Conditional Independence

CMPUT 261: Introduction to Artificial Intelligence

P&M §8.2

Assignment #1

- Assignment #1 is due TODAY at 11:59pm
 - Hand in on eClass

Lecture Outline

- 1. Recap
- 2. Structure
- 3. Marginal Independence
- 4. Conditional Independence

After this lecture, you should be able to:

- Define marginal and conditional independence
- Compute joint probabilities by exploiting marginal and conditional independence
- Compute the minimal number of quantities needed to define a joint distribution given a particular structure / generating process
- Identify marginally or conditionally independent random variables

Recap: Probability

- Probability is a numerical measure of uncertainty
 - Not a measure of truth
- Semantics:
 - A possible world is a complete assignment of values to variables
 - Every possible world has a probability
 - Probability of a proposition is the sum of probabilities of possible worlds in which the statement is true

Recap: Conditional Probability

- When we receive **evidence** in the form of a proposition e, it **rules out** all of the possible worlds in which e is **false**
 - We set those worlds' probability to 0, and rescale remaining probabilities to sum to 1
- Result is probabilities conditional on e: $P(h \mid e)$

Unstructured Joint Distributions

- Probabilities are not fully arbitrary
 - Semantics tell us probabilities given the joint distribution.
 - Semantics alone do not restrict probabilities very much
- In general, we might need to explicitly specify the entire joint distribution
 - Question: Can I just assign arbitrary numbers in [0,1] to combinations of values?
 - Question: How many numbers do we need to assign to fully specify a joint distribution of k binary random variables?
- We call situations where we have to explicitly enumerate the entire joint distribution unstructured

Structure

- Unstructured domains are very hard to reason about
- Fortunately, most real problems are generated by some sort of underlying process
 - This gives us structure that we can exploit to represent and reason about probabilities in a more compact way
 - We can compute any required joint probabilities based on the process, instead of specifying every possible joint probability explicitly
- Simplest kind of structure is when random variables don't interact

Generating Process

Example: I keep flipping a fair coin until it come up Heads

- Let S be a random variable that counts how many times I flipped the coin
- Knowing the process that generates the probabilities gives us a way to compute the probabilities rather than explicitly specifying each one individually

Example 2: Same as example 1, except that the coin comes up heads with probability p

Questions:

- 1. What is Pr(S = 1)?
- 2. What is Pr(S = k) (for integer k > 0?)
- 3. How many numbers would I have to assign to explicitly describe this distribution?
- 4. How many numbers would I need to assign to succinctly describe the distribution from Example 2?

Marginal Independence

When the value of one variable **never** gives you information about the value of the other, we say the two variables are **marginally independent**.

Definition:

Random variables X and Y are marginally independent iff

1.
$$P(X = x | Y = y) = P(X = x)$$
, and

2.
$$P(Y = y | X = x) = P(Y = y)$$

for all values of $x \in dom(X)$ and $y \in dom(Y)$.

Marginal Independence Example

- I flip four fair coins, and get four results: C_1, C_2, C_3, C_4
- Question: What is the probability that C_1 is heads?
 - $P(C_1 = heads)$
- Suppose that C_2 , C_3 , and C_4 are tails
- Question: What is the conditional probability that C_1 is heads?
 - $P(C_1 = heads \mid C_2 = tails, C_3 = tails, C_4 = tails)$
 - Why?

Properties of Marginal Independence

Proposition:

If X and Y are marginally independent, then

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$

for all values of $x \in dom(X)$ and $y \in dom(Y)$.

