Supervised Learning Introduction & Framework

CMPUT 261: Introduction to Artificial Intelligence

P&M §7.1-7.3

Assignments

- Assignment #1 is marked
 - Grades and feedback/comments are on eClass
- Assignment #2 is now available
 - Due Feb 16/2023 (one week from today) at 11:59pm

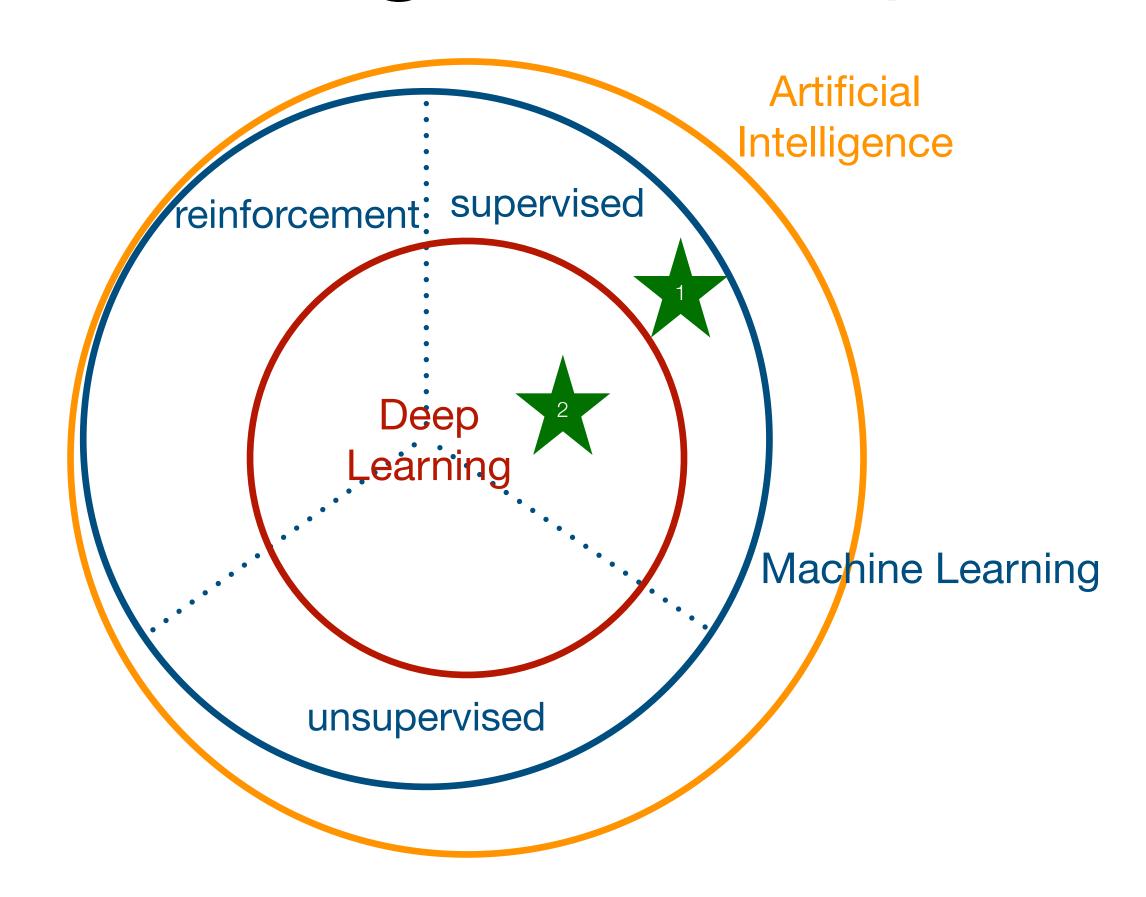
Recap: Uncertainty

- We represent uncertainty about the world by probabilities
 - We update our knowledge by conditioning on observations
 - Observations = learning the value of a random variable
- Full, unstructured joint distributions are intractable to reason about
- Conditional independence is a kind of structure that is:
 - 1. widespread
 - 2. easy to reason about
 - 3. allows tractable inference (computing distribution of unobserved variables)
- **Belief networks** let us compactly represent joint distributions with a lot of conditional independence
 - Variable elimination is an algorithm for efficient inference on belief networks

