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Assignments
• Assignment #1 is almost marked 

• Grades should be on eClass by tomorrow morning 

• Assignment #2 is now available 

• Due Feb 16/2023 (one week from this Thursday) at 11:59pm 

• Total marks=115 

• eClass says 120 because there are 5 possible bonus marks 

• Don't worry, this will work! :)



Lecture Outline
1. Recap 

2. Factors 

3. Variable Elimination 

4. Further Optimizations

After this lecture, you should be able to: 
• encode a factoring of a joint distribution as a collection of factor objects for 

variable elimination 
• define the factor operations used in variable elimination 
• describe the high-level steps of variable elimination 
• compare efficiency of different variable orderings for variable elimination 
• trace an execution of variable elimination



Recap: Belief Networks
Definition: 
A belief network (or Bayesian network) consists of: 

1. A directed acyclic graph, with each node labelled by a random variable 

2. A domain for each random variable 

3. A conditional probability table for each variable given its parents 

• The graph represents a specific factorization of the full joint distribution 

• Key Property:  
Every node is independent of its non-descendants, conditional on its parents
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Recap: Queries
• The most common task for a belief network is to query 

posterior probabilities given some observations 

• Easy cases:  

• Posteriors of a single variable conditional only on 
parents 

• Joint distributions of variables early in a compatible 
variable ordering 

• Typically, the observations have no straightforward 
relationship to the target 

• This lecture: mechanical procedure for computing 
arbitrary queries
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A (Simplistic) Algorithm for Queries

1. Condition:   

2. Normalize:   

3. Marginalize:  

P(F, T, A, L, S = 1, R = 1) = P(F)P(T )P(A ∣ T, F)P(S = 1 ∣ F)P(L ∣ A)P(R = 1 ∣ L)

P(F, T, A, L ∣ S = 1,R = 1) =
P(F, T, A, L, S = 1,R = 1)

∑ f ∈ dom(F),
t ∈ dom(T),
a ∈ dom(A),
l ∈ dom(L)

P(F = f, T = t, A = a, L = l, S = 1,R = 1)

P(F ∣ S = 1,R = 1) = ∑
t ∈ dom(T),
a ∈ dom(A),
l ∈ dom(L)

P(F, T = t, A = a, L = l ∣ S = 1,R = 1)
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Query: 

P(F, T, A, L, S, R) = P(F)P(T)P(A ∣ T, F)P(L ∣ A)P(S ∣ F)P(R ∣ L)

P(F ∣ S = 1,R = 1)



Factors
• The Variable Elimination algorithm exploits the factorization of a joint probability 

distribution encoded by a belief network in order to answer queries 

• A factor is a function  from random variables to a real number 

• Input: factors representing the conditional probability tables from the belief network 

 

              becomes  

 
• Output: A new factor encoding the target posterior distribution 

E.g., .

f(X1, . . . , Xk)

P(L ∣ A)P(S ∣ F)P(A ∣ T, F)P(T)P(F)

f1(L, A)f2(S, F)f3(A, T, F)f4(T)f5(F)

f12(T)



Conditional Probabilities 
as Factors

• A conditional probability  is a factor  that obeys the 
constraint: 

. 

• Answer to a query is a factor constructed by applying operations to the input factors 

• Operations on factors are not guaranteed to maintain this constraint! 

• Solution: Don't sweat it! 

• Operate on unnormalized probabilities during the computation 

• Normalize at the end of the algorithm to re-impose the constraint

P(Y ∣ X1, . . . , Xn) f(Y, X1, . . . , Xn)

∀v1 ∈ dom(X1), v2 ∈ dom(X2), …, vn ∈ dom(Xn) : ∑
y∈dom(Y)

f(y, v1, …, vn) = 1



Conditioning
Conditioning is an operation on a single factor  

• Constructs a new factor that returns the values of the original factor with some of 
its inputs fixed 

Definition: 
For a factor , conditioning on  yields a new factor  

  

such that for all values  in the domain of , 

.

f1(X1, . . . , Xk) Xi = vi

f2(X1, …Xi−1, Xi+1, …, Xk) = ( f1)Xi=vi

v1, …, vi−1, vi+1, …, vk X1, …Xi−1, Xi+1, …, Xk

f2(v1, …, vi−1, vi+1, …, vk) = f1(v1, …, vi−1, vi, vi+1, …, vk)



Conditioning Example
 f2(A, B) = f1(A, B, C)C=true

A B C value
F F F 0.1
F F T 0.88
F T F 0.12
F T T 0.45
T F F 0.7
T F T 0.66
T T F 0.1
T T T 0.25

A B value

F F 0.88

F T 0.45

T F 0.66

T T 0.25

f1 f2



Multiplication
Multiplication is an operation on two factors 

• Constructs a new factor that returns the product of the rows selected from each 
factor by its arguments 

Definition: 
For two factors  and ,  
multiplication of  and  yields a new factor  

  

such that for all values , 

.

f1(X1, …, Xj, Y1, …, Yk) f2(Y1, …, Yk, Z1, …, Zℓ)
f1 f2

( f1 × f2) = f3(X1, …, Xj, Y1, …, Yk, Z1, …, Zℓ)

x1, …, xj, y1, …, yk, z1, …, zℓ

f3(x1, …, xj, y1, …, yk, z1, …, zℓ) = f1(x1, …, xj, y1, …, yk)f2(y1, …, yk, z1, …, zℓ)



Multiplication Example
 f3(A, B, C) = f1(A, B) × f2(B, C)

A B value

F F 0.1

F T 0.2

T F 0.3

T T 0.4

B C value

F F 1.0

F T 0

T F 0.5

T T 0.25

A B C value
F F F 0.1
F F T 0
F T F 0.1
F T T 0.05
T F F 0.3
T F T 0
T T F 0.2
T T T 0.1

f1 f2

f3



Summing Out
Summing out is an operation on a single factor 

• Constructs a new factor that returns the sum over all values of a random variable of the original 
factor 

Definition: 
For a factor , summing out a variable  yields a new factor 

  

such that for all values  in the domain of , 

. 

f1(X1, …, Xk) Xi

f2(X1, …, Xi−1, Xi+1, …, Xk) = ∑
Xi

f1

v1, …, vi−1, vi+1, …, vk X1, …Xi−1, Xi+1, …, Xk

f2(v1, …, vi−1, vi+1, …, vk) = ∑
vi∈dom(Xi)

f1(v1, …, vi−1, vi, vi+1, …, vk)



Summing Out Example
f2(B) = ∑

A

f1(A, B)

A B value

F F 0.1

F T 0.2

T F 0.3

T T 0.4

B value
F 0.4
T 0.6

f1

f2



Variable Elimination
• Given observations  and query variable , we want 

.     

• Basic idea of variable elimination: 

1. Condition on observations by conditioning 

2. Construct joint distribution factor by multiplication 

3. Remove unwanted variables (neither query nor observed) by summing out 

4. Normalize at the end 

• Doing these steps in order is correct but not efficient 

• Efficiency comes from interleaving the order of operations

Y1 = v1, …, Yk = vk Q

P(Q ∣ Y1 = v1, …, Yk = vk) =
P(Q, Y1 = v1, …, Yk = vk)

∑q∈dom(Q) P(Q = q, Y1 = v1, …, Yk = vk)



Sums of Products

The computationally intensive part of variable elimination is computing 
sums of products 

Example: multiply factors , ; sum out  

1.   

2.  

Total: 112 computations

f1(Q, A, B, C) f2(C, D, E) A, E

f3(Q, A, B, C, D, E) = f1(Q, A, B, C) × f2(C, D, E) : 26 multiplications

f4(Q, B, C, D) = ∑
A,E

f3(Q, A, B, C, D, E) : 3 × 16 additions

2. Construct joint distribution factor by multiplication 
3. Remove unwanted variables (neither query nor observed) by summing out

(*) For all numerical examples, 

we assume binary domains



Efficient Sums of Products
We can reduce the number of computations required by changing their order. 

  

1.    

2.    

3.    

Total: 28 computations

∑
A

∑
E

f1(Q, A, B, C) × f2(C, D, E)

= (∑
A

f1(Q, A, B, C)) × (∑
E

f2(C, D, E))
f3(C, D) = ΣE f2(C, D, E) : 22 additions

f4(Q, B, C) = ΣA f1(Q, A, B, C) : 23 additions

f5(Q, B, C, D) = f3(Q, B, C) × f4(B, C, D) : 24 multiplications



Variable Elimination Algorithm
Input: query variable ; set of variables ; observations ; factors  representing conditional probability tables 

 
for each  in  according to some elimination ordering: 
     
    if : 
        for each : 
             conditioned on observed value of  
             
    else: 
         product of factors in  
         sum  out of  
         

 := product of factors in  
 := sum  out of  

return   (i.e., normalize )

Q Vs O Ps

Fs := Ps
X Vs∖{Q}

Rs := {F ∈ Fs ∣ F involves X}
X ∈ O

F ∈ Rs
F′ := F X
Fs := (Fs∖{F}) ∪ {F′ }

T := Rs
N := X T
Fs := (Fs∖Rs) ∪ {N}

T Fs
N Q T

T/N T



Variable Elimination Example: 
Conditioning

Query:  
Variable ordering:  

 

Construct factors for each table: 
 

Condition on :   
 

Condition on :  

P(T |S = 1,R = 1)
S, R, F, A, L

P(T, F, A, S, L, R) = P(T)P(F)P(A ∣ T, F)P(S ∣ F)P(L ∣ A)P(R ∣ L)

{f0(T), f1(F), f2(T, A, F), f3(S, F), f4(L, A), f5(R, L)}

S f6 = ( f3)S=1
{f0(T), f1(F), f2(T, A, F), f6(F), f4(L, A), f5(R, L)}

R f7 = ( f5)R=1
{f0(T), f1(F), f2(T, A, F), f6(F), f4(L, A), f7(L)}
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Variable Elimination Example: 
Elimination

Query:  
Variable ordering:  

 

Sum out  from product of :   

 

Sum out  from product of :   

 

Sum out  from product of :  

P(T |S = 1,R = 1)
S, R, F, A, L

{f0(T), f1(F), f2(T, A, F), f6(F), f4(L, A), f7(L)}

F f1, f2, f6 f8 = ∑
F

( f1 × f2 × f6)

{f0(T), f8(T, A), f4(L, A), f7(L)}

A f8, f4 f9 = ∑
A

( f8 × f4)

f0(T), f9(T, L), f7(L)

L f9, f7 f10 = ∑
L

( f9 × f7)

{f0(T), f10(T)}
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Query:  
Variable ordering:  

 

Product of remaining factors:  
 

Normalize by division:  

P(T |S = 1,R = 1)
S, R, F, A, L

{f0(T), f10(T)}

f11 = f0 × f10
{f11(T)}

f12(T) =
f11(T)

∑T f11(T)

Variable Elimination Example:   
Normalization
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Optimizing Elimination Order
• Variable elimination exploits efficient sums of products on a factored joint distribution 

• The elimination order of the variables affects the efficiency of the algorithm 

• Finding an optimal elimination ordering is NP-hard 

• Heuristics (rules of thumb) for good orderings: 

• Observations first: Condition on all of the observed variables first 

• Min-factor: At every stage, select the variable that constructs the 
smallest new factor 

• Problem-specific heuristics



Min-Factor Example
Factors: 

  

• Which variable creates the largest new factor when it is eliminated? 
• : Remove , 

     Add  

• Which variable creates the smallest new factor when it is eliminated? 
• : Remove , add  

• (  and  would also work) 
• Number of rows is what matters, not number of arguments

{f1(Z, B), f2(B, C), f3(C), f4(D, C), f5(A, B, C), f6(E, C)}

C f2(B, C), f3(C), f4(D, C), f5(A, B, C), f6(E, C)
f7(A, B, D, E)

Z f1(Z, B) f7(B)
E A

BZ

D C

A

E



Optimization: Pruning
• The structure of the graph can allow us to drop leaf nodes 

that are neither observed nor queried 

• Summing them out for free 

• We can repeat this process:
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Optimization: Preprocessing

Finally, if we know that we are always going to be observing and/or querying 
the same variables, we can preprocess our graph; e.g.: 

1. Precompute the joint distribution of all the variables we will observe 
and/or query 

2. Precompute conditional distributions for our exact queries



Summary
• Variable elimination is an algorithm for answering queries based on a 

belief network 

• Operates by using three operations on factors to reduce graph to a single posterior 
distribution 

1. Conditioning 
2. Multiplication 
3. Summing out 
4. (Once only): Normalization 

• Distributes operations more efficiently than taking full product and then summing out 

• Optimal order of operations is NP-hard to compute 

• Additional optimization techniques: heuristic ordering, pruning, precomputation


