| iInear Models

CMPUT 261: Introduction to Artificial Intelligence



Assignment #2

Assignment #2 is due Feb 16/2023 (this Thursday) at 11:59pm
e Submissions past the deadline will have late penalty applied

* [eave yourself some margin for error when submitting!



Recap: Supervised Learning

Definition: A supervised learning task consists of

« Asetof input features X, ..., X

n

« Asetof target features Yy, ..., Y}

* A set of training examples, for which both input and target features are given
* A set of test examples, for which only the input features are given

The goal is to predict the values of the target features given the input features;
.e., learn a function i(x) that will map features X to a prediction of Y

 \We want to predict new, unseen data well; this is called generalization

* (Can estimate generalization performance by reserving separate test examples



Recap: Loss runctions

A loss function gives a quantitative measure of a hypothesis's performance

 [here are many commonly-used loss functions, each with its own properties
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| ecture Outline

1. Recap & Logistics

2. Irnvial Predictors

3. Linear Regression

4. Linear Classification

After this lecture, you should be able to:
* define trivial predictors and explain why they are useful

* specify and/or implement linear regression, linear classification,
logistic regression

e explain the benetfits of different approaches to learning linear models




Trivial Predictors

* [he simplest possible predictor ignores all input features and just predicts the
same value v for any example

* Question: \Why would we every want to think about these?



Optimal Trivial Predictors
for Binary Data
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Optimal Trivial Predictor Derivations
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| Inear Regression

* Linear regression is the problem of fitting a linear function to a set of
training examples

* Both input and target features must be numeric

* Linear function of the input features:
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For convenience, we often add a special
"constant feature" X,(e) = 1 for all examples



Ordinary Least-Squares

For the squared error loss, it is possible to find the optimal predictor for a dataset analytically:
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2. Recallthat VL(w*) = 0 for w* € arg min L(w)
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3. Derive an expression for V L(w*) and solve for O
» For d input features, solve a system of d + 1 equations
« Requires invertinga (d + 1) X (d + 1) matrix O(d>)
. Constructing the matrix requires adding n matrices (one for each example) O(nd?)

. Total cost: O(nd” + d°)



Gradient Descent

* [he analytic solution is tractable for small datasets with few input features

» ImageNet has about 14 million images with 256 X 256 = 65,536 input
features

* For others, we use gradient descent
e (Gradient descent is an iterative method to find the minimum of a function.

* [For minimizing error:
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Gradient Descent Variations

* Incremental gradient descent: update each weight after each example in turn
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 Stochastic gradient descent: update repeatedly on random examples:
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| iInear Classification

For binary targets, we can use linear regression to do classification

WO -+ Wlxl + Wz.Xz — O

Represent binary classes by {—I, +1}

If regression target is negative, predict — 1, else predict + 1

Y"(e) = sgn Z w.X:(e)
i=0

\

sgn returns +1 for positive arguments and -1 for negative arguments

he line defined by Z w:x; = 0 is called the decision boundary
1=0



Probabllistic Linear Classification

 For binary targets represented by {0,1} or numeric input features, we
can use linear function to estimate the probability of the class

 Issue: we need to constrain the output to lie within [0, 1]

* [nstead of outputting results of the function directly, send it through an
activation function f : R — [0,1] instead:

Y(e) = f( D wiXi<e>)
1=0




| ogistic Regression

* A very commonly used activation function is the
logistic function:
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Question: \What is the decision boundary in logistic regression”?




Non-Binary larget reatures

What if the target feature has kK > 2 values?

1. Use k indicator variables

2. Learn each indicator variable separately

3. Normalize the predictions:
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Summary

Different losses have different optimal trivial predictors

* Trivial predictors are a baseline: your real model better outperform the trivial predictor
Linear regression is a simple model for predicting real quantities
Linear classification can be built from linear regression

* Based on sign of prediction ("discriminative”), or

* Using logistic regression ('probabilistic”)

 For non-binary target features, can normalize probabillistic predictions for individual classes
Gradient descent is a general, widely-used training procedure (with several variants)

* Linear models can be optimized in closed form for certain losses

* |n practice often optimized with gradient descent



