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Assignment #1

• Assignment #1 was due on Tuesday 

• Late submissions will be accepted until 11:59pm TONIGHT 

• 20% penalty



Recap: Chain Rule

Definition: chain rule 

 
P(α1, …, αn) = P(α1) × P(α2 ∣ α1) × ⋯ × P(αn ∣ α1, …, αn−1)

= Πn
i=1P(αi ∣ α1, …, αi−1)

P(W, X, Y, Z) = P(W)P(X ∣ W)P(Y ∣ W, X)P(Z ∣ W, X, Y)
P(W,X)

P(W,X,Y)
P(W,X,Y,Z)



Recap: Independence

Definition: 
Random variables  and  are conditionally independent given  iff 

  

for all values of , , and .

X Y Z

P(X = x ∣ Y = y, Z = z) = P(X = X ∣ Z = z)

x ∈ dom(X) y ∈ dom(Y) z ∈ dom(Z)

Definition: 
Random variables  and  are marginally independent iff 

  

for all values of  and .

X Y

P(X = x ∣ Y = y) = P(X = x)

x ∈ dom(X) y ∈ dom(Y)



Recap: 
Exploiting Independence

• Explicitly specifying an entire unstructured joint distribution is tedious and 
unnatural 

• We can exploit conditional independence: 

• Conditional distributions are often more natural to write 

• Joint probabilities can be extracted from conditionally independent 
distributions by multiplication



Lecture Outline
1. Recap & Logistics 

2. Belief Networks as Factorings 

3. Querying Joint Probabilities 

4. Querying Independence

After this lecture, you should be able to: 
• Define a belief network 
• Construct a belief network that corresponds to a given factoring 
• Recover a factoring that is consistent with a given belief network 
• Compute joint probabilities using a belief network 
• Identify independence relationships encoded by a given belief network



Factoring Joint Distributions
• We can always represent a joint distribution as a 

product of factors, even when there is no marginal or 
conditional independence (why?) 

 

• Question: How much space do we save with this 
factored representation?  

• When we do have independence, we can simplify some 
of these factors: 

P(A, B, T) = P(T)P(A ∣ T)P(B ∣ A, T)

P(A, B, T) = P(T)P(A ∣ T)P(B ∣ T)

Random variables: 

 - Time Alice thinks it is 

 - Time Bob thinks it is 

 - Actual time

A

B

T

= P(B ∣ T )



Belief Networks, informally
We can represent a particular factoring of a joint 
distribution as a directed acyclic graph: 

 

 

• Nodes are random variables 

• Every variable has exactly one factor in the factoring 

• The node's parents are the variables that its factor 
conditions on 

• (We'll sometimes say that the factor "depends on"  
its parents, but that is very imprecise) 

• More independence means fewer arcs (why?)

P(Tap, Rain, Sprinkler, Wet, Barrel) =
P(Tap)P(Rain)P(Sprinkler ∣ Rain)P(Wet ∣ Sprinkler, Rain)P(Barrel ∣ Rain)

Rain

Wet

sidewalk

Sprinkler

Tap

Rain

barrel

P(Barrel ∣ Rain) P(Wet ∣ Sprinkler, Rain)

P(Rain)
P(Sprinkler ∣ Tap)

P(Tap)



Belief Networks

Definition: 
A belief network (or Bayesian network) consists of: 

1. A directed acyclic graph, with each node labelled by a random variable 

2. A domain for each random variable 

3. A conditional probability table for each variable given its parents



Why is the Graph Encoding Useful?
Encoding the distribution as a graph is useful for a number of reasons: 

• Separates the independence structure (nodes, arcs) from the quantitative probabilities 
(conditional probability tables) 

• You can often reason about independence without reasoning about actual 
probability values 

• Graph can be specified by reasoning locally about independence (i.e., what values fully 
determine a variable's distribution) 

• Complicated global independence relationships can then be inferred based on graph 
structure 

• Algorithms that exploit independence can be defined based on the graph structure alone



Clock Scenario
P(A, B, T) = P(T)P(A ∣ T)P(B ∣ T)

Random variables: 

 - Time Alice thinks it is 

 - Time Bob thinks it is 

 - Actual time

A

B

T

A

T

B



Belief Networks as Factorings

• A joint distribution can be factored in multiple different ways 

• Every variable ordering induces at least one correct factoring (Why?) 

• A belief network represents a single factoring 

• For a given joint distribution,  
some factorings are correct, some are incorrect

A

T

B

A

T

B

A

T

B

T

A

B
Questions: 

1. Does applying the 
Chain Rule to a 
given variable 
ordering give a 
unique factoring? 

2. Does a given 
variable ordering 
correspond to a 
unique Belief 
Network?



Correct and Incorrect Factorings 
in the Clock Scenario

Which of the following are correct factorings of the joint distribution  in the 
Clock Scenario? 

1.  

2.    

3.  

Which of the above are a good factoring for the Clock Scenario?  Why?

P(A, B, T)

P(A)P(B)P(T)

P(A)P(B ∣ A)P(T ∣ A, B)

P(T)P(B ∣ T)P(A ∣ T)

Chain rule(A,B,T): P(A)P(B ∣ A)P(T ∣ A, B)

Chain rule(T,B,A): P(T)P(B ∣ T, A)P(A ∣ T)

Definition:  

A factoring of a joint distribution is correct when every probability computed by the factoring 
gives the correct joint probability.



Belief Networks as Factorings

Question: What factoring is represented by each network? 

Conditional independence guarantees are represented in belief networks by 
the absence of edges.

A

T

B

A

T

B

A

T

B

A

T

B

P(B)P(T ∣ B)P(A ∣ T ) P(B)P(T ∣ B)P(A ∣ B, T )
P(T )P(A ∣ T )P(B ∣ T )

P(T )P(A ∣ T )P(B ∣ A, T )
P(B ∣ A)P(T ∣ B)P(A ∣ T )

A

T

B

P(A)P(B)P(T )

Invalid

A

T

B



Variations on the Clock Scenario
• A valid belief network is only "correct" or "incorrect" with 

respect to a given joint distribution 

• A single network may be correct in one scenario and 
incorrect in another 

• Telephone Clock Scenario: Alice looks at the clock, 
then tells Bob the time over a noisy phone connection 

• Desert Islands Clock Scenario: Alice is on Island A.  
Bob is on Island B.  The clock is on Island C.  Alice and 
Bob cannot see or hear each other, or the clock.

B

A

T
A

T

B

A

T

B



SmokeSmoke

Report

FireTampering

Alarm

Leaving

Queries
• The most common task for a belief network is to 

query posterior probabilities given some 
observations 

• Easy case:  

• Observations are the parents of query target 

• More common cases: 

• Observations are the children of query target 

• Observations have no straightforward 
relationship to the target

Smoke Fire P(S|F)
1 1 0.9
1 0 0.01

Fire P(F)
r1 0.01

Report



Querying Joint Probabilities: 
Variable Ordering

To compute joint probability distribution, we need a 
variable ordering that is consistent with the graph 

for  from 1 to : 
    select an unlabelled variable with no unlabelled parents 
    label it as 

i n

i

Tampering

Alarm

Fire

Smoke

Leaving

Report
Question: 

Is this guaranteed to 
exist at every step?  
Why?

1 2

3 4

5

6

3 1

4

5

6

2



Querying Joint Probabilities

 

 

 

 

P(Tampering) = P(Tampering)

P(Tampering, Fire) = P(Fire)P(Tampering)

P(Tampering, Fire, Alarm) =
P(Alarm |Tampering, Fire)P(Fire)P(Tampering)

P(Tampering, Fire, Alarm, Smoke) =
P(Smoke |Fire)P(Alarm |Tampering, Fire)P(Fire)P(Tampering)

P(Tampering, Fire, Alarm, Smoke, Leaving) =
P(Leaving |Alarm)Pr(Smoke |Fire)P(Alarm |Tampering, Fire)P(Fire)P(Tampering)

Tampering

Alarm

Fire

Smoke

Leaving

1 2

3 4

5

• Multiply joint distributions in variable order 
• Example: Given variable ordering  

Tampering, Fire, Alarm, Smoke, Leaving

Questions: 
• Why  instead of 

? 
• Why  instead of 

?

P(Fire)
P(Fire ∣ Tampering)

P(Smoke ∣ Fire)
P(Smoke ∣ Tampering, Fire, Alarm)



Independence in a 
Joint Distribution

Question: How can we answer questions about independence using the 
full joint distribution? 

Examples using : 

1. Is  independent of ? 
•  for all ?  

2. Is  independent of ? 
•   for all ? 

3. Is  independent of  given ? 
•  

for all ? 

P(A, B, T)

A B
P(A = a ∣ B = b) = P(A = a) a ∈ dom(A), b ∈ dom(B)

T A
P(T = t ∣ A = a) = P(T = t) a ∈ dom(A), t ∈ dom(T)

A B T
P(A = a ∣ B = b, T = t) = P(A = a ∣ T = t)

a ∈ dom(A), b ∈ dom(B), t ∈ dom(T)

P(A, B) = ∑
t∈T

P(A, B, T = t)

P(A, T ) = ∑
b∈B

P(A, B = b, T )

P(B, T ) = ∑
a∈A

P(A = a, B, T )

P(A) = ∑
b∈B

P(A, B = b)

P(B) = ∑
a∈A

P(A = a, B)

P(T ) = ∑
a∈A

P(A = a, T )

P(A |B, T ) =
P(A, B, T )

P(B, T )

P(A |B) =
P(A, B)

P(B)

P(A |T ) =
P(A, T )

P(T )

P(T |A) =
P(A, T )

P(A)



Independence in a Belief Network
Definition:  
A belief network represents a joint distribution that can be factored as  

P(X1, …, Xn) =
n

∏
i=1

P(Xi ∣ parents(Xi))

Theorem: 
Every node is independent of its non-descendants, conditional only on 
its parents: 

• Node  is a parent of  if a directed edge  exists 

• Node  is a descendant of  if there exists a directed path from  to  

• Node  is a non-descendant of  if there does not exist a directed 
path from  to 

u v u → v

v u u v

v u
u v

Tampering

Alarm

Fire

Smoke

Leaving

Report

Fire P(F)
r1 0.01

Smoke Fire P(S|F)
1 1 0.9
1 0 0.01



Querying Independence in a 
Belief Network

• We can use a correct belief network to efficiently answer 
questions about independence without knowing any numbers 

• Examples using the belief network at right: 

1. Is T independent of A? 

2. Is A independent of B given T? 

3. Is A independent of B?

Belief Network Independence:  
Every node is independent of its non-descendants, conditional only on its parents

A

T

B



Chain
• Question: Is Report independent of Alarm given Leaving? 

• Intuitively: The only way learning Report tells us about Alarm is because it 
tells us about Leaving; but Leaving has already been observed 

• Formally: Report is independent of its non-descendants given only its parents 

• Leaving is Report's parent 

• Alarm is a non-descendant of Report 

• Question: Is Report independent of Alarm? 

• Intuitively: Learning Report gives us information about  Leaving, which gives 
us information about Alarm 

• Formally: Report is independent of Alarm given Report's parents; but the 
question is about marginal independence 

Alarm

Leaving

Report



Common Ancestor

Alarm

Fire

Smoke

• Question: Is Alarm independent of Smoke given Fire? 

• Intuitively: The only way learning Smoke tells us about Alarm is because it 
tells us about Fire; but Fire has already been observed 

• Formally: Alarm is independent of its non-descendants given only its parents 

• Fire is Alarm's parent 

• Smoke is a non-descendant of Alarm 

• Question: Is Alarm independent of Smoke? 

• Intuitively: Learning Smoke gives us information about Fire, which gives us 
information about Alarm 

• Formally: Alarm is independent of Smoke given only Alarm's parents; but 
the question is about marginal independence



Common Descendant ("collider")

Tampering

Alarm

Fire

• Question: Is Tampering independent of Fire given Alarm? 

• Intuitively: If we know Alarm is ringing, then both Tampering and Fire are more likely.  If 
we then learn that Fire is false, that makes it more likely that the Alarm is ringing 
because of Tampering. 

• Formally: Tampering is independent of Fire given only Tampering's parents; but we 
are conditioning on one of Tampering's descendants 

• Conditioning on a common descendant can make independent variables 
dependent through this explaining away effect 

• Question: Is Tampering (marginally) independent of Fire? 

• Intuitively: Learning Tampering doesn't tell us anything about whether a Fire is 
happening 

• Formally: Tampering is independent of Fire given Tampering's parents 

• Tampering has no parents, so we are always conditioning on them 

• Fire is a non-descendant of Tampering



Correctness of a 
Belief Network

A belief network is a correct representation of a joint distribution when the 
factoring that it represents is a correct factoring of the joint distribution. 
Equivalently: when the belief network answers "yes" to an independence question 
only if the joint distribution answers "yes" to the same question.

Questions:  
1. Is A independent of B in the above belief networks? 
2. Is A independent of B given C in the above belief networks?

A

C

B

C

B

A

B

C

A
A

C

B

A

C

B



Causal Network?
• The arcs in belief networks do not, in general, represent causal relationships! 

•  is a causal relationship if  causes the value of  

• E.g.,  doesn't cause , but this is nevertheless a correct encoding of the 
joint distribution 

• However, reasoning about causal relationships is often a good way to construct 
a natural encoding as a belief network 

• We can often reason about causal independence even when we don't know 
the full joint distribution

T → A T A

B T
A

T

B



Summary
• A belief network represents a specific factoring of a joint distribution 

• Graph structure encodes conditional independence relationships 

• More than one belief network can correctly represent a joint distribution 

• A given belief network may be correct for one underlying joint distribution and incorrect for 
another 

• A good belief network is one that encodes as many true conditional independence relationships as 
possible 

• It is possible to read the conditional independence guarantees made by a belief network directly from 
its graph structure 

• Arcs in a belief network often represent causal relationships 

• But they don't have to!