Supervised Learning, informally

- In the uncertainty section, we took the probability distribution as given
 - Our only problem was to represent and derive distributions
- Question: Where do these probabilities come from?
- Supervised learning is a way to learn probabilities from examples
 - Probability of a target feature (or label) given input features
 - i.e., condition on input features to get probability of target
- Basic idea:
 - Take a bunch of inputs (e.g., images) and "correct" outputs
 - Learn a model that correctly maps inputs to outputs

Supervised Learning vs. Machine Learning vs. Deep Learning



What is the difference between Supervised Learning, Machine Learning, and Deep Learning?

Lecture Outline

- 1. Recap & Logistics
- 2. Supervised Learning Problem
- 3. Measuring Prediction Quality

After this lecture, you should be able to:

- define supervised learning task, classification, regression, loss function
- represent categorical target values in multiple ways (indicator variables, indexes)
- define generalization performance
- identify an appropriate loss function for different tasks
- explain why a separate test set estimates generalization performance
- define 0/1 error, absolute error, (log-)likelihood loss, mean squared error, worst-case error
- define trivial predictors and explain why they are useful

Supervised Learning

Definition: A supervised learning task consists of

- A set of input features $X_1, ..., X_n$
- A set of target features Y_1, \ldots, Y_k
- A set of training examples, sampled randomly from some population, for which both input and target features are given
- A set of test examples, sampled from the same population, for which only the input features are given

The goal is to **predict** the values of the **target features** given the **input features**; i.e., **learn** a function h(x) that will map features X to a prediction of Y

- Classification: Y_i are discrete
- Regression: Y_i are real-valued

Supervised Learning Examples

- 1. **Computational vision:** Given example images and labels representing objects, output a label for the main object in the image
 - Input features: Pixel values of the image
 - Target features: One feature for each label (e.g., dog, plane, etc.)
- 2. **Precision medicine:** Given examples of symptoms, test results, and treatments, output an estimate of recovery time
 - Input features: symptoms, treatment indicators, test results, demographic information
 - Target features: recovery time, survival time, etc.
- 3. **Natural language processing:** Given example sentences and labels representing "sentiment", output how positive or negative the sentence is
 - Input features: binary indicators for words or characters (**!)
 - Target features: One feature per label (e.g., positive, negative)

Regression Example

- Aim is to predict the value of $\operatorname{target} Y$ based on $\operatorname{features} X$
- Both X and Y are real-valued
 - Exact values of both targets and features may not have been in the training set
 - e_8 is an interpolation problem: X is within the range of the training examples' values
 - e_9 is an extrapolation problem: X is outside the range of the training examples' values

Ex.	X	Y
e 1	0.7	1.7
e 2	1.1	2.4
e 3	1.3	2.5
e 4	1.9	1.7
e 5	2.6	2.1
e 6	3.1	2.3
e 7	3.9	7

e 8	2.9	?
e 9	5.0	?

Data Representation

- For real-valued features, we typically just record the feature values
- For discrete features, there are multiple options:
 - Binary features: Can code $\{false, true\}$ as $\{0,1\}$ or $\{-1,+1\}$
 - Can record numeric values for each possible value
 - Cardinal values: Differences are meaningful (e.g., 1,2,7)
 - Ordinal values: Order is meaningful (e.g., *Good*, *Fair*, *Poor*)
 - Categorical values: Neither differences nor order meaningful (e.g., Red, Green, Blue)
 - Vector of indicator variables: One per feature value, exactly one is true (sometimes called a "one-hot" encoding) (e.g., Red as (1,0,0), Green as (0,1,0), etc.)

