
Linear Models

CMPUT 261: Introduction to Artificial Intelligence 
 

P&M §7.3



Assignment #2

Assignment #2 is due Feb 16/2023 (this Thursday) at 11:59pm 
• Submissions past the deadline will have late penalty applied 
• Leave yourself some margin for error when submitting!



Recap: Supervised Learning
Definition: A supervised learning task consists of 

• A set of input features  

• A set of target features  

• A set of training examples, for which both input and target features are given 

• A set of test examples, for which only the input features are given 

The goal is to predict the values of the target features given the input features;  
i.e., learn a function  that will map features  to a prediction of  

• We want to predict new, unseen data well; this is called generalization 

• Can estimate generalization performance by reserving separate test examples

X1, …, Xn

Y1, …, Yk

h(x) X Y



Recap: Loss Functions
• A loss function gives a quantitative measure of a hypothesis's performance 

• There are many commonly-used loss functions, each with its own properties

Loss Definition

0/1 error

absolute error

squared error

worst case

likelihood

log-likelihood

∑
e∈E

1 [Y(e) ≠ ̂Y(e)]

∑
e∈E

Y(e) − ̂Y(e) .

∑
e∈E

(Y(e) − ̂Y(e))
2

.

max
e∈E

Y(e) − ̂Y(e) .

Pr(E ∣ ̂Y ) = ∏
e∈E

̂Y(e = Y(e))

log Pr(E ∣ ̂Y ) = ∑
e∈E

log ̂Y(e = Y(e)) .



Lecture Outline
1. Recap & Logistics 

2. Trivial Predictors 

3. Linear Regression 

4. Linear Classification

After this lecture, you should be able to: 
• define trivial predictors and explain why they are useful 
• specify and/or implement linear regression, linear classification, 

logistic regression 
• explain the benefits of different approaches to learning linear models



Trivial Predictors

• The simplest possible predictor ignores all input features and just predicts the 
same value  for any example 

• Question: Why would we every want to think about these?

v



Optimal Trivial Predictors 
for Binary Data

Measure Optimal Prediction

0/1 error 0 if n0 > n1 else 1 

absolute error 0 if n0 > n1 else 1

squared error

worst case

likelihood

log-likelihood

n1

n0 + n1

0 if n1 = 0
1 if n0 = 0
0.5 otherwise

n1

n0 + n1
n1

n0 + n1

• Suppose we are 
predicting a binary target 

•  negative examples 

•  positive examples 

• Question: What is the 
optimal single prediction?

n0

n1



Optimal Trivial Predictor Derivations

0/1 error 0 if n0 > n1 else 1 L(v) = vn1 + (1 − v)n0

log-likelihood
n1

n0 + n1
L(v) = n1 log v + n0 log(1 − v)

d
dv

L(v) = 0

0 =
n1

v
−

n0

1 − v
n0

1 − v
=

n1

v
v

1 − v
=

n1

n0
∧ (0 < v < 1) ⟹ v =

n1

n0 + n1



Linear Regression

• Linear regression is the problem of fitting a linear function to a set of 
training examples 

• Both input and target features must be numeric 

• Linear function of the input features: 

̂Yw(e) = w0 + w1X1(e) + … + wdXd(e)

=
d

∑
j=0

wiXi(e)

For convenience, we often add a special 

"constant feature"  for all examplesX0(e) = 1



Ordinary Least-Squares
For the squared error loss, it is possible to find the optimal predictor for a dataset analytically: 

1.  

2. Recall that  for  

3. Derive an expression for  and solve for 0 
• For  input features, solve a system of  equations 
• Requires inverting a  matrix                                               
• Constructing the matrix requires adding  matrices (one for each example)    
• Total cost: 

L(w) = ∑
e∈E

(Y(e) − ̂Yw(e))
2

= ∑
e∈E

Y(e) −
d

∑
j=0

wjXj(e)

2

∇L(w*) = 0 w* ∈ arg min
w∈ℝd+1

L(w)

∇L(w*)
d d + 1

(d + 1) × (d + 1) O(d3)
n O(nd2)

O(nd2 + d3)



Gradient Descent

• The analytic solution is tractable for small datasets with few input features 

• ImageNet has about 14 million images with  input 
features 

• For others, we use gradient descent 

• Gradient descent is an iterative method to find the minimum of a function. 

• For minimizing error: 

256 × 256 = 65,536

w(t+1)
j ← w(t)

j − η
∂

∂w(t)
j

error(E, w(t))



Gradient Descent Variations
• Incremental gradient descent: update each weight after each example in turn 

 

• Batched gradient descent: update each weight based on a batch of examples 

 

• Stochastic gradient descent: update repeatedly on random examples: 

∀ei ∈ E : w(t+1)
j ← w(t)

j − η
∂

∂w(t)
j

error ({ei}, w(t))

∀Ei : w(t+1)
j ← w(t)

j − η
∂

∂w(t)
j

error (Ei, w(t))

et
i ∼ U(E) : w(t+1)

j ← w(t)
j − η

∂
∂w(t)

j
error ({et}, w(t))

Question 

Why would we 
ever use any 
of these?



Linear Classification
• For binary targets, we can use linear regression to do classification 

• Represent binary classes by  

• If regression target is negative, predict , else predict  

 

•
The line defined by  is called the decision boundary

{−1, +1}

−1 +1

̂Yw(e) = sgn (
n

∑
i=0

wiXi(e))
n

∑
i=0

wixi = 0
 returns +1 for positive arguments and -1 for negative argumentssgn

x1

x 2

w0 + w1x1 + w2x2 = 0



Probabilistic Linear Classification 

• For binary targets represented by  or numeric input features, we 
can use linear function to estimate the probability of the class 

• Issue: we need to constrain the output to lie within  

• Instead of outputting results of the function directly, send it through an 
activation function  instead: 

{0,1}

[0,1]

f : ℝ → [0,1]

̂Yw(e) = f (
n

∑
i=0

wiXi(e))



Logistic Regression
• A very commonly used activation function is the 

logistic function: 

 

• Linear classification with a logistic activation 
function is often referred to as logistic regression: 

s(t) =
1

1 + e−t

̂Yw(e) = s (
n

∑
i=0

wiXi(e)) −5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f(t) =
1

1 + e−t

t

Question: What is the decision boundary in logistic regression?



Non-Binary Target Features

What if the target feature has  values? 

1. Use  indicator variables 

2. Learn each indicator variable separately 

3. Normalize the predictions: 

k > 2

k

̂Yw
m(e) =

e(∑d
j=0 wm,jXj(e))

∑k
ℓ=1 e(∑d

j=0 wℓ,jXi(e))



Summary
• Different losses have different optimal trivial predictors 

• Trivial predictors are a baseline: your real model better outperform the trivial predictor  

• Linear regression is a simple model for predicting real quantities 

• Linear classification can be built from linear regression 

• Based on sign of prediction ("discriminative"), or 

• Using logistic regression ("probabilistic") 

• For non-binary target features, can normalize probabilistic predictions for individual classes 

• Gradient descent is a general, widely-used training procedure (with several variants) 

• Linear models can be optimized in closed form for certain losses 

• In practice often optimized with gradient descent 


