Linear Models

CMPUT 261: Introduction to Artificial Intelligence

P&M §7.3

Assignment #2

Assignment #2 is due Feb 16/2023 (this Thursday) at 11:59pm

- Submissions past the deadline will have late penalty applied
- Leave yourself some margin for error when submitting!

Recap: Supervised Learning

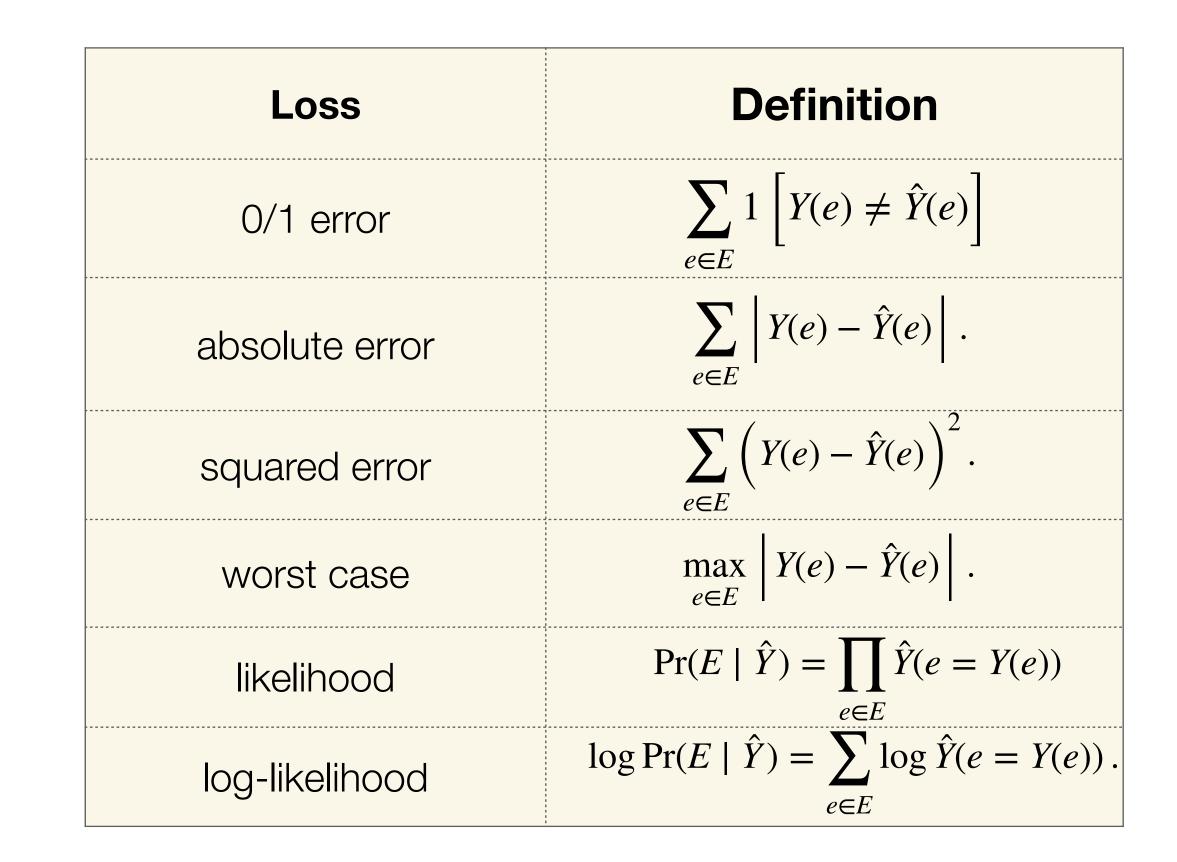
Definition: A supervised learning task consists of

- A set of input features X_1, \ldots, X_n
- A set of target features Y_1, \ldots, Y_k
- A set of training examples, for which both input and target features are given
- A set of test examples, for which only the input features are given

The goal is to predict the values of the target features given the input features; i.e., learn a function h(x) that will map features X to a prediction of Y

- We want to predict **new**, **unseen data** well; this is called **generalization**
- Can estimate generalization performance by reserving separate test examples

Recap: Loss Functions



• A loss function gives a quantitative measure of a hypothesis's performance

• There are many commonly-used loss functions, each with its own properties

Lecture Outline

- Recap & Logistics
- 2. Trivial Predictors
- Linear Regression З.
- Linear Classification 4.

After this lecture, you should be able to:

- define trivial predictors and explain why they are useful
- specify and/or implement linear regression, linear classification, logistic regression
- explain the benefits of different approaches to learning linear models

Trivial Predictors

- **same value** *v* for any example
- **Question:** Why would we every want to think about these? ullet

• The simplest possible predictor **ignores all input features** and just predicts the

Optimal Trivial Predictors for Binary Data

- Suppose we are predicting a binary target
- *n*₀ **negative** examples
- *n*₁ **positive** examples
- **Question:** What is the optimal single prediction?

Measure	Optimal Prediction
0/1 error	0 if <i>n</i> ₀ > <i>n</i> ₁ else 1
absolute error	0 if $n_0 > n_1$ else 1
squared error	$\frac{n_1}{n_0 + n_1}$
worst case	$\begin{cases} 0 & \text{if } n_1 = 0 \\ 1 & \text{if } n_0 = 0 \\ 0.5 & \text{otherwise} \end{cases}$
likelihood	$\frac{n_1}{n_0 + n_1}$
log-likelihood	$\frac{n_1}{n_0 + n_1}$

Optimal Trivial Predictor Derivations

0/1 error 0 if $n_0 > n_1 \text{ else } 1$

log-likelihood	<u> </u>
	$n_0 + n_1$

 $L(v) = vn_1 + (1 - v)n_0$

$$L(v) = n_1 \log v + n_0 \log(1 - v)$$
$$\frac{d}{dv}L(v) = 0$$
$$0 = \frac{n_1}{v} - \frac{n_0}{1 - v}$$
$$\frac{n_0}{1 - v} = \frac{n_1}{v}$$

$$\frac{v}{-v} = \frac{n_1}{n_0} \wedge (0 < v < 1) \implies v = \frac{n_1}{n_0 + n_1}$$

Linear Regression

- Linear regression is the problem of fitting a linear function to a set of training examples
 - Both input and target features must be numeric
- Linear function of the input features:

$$\hat{Y}^{w}(e) = w_{0} + w_{1}X_{1}(e) + \dots + w_{d}X_{d}(e)$$
$$= \sum_{j=0}^{d} w_{i}X_{i}(e)$$

For convenience, we often add a special "constant feature" $X_0(e) = 1$ for all examples

Ordinary Least-Squares

For the squared error loss, it is possible to find the optimal predictor for a dataset **analytically**:

1.
$$L(w) = \sum_{e \in E} \left(Y(e) - \hat{Y}^w(e) \right)^2 = \sum_{e \in E} \sum_{e \in E} \left(Y(e) - \hat{Y}^w(e) \right)^2 = \sum_{e \in E} \sum_{e E} \sum_{e \in E} \sum_{e \in E} \sum_{e \in E} \sum_{e E} \sum_$$

- 2. Recall that $\nabla L(w^*) = 0$ for $w^* \in \arg \min_{w \in \mathbb{R}^{d+1}} L(w)$
- 3. Derive an expression for $\nabla L(w^*)$ and solve for 0
 - For d input features, solve a system of d + 1 equations
 - Requires inverting a $(d + 1) \times (d + 1)$ matrix
 - Constructing the matrix requires adding n matrices (one for each example) $O(nd^2)$
- Total cost: $O(nd^2 + d^3)$

$$\left(Y(e) - \sum_{j=0}^{d} w_j X_j(e)\right)^2$$

 $O(d^3)$

Gradient Descent

- The analytic solution is tractable for **small** datasets with **few** input features
 - ImageNet has about 14 million images with $256 \times 256 = 65,536$ input features
- For others, we use gradient descent
 - Gradient descent is an iterative method to find the minimum of a function.
 - For **minimizing error**:

$$w_j^{(t+1)} \leftarrow w_j^{(t)} - \eta \frac{\partial}{\partial w_j^{(t)}} \operatorname{error}(E, w^{(t)})$$

Gradient Descent Variations

Incremental gradient descent: update each weight after **each example** in turn

$$\forall e_i \in E : w_j^{(t+1)} \leftarrow w_j^{(t)} - \eta \frac{1}{\partial}$$

- **Batched gradient descent:** update each weight based on a **batch** of examples $\forall E_i : w_j^{(t+1)} \leftarrow w_j^{(t)} - \eta \frac{\partial}{\partial w_i^{(t)}} \operatorname{error} \left(E_i, w^{(t)} \right)$
- Stochastic gradient descent: update repeatedly on random examples:

$$e_i^t \sim U(E) : w_j^{(t+1)} \leftarrow w_j^{(t)} - \eta \frac{\partial}{\partial w_j^{(t)}} \operatorname{error}\left(\{e^t\}, w^{(t)}\right)$$

 $\frac{\partial}{\partial w_i^{(t)}} \operatorname{error}\left(\{e_i\}, w^{(t)}\right)$

Question

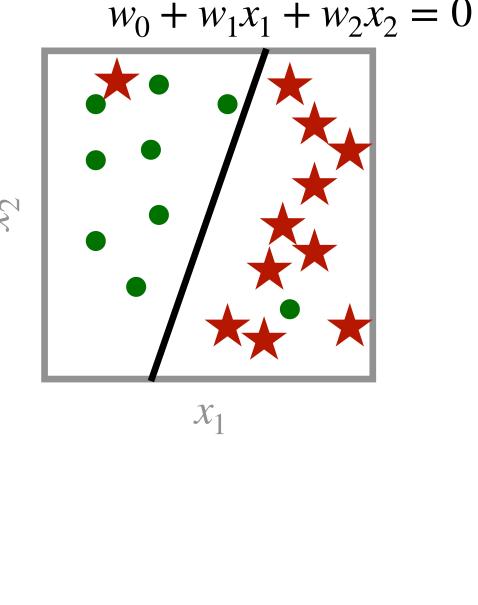
Why would we ever use any of these?