Classification Example: Holiday Preferences

- An agent wants to learn a person's preference for the length of holidays
- Holiday can be for 1,2,3,4,5, or 6 days
- Two possible representations:

Ex.	Y
e 1	1
e 2	6
e 3	6
e 4	2
e 5	1

Ex.	Y ₁	Y ₂	Y 3	Y ₄	Y ₅	Y 6
<i>e</i> ₁	1	0	0	0	0	0
e 2	0	0	0	0	0	1
e 3	0	0	0	0	0	1
e 4	0	1	0	0	0	0
e 5	1	0	0	0	0	0

Question:

What are the advantages/ disadvantages of each representation?

Generalization

- Question: What does it mean for a trained model to perform well?
- We want to be able to make correct predictions on unseen data, not just the training examples
 - We are even willing to sacrifice some training accuracy to achieve this
 - We want our learners to generalize: to go beyond the given training examples to classify new examples well
 - Problem: We can't measure performance on unobserved examples!
- We can estimate generalization performance by evaluating performance on the test set (Why?)
 - The learning algorithm doesn't have access to the test data, but we do

Generalization Example

Example: Consider binary two classifiers, **P** and **N**

- P classifies all the positive examples from the training data as true, and all others as false
- N classifies all of the negative examples from the training data as false, and all others as true

Question: Which classifier performs better on the training data?

Question: Which classifier generalizes better?

Bias

- The **hypothesis** is the function h(X) that we learn
- The hypothesis space is the set of possible hypotheses
 - "Training a model" =
 "Choosing a hypothesis from the hypothesis space based on data"
- A preference for one hypothesis over another is called bias
 - Bias is not a bad thing in this context!
 - Preference for "simple" models is a bias
 - Which bias works best for generalization is an empirical question

Learning as Search

- Given training data, a hypothesis space, an error measurement, and a bias, learning can be reduced to local search
- Learning searches the hypothesis space trying to find the hypothesis that best fits the data given the bias
 - Search space is prohibitively large (typically infinite)
 - Almost all supervised learning methods are versions of local search

Measuring Prediction Error

- We choose our hypothesis partly by measuring its performance on training data
 - Question: What is the other consideration?
- This is usually described as minimizing some quantitative measurement of error (or loss)
 - Question: What might error mean?

0/1 Error

Definition:

The 0/1 error for a dataset E of examples and hypothesis \hat{Y} is the number of examples for which the prediction was not correct:

$$\sum_{e \in E} 1 \left[Y(e) \neq \hat{Y}(e) \right]$$

- Not appropriate for real-valued target features (why?)
- Does not take into account how wrong the answer is
 - e.g., $1[2 \neq 1] = 1[6 \neq 1]$
- Most appropriate for binary or categorical target features

1[·] is indicator function: value is 1 if the expression in brackets is TRUE, else 0

Absolute Error

Definition:

The absolute error for a dataset E of examples and hypothesis \hat{Y} is the sum of absolute distances between the predicted target value and the actual target value:

$$\sum_{e \in E} |Y(e) - \hat{Y}(e)|$$

- Meaningless for categorical variables
- Takes account of how wrong the predictions are
- Most appropriate for cardinal or possibly ordinal values

Squared Error

Definition:

The squared error (or sum of squares error or mean squared error) for a dataset E of examples and hypothesis \hat{Y} is the sum of squared distances between the predicted target value and the actual target value:

$$\sum_{e \in E} \left(Y(e) - \hat{Y}(e) \right)^2$$

- Meaningless for categorical variables
- Takes account of how wrong the predictions are
 - Large errors are much more important than small errors
- Most appropriate for cardinal values

Worst-Case Error

Definition:

The worst-case error for a dataset E of examples and hypothesis \hat{Y} is the maximum absolute difference between the predicted target value and the actual target value:

$$\max_{e \in E} \left| Y(e) - \hat{Y}(e) \right|$$

- Meaningless for categorical variables
- Takes account of how wrong the predictions are
 - but only on one example (the one whose prediction is furthest from the true target)
- Most appropriate for cardinal values