Proof:

1.
$$P(X = x, Y = y) = P(X = x | Y = y)P(Y = y)$$
 Chain rule

2.
$$P(X = x, Y = y) = P(X = x)P(Y = y)$$
 Marginal independence

Exploiting Marginal Independence

C ₂	P
Н	0.5

C 3	P
Н	0.5

C 4	Р	
Н	0.5	

- Instead of storing the entire joint distribution, we can store 4 marginal distributions, and use them to recover joint probabilities
 - **Question:** How many numbers do we need to assign to fully specify the marginal distribution for a **single** binary variable?
- If everything is independent, learning from observations is hopeless (why?)
 - But also if nothing is independent (why?)
 - The intermediate case, where many variables are independent, is ideal

```
C<sub>1</sub> C<sub>2</sub> C<sub>3</sub> C<sub>4</sub>
H H H 0.0625
H H H T 0.0625
H H T H 0.0625
H H T T 0.0625
H T H H 0.0625
H T H T 0.0625
     T H 0.0625
H T T T 0.0625
   H H H 0.0625
T H H T 0.0625
   H T H 0.0625
        T 0.0625
   T H H 0.0625
T T H T 0.0625
T T H 0.0625
```

Clock Scenario

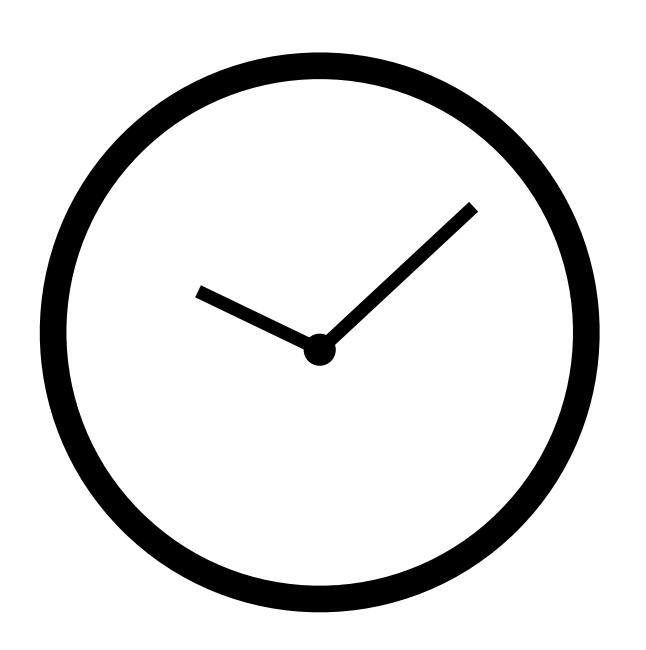
Example:

- I have a stylish but impractical clock with no number markings
- Two students, Alice and Bob, both look at the clock at the same time, and form opinions about what time it is
 - Their opinion of the time is directly affected by the actual time
 - They don't talk to each other, so Alice's opinion of the time is not affected by Bob's opinion of the time (& vice versa)
- Question: Are A and B marginally independent?

$$P(A \mid B) \neq P(A)$$

• Question: If we know it is 10:09. Are A and B independent?

$$P(A \mid B, T = 10.09) = P(A \mid T = 10.09)$$



Random variables:

A - Time Alice thinks it is

 $oldsymbol{B}$ - Time Bob thinks it is

T - Actual time

Conditional Independence

When knowing the value of a **third** variable Z makes two variables A, B independent, we say that they are **conditionally independent given** Z (or **independent conditional on** Z).

Definition:

Random variables X and Y are conditionally independent given Z iff

$$P(X = x \mid Y = y, Z = z) = P(X = x \mid Z = z)$$

for all values of $x \in dom(X)$, $y \in dom(Y)$, and $z \in dom(Z)$. We can write this using the notation $X \perp\!\!\!\perp Y \mid Z$.

Clock example: A and B are conditionally independent given T.

Properties of Conditional Independence

Proposition:

If X and Y are conditionally independent given Z, then

$$P(X = x, Y = y \mid Z = z) = P(X = x \mid Z = z)P(Y = y \mid Z = z)$$

for all values of $x \in dom(X)$, $y \in dom(Y)$, and $z \in dom(Z)$.

Proof:

1.
$$P(X = x, Y = y \mid Z = z) = P(X = x \mid Y = y, Z = z)P(Y = y \mid Z = z)$$
 Chain rule

2.
$$P(X=x,Y=y\mid Z=z)=P(X=x\mid Z)P(Y=y\mid Z=z)$$
 Conