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Logistics

• Assignment #2 grades and feedback are available on eclass 

• Midterm is Thursday, March 2 

• Coverage: Everything up to and including today (Bayesian Inference) 

• Logistics details on eclass



Recap: Linear Models

• Linear regression is a simple model for predicting real quantities 

• Can be used for classification too, either based on sign of prediction or 
using logistic regression 

• Gradient descent is a general, widely-used training procedure (with several 
variants) 

• Linear models can be optimized in closed form for certain losses 

• In practice often optimized with gradient descent 



Recap: Overfitting
• Overfitting is when a learned model fails to generalize due to overconfidence and/or 

learning spurious regularities 

• Causes of overfitting:  
• Bias: Systematic choice of suboptimal hypotheses 
• Variance: Different training sets can yield very different hypotheses 
• Noise: Unpredictability that is inherent in the process  

(e.g., coin flips cannot be perfectly predicted, even by the "true" model) 

• Avoiding overfitting: 
1. Pseudocounts: Add imaginary observations 
2. Regularization: Penalize model complexity 
3. Cross-validation: Reserve validation data to estimate overfitting / test error 

- Used to select values for hyperparameters



Lecture Outline
1. Recap & Logistics 

2. Learning Model Probabilities 

3. Using Model Probabilities 

4. Prior Distributions as Bias

After this lecture, you should be able to: 
• derive the posterior probability of a model using Bayes' rule 
• explain how to use the Beta and Bernoulli distributions for Bayesian learning 
• demonstrate model averaging 



Learning Point Estimates
• So far, we have considered how to find the best single model (hypothesis), 

e.g., 

• learn a classification function 

• optimize the weights of a linear or logistic regression 

• The predictions might be a probability distribution, but they are coming out 
of a single model: 

  Probability of target Y given observation X 

• We have been learning point estimates of our model

P(Y ∣ X)



Learning Model Probabilities

• Instead, we could learn a distribution over models: 
 
 
 

• This is called Bayesian learning: we never discard any model, we only 
weight them differently depending upon their posterior probability 

• Question: Why would we want to do that?

•  Probability of target Y and features X given model 𝜃 

•      Probability of model 𝜃 given dataset D

Pr(X, Y ∣ θ)

Pr(θ ∣ D)



•  Probability of target Y and features X given model 𝜃 

•      Probability of model 𝜃 given dataset D

Pr(X, Y ∣ θ)

Pr(θ ∣ D)

What is a Model?

• We can do Bayesian learning over finite sets of models: 

• e.g., { rank by feature 𝜃 | 𝜃 ∈ {height, weight, age} } 

• We can do Bayesian learning over parametric families of models: 

• e.g., { regression with weights w0=𝜃1, w1=𝜃2 | 𝜃 ∈ ℝ2 } 

• We can mix the two!   

• 𝜃 can encode choice of model family and parameters



What is the Dataset?

• We have an expression for the probability of a single example given a model: 
 

• Question: What is the expression for the probability of a dataset of observations 
 given a model? 

• Assuming that the dataset are independent, identically distributed observations: 
 

 

Pr(X, Y ∣ θ)

D = {(X1, Y1), …, (Xm, Ym)}

(Xi, Yi) ∼ P(X, Y ∣ θ)

Pr(D |θ) = Pr(X1, Y1 |θ) × … × Pr(Xm, Ym |θ)

=
m

∏
i=1

Pr(Xi, Yi |θ)

•  Probability of target Y and features X given model 𝜃 

•      Probability of model 𝜃 given dataset D

Pr(X, Y ∣ θ)

Pr(θ ∣ D)



What is the  
Posterior Model Probability?

Now we can use Bayes' Rule to compute the posterior 
probability of a model 𝜃: 
 
 
 

Pr(θ |D) =
Pr(D |θ) Pr(θ)

Pr(D)

=
∏i Pr(Xi, Yi |θ) Pr(θ)

Pr(D)

=
∏i Pr(Xi, Yi |θ) Pr(θ)

∑θ′ 
Pr(D |θ′ ) Pr(θ′ )

Prior probability 
of model 𝜃

Likelihood of data D 
given model 𝜃

•  Probability of target Y and features X given model 𝜃 

•      Probability of model 𝜃 given dataset D

Pr(X, Y ∣ θ)

Pr(θ ∣ D)



Example: Biased Coin
• Back to coin flipping!  We can flip a coin and observe heads or tails, but we 

don't know the coin's bias 

• Model: Binomial observations  

• Observations:  

• Bias:  

• Likelihood:  

• Question: What should the prior  be?

Y ∈ {h, t}

θ ∈ [0,1]

Pr(H ∣ θ) = θ

Pr(θ)



p(
𝜃)

𝜃

n0=0 n1=0 n0=1 n1=2
n0=2 n1=4 n0=4 n1=8

p(
𝜃)

𝜃

n0=40 n1=80

Biased Coin: 
Posterior Probabilities

• Before we see any flips, all biases 
are equally probable  
(according to our prior) 

• After more and more flips, we 
become more confident in 𝜃 

• 𝜃 with highest probability is 2/3 

• Expected value of 𝜃 is less! 
(why?) 

• But with more observations, 
mode and expected value get 
closer



Beta-Binomial Models
• Likelihood:  

• aka  

• Dataset likelihood:  

• aka  

• Prior:  

• aka  

• Models of this kind are called Beta-Binomial models 

• They can be solved analytically: 

P(h ∣ θ) = θ

Bernoulli(h ∣ θ)

θn1 × (1 − θ)n0

Binomial(n1, n0)

P(θ) ∝ 1

Beta(1,1)

Pr(θ ∣ D) = Beta(1 + n1,1 + n0)



Conjugate Priors

• The beta distribution is a conjgate prior for the binomial distribution: 

• Updating a beta prior with a binomial likelihood gives a beta posterior 

• Other distributions have this property: 

• Gaussian-Gaussian (for means) 

• Dirichlet-Multinomial (generalization of Beta-Binomial for multiple values)



Using Model Probabilities

So we can estimate .  What can we do with it? 

1. Parameter estimates 

2. Target predictions (model averaging) 

3. Target predictions (point estimates)

Pr(θ ∣ D)



1. Parameter Estimates

• Sometimes, we really want to know the parameters of a model itself 

• E.g., maybe I don't care about predicting the next coin flip, but I do want to 
know whether the coin is fair 

• Can use  to make statements like  

  

Pr(θ ∣ D)

Pr(0.49 ≤ θ ≤ 0.51) > 0.9



2. Model Averaging

• Sometimes we do want to make predictions: 

  

• This is called the posterior predictive distribution 

• Question: How is this different from just learning a point estimate of a 
model, and then predicting with that model?

Pr(Y |D) = ∑
θ

Pr(Y |θ) Pr(θ |D)



3. Maximum A Posteriori
• Sometimes we do want to make predictions, but... 

  

• the posterior predictive distribution may be expensive to compute (or even 
intractable) 

• One possible solution is to use the maximum a posterior model as a point estimate: 

 

• Question: Why would you do this instead of just using a point estimate that was 
computed in the usual way?

Pr(Y |D) = ∫
1

0
Pr(Y |θ) Pr(θ |D)dθ

Pr(Y |D) ≃ Pr(Y | ̂θ)  where  ̂θ = arg max
θ

Pr(θ |D)



Prior Distributions as Bias

• Suppose I'm comparing two models,  and  such that 

 

• Question: Which model has higher posterior probability?  

• Priors are a way of encoding bias: they tell use which models to prefer 
when the data doesn't

θ1 θ2

Pr(D ∣ θ1) = Pr(D ∣ θ2)



Priors for Pseudocounts

• We can straightforwardly encode pseudocounts as prior information in 
Beta-Binomial and Dirichlet-Multinomial models 

• E.g., for pseudocounts  and , 

 

k1 k0

p(θ) = Beta(1 + k1,1 + k0)



Priors for Regularization

• Some regularizers can be 
encoded as priors also 

• L2 regularization is equivalent to 
a Gaussian prior on the weights: 

 

• L1 regularization is equivalent to 
a Laplacian prior on the weights: 

p(w) = 𝒩(w ∣ m, s)

p(w) = exp( |w | )/2

p(
w
)

w

Gaussian/L2
Laplace/L1



Summary
• Cross-validation is a powerful technique for selecting hyperparameters 

based on data 
• In Bayesian Learning, we learn a distribution over models instead of a 

single model 
• When the model is conjugate, posterior probabilities can be computed 

analytically 
• We can make predictions by model averaging to compute the posterior 

predictive distribution 
• The prior can encode bias over models, much the same as regularization