Probabilistic Predictors

- Rather than predicting **exactly** what a target value will be, many common algorithms predict a **probability distribution** over possible values
 - Especially for classification tasks
- Vectors of indicator variables are the most common data representation for this scheme:
 - Target features of training examples have a single 1 for the true value
 - Predicted target values are probabilities that sum to 1

Probabilistic Predictions Example

Training examples

Output on test example

X	Y _{cat}	Y _{dog}	Ypanda
	1	0	0
	0	1	O

X	Ŷ _{cat}	Ŷ _{dog}	Ŷpanda
	0.5	0.45	0.05

Likelihood

• For probabilistic predictions, we can use likelihood to measure the performance of a learning algorithm

Definition:

The likelihood for a dataset E of examples and hypothesis \hat{Y} is the **probability** of independently observing the examples according to the probabilities assigned by the **hypothesis**:

$$\Pr(E \mid \hat{Y}) = \prod_{e \in E} \hat{Y}_{Y(e)}(e).$$

- This has a clear Bayesian interpretation
- Numerical stability issues: product of probabilities shrinks exponentially!
 - ullet Example: Probability of ${\sf any}$ sequence of 5000 coin tosses has probability 2^{-5000} !
 - Floating point underflows almost immediately (double-precision floating point can't represent anything smaller than 2^{-1021})

Log-Likelihood

Definition:

The \log -likelihood for a dataset E of examples and hypothesis \hat{Y} is the \log -probability of independently observing the examples according to the probabilities assigned by the hypothesis:

$$\log \Pr(E \mid \hat{Y}) = \log \prod_{e \in E} \hat{Y}_{Y(e)}(e)$$
$$= \sum_{e \in E} \log \hat{Y}_{Y(e)}(e)$$

- Taking log of the likelihood fixes the underflow issue (why?)
- The log function grows monotonically, so maximizing log-likelihood is the same thing as maximizing likelihood:

$$\left(\Pr(E \mid \hat{Y}_1) > \Pr(E \mid \hat{Y}_2)\right) \iff \left(\log\Pr(E \mid \hat{Y}_1) > \log\Pr(E \mid \hat{Y}_2)\right)$$

Trivial Predictors

- The simplest possible predictor **ignores all input features** and just predicts the same value v for any example
- Question: Why would we every want to think about these?

Optimal Trivial Predictors for Binary Data

- Suppose we are predicting a binary target
- n_0 negative examples
- n_1 positive examples
- Question: What is the optimal single prediction?

Measure	Optimal Prediction
0/1 error	0 if $n_0 > n_1$ else 1
absolute error	0 if $n_0 > n_1$ else 1
squared error	$\frac{n_1}{n_0 + n_1}$
worst case	$\begin{cases} 0 & \text{if } n_1 = 0 \\ 1 & \text{if } n_0 = 0 \\ 0.5 & \text{otherwise} \end{cases}$
likelihood	$\frac{n_1}{n_0 + n_1}$
log-likelihood	$\frac{n_1}{n_0 + n_1}$

Optimal Trivial Predictor Derivations

0/1 error

0 if $n_0 > n_1$ else 1

$$L(v) = vn_1 + (1 - v)n_0$$

log-likelihood
$$\frac{n_1}{n_0 + n_1}$$

$$L(v) = n_1 \log v + n_0 \log(1 - v)$$

$$\frac{d}{dv}L(v) = 0$$

$$0 = \frac{n_1}{v} - \frac{n_0}{1 - v}$$

$$\frac{n_0}{1 - v} = \frac{n_1}{v}$$

$$\frac{v}{1 - v} = \frac{n_1}{n_0} \wedge (0 < v < 1) \implies v = \frac{n_1}{n_0 + n_1}$$

Summary

- Supervised learning is learning a hypothesis function from training examples
 - Maps from input features to target features
 - Classification: Discrete target features
 - Regression: Real-valued target features
- Preferences among hypotheses are called bias
- Choice of error measurement (loss) is an important design decision
- Different losses have different optimal trivial predictors
 - Trivial predictors are a baseline: your real model better outperform the trivial predictor