Linear Classification

- For **binary** targets, we can use linear regression to do classification
- Represent binary classes by $\{-1, +1\}$ \bullet
- If regression target is negative, predict -1, else predict +1 \bullet

$$\hat{Y}^{w}(e) = \operatorname{sgn}\left(\sum_{i=0}^{n} w_{i}X_{i}(e)\right)$$

The line defined by $\sum w_i x_i = 0$ is called the **decision boundary** i=0



- sgn returns +1 for positive arguments and -1 for negative arguments

Probabilistic Linear Classification

- For binary targets represented by $\{0,1\}$ or numeric input features, we can use linear function to estimate the probability of the class
- **Issue:** we need to constrain the output to lie within [0,1]
- Instead of outputting results of the function directly, send it through an **activation function** $f : \mathbb{R} \to [0,1]$ instead:

$$\hat{Y}^{w}(e) = f\left(\sum_{i=0}^{n} w_{i}X_{i}(e)\right)$$

• A very commonly used activation function is the **logistic** function:

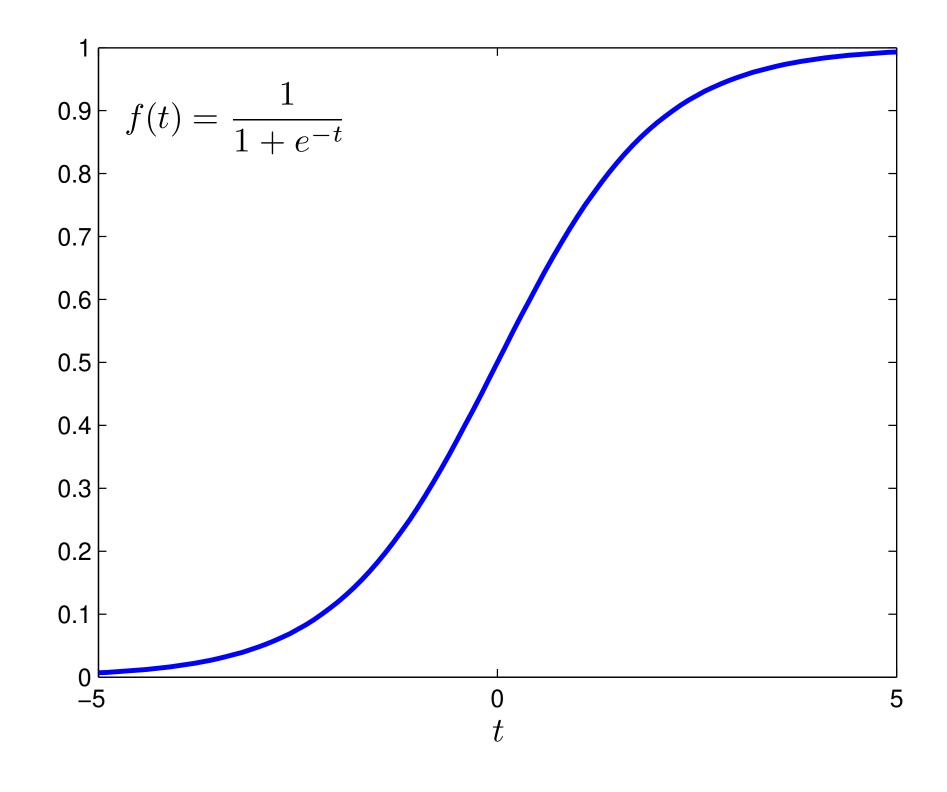
$$s(t) = \frac{1}{1 + e^{-t}}$$

Linear classification with a logistic activation \bullet function is often referred to as **logistic regression**:

$$\hat{Y}^{w}(e) = s\left(\sum_{i=0}^{n} w_{i}X_{i}(e)\right)$$

Question: What is the **decision boundary** in logistic regression?

Logistic Regression



What if the target feature has k > 2 values?

- 1. Use k indicator variables
- 2. Learn each indicator variable **separately**
- 3. Normalize the predictions:

$$\hat{Y}_m^w(e) = -$$

Non-Binary Target Features

$$e^{\left(\sum_{j=0}^{d} w_{m,j} X_{j}(e)\right)}$$

$$k e^{\left(\sum_{j=0}^{d} w_{\ell,j} X_{i}(e)\right)}$$

$$\ell = 1$$

Summary

- Different losses have different **optimal trivial predictors** \bullet
 - Trivial predictors are a **baseline**: your real model better outperform the trivial predictor \bullet
- **Linear regression** is a simple model for predicting real quantities ullet
- **Linear classification** can be built from linear regression ullet
 - Based on **sign** of prediction ("discriminative"), or \bullet
 - Using **logistic regression** ("probabilistic")
 - For **non-binary target features**, can normalize probabilistic predictions for individual classes ullet
- **Gradient descent** is a general, widely-used training procedure (with several variants) lacksquare
 - Linear models can be optimized in **closed form** for certain losses \bullet
 - In practice often optimized with gradient descent