?

Question: What are the drawbacks?

∂
∂wi

L(w) ≈ L(w + ϵei) − L(w)

ϵ

Vector of 0's with a 1 in -th position

e.g.,

i

e1 =

1
0
⋮
0

Chain Rule (of Calculus):
1D Derivatives

i.e.,

• If we know formulas for the derivatives of components of a function, then
we can build up the derivative of their composition mechanically

• Most prominent example: Back-propagation in neural networks

dz
dx

=
dz
dy

dy
dx

h(x) = f(g(x)) ⟹ h′ (x) = f′ (g(x))g′ (x)

Chain Rule (of Calculus):
Multiple Intermediate Arguments

What if ?

Question: Why do we add the partials via the two arguments?

h(x) = f(g1(x), g2(x))

dh
dx

=
∂f

∂g1

dg1

dx
+

∂f
∂g2

dg2

dx

Chain Rule (of Calculus):
Multiple Arguments

For multiple outputs, things look more complicated, but it's the same idea:

h(w1, w2) = f(g1(w1, w2), g2(w1, w2))

∇h(w1, w2) =
| |

∇wg1(w1, w2) ∇wg2(w1, w2)
| |

∇g(w) f(g1(w1, w2), g2(w1, w2))

=

∂g1(w1, w2)
∂w1

∂g2(w1, w2)
∂w1

∂g1(w1, w2)
∂w2

∂g2(w1, w2)
∂w2

∂f(g1(w1, w2), g2(w1, w2))
∂g1(w1)

∂f(g1(w1, w2), g2(w1, w2))
∂g2(w2)

=

∂f(g1(w1, w2), g2(w1, w2))
∂g1(w1)

∂g1(w1, w2)
∂w1

+
∂f(g1(w1, w2), g2(w1, w2))

∂g2(w2)
∂g2(w1, w2)

∂w1

∂f(g1(w1, w2), g2(w1, w2))
∂g1(w1)

∂g1(w1, w2)
∂w2

+
∂f(g1(w1, w2), g2(w1, w2))

∂g2(w2)
∂g2(w1, w2)

∂w2

Approximating Real Numbers
• Computers store real numbers as finite number of bits

• Problem: There are an infinite number of real numbers in any interval

• Real numbers are encoded as floating point numbers:

• 1.001...011011 × 21001..0011

• Single precision: 24 bits significand, 8 bits exponent

• Double precision: 53 bits significand, 11 bits exponent

• Deep learning typically uses single precision!

significand exponent

Underflow
• Positive numbers that are smaller than 1.00...01 × 2-1111...1111 will be rounded

down to zero

• Negative numbers that are bigger than -1.00...01 × 2-1111...1111 will be
rounded up to zero

• Sometimes that's okay! (Almost every number gets rounded)

• Often it's not (when?)

• Denominators: causes divide-by-zero

• log: returns -inf

• log(negative): returns nan

1. 001…011010
significand

× 2
1001…0011

exponent

Overflow

• Numbers bigger than 1.111...1111 × 21111 will be rounded up to infinity

• Numbers smaller than -1.111...1111 × 21111 will be rounded down to
negative infinity

• exp is used very frequently

• Underflows for very negative inputs

• Overflows for "large" positive inputs

• 89 counts as "large"

1. 001…011010
significand

× 2
1001…0011

exponent

Addition/Subtraction
• Adding a small number to a large number can have no effect (why?)

Example:
>>> A = np.array([0., 1e-8])
>>> A = np.array([0., 1e-8]).astype('float32')
>>> A.argmax()
1
>>> (A + 1).argmax()
0

>>> A+1
array([1., 1.], dtype=float32)

1. 001…011010
significand

× 2
1001…0011

exponent

1e-8 is not the 
smallest possible 

float32

1.0
…

00
× 20

1.0
…

01
× 20

1.0
…

10
× 20

1.0
…

11
× 20

…

⏟
∼6e−8

2−24 ≈ 5.9 × 10−8

Softmax

• Softmax is a very common function

• Used to convert a vector of activations (i.e., numbers) into a probability
distribution

• Question: Why not normalize them directly without ?

• But overflows very quickly:

• Solution: where

exp

exp

softmax(z) z = x − max
j

xj

softmax(x)i =
exp(xi)

∑n
j=1 exp(xj)

Log
• Dataset likelihoods shrink exponentially quickly in the number of datapoints

• Example:

• Likelihood of a sequence of 5 fair coin tosses =

• Likelihood of a sequence of 100 fair coin tosses =

• Solution: Use log-probabilities instead of probabilities

• log-prob of 1000 fair coin tosses is

2−5 = 1/32

2−100

log(p1p2p3…pn) = log p1 + … + log pn

1000 log 0.5 ≈ − 693

General Solution

• Question:
What is the most general solution to numerical problems?

• Standard libraries
• PyTorch, Theano, Tensorflow, etc. detect common unstable expressions

• scipy, numpy have stable implementations of many common patterns
(e.g., softmax, logsumexp, sigmoid)

Summary
• Gradients are just vectors of partial derivatives

• Gradients point "uphill"

• Chain Rule of Calculus lets us compute derivatives of
function compositions using derivatives of simpler
functions

• Learning rate controls how fast we walk uphill

• Deep learning is fraught with numerical issues:

• Underflow, overflow, magnitude mismatches

• Use standard implementations whenever possible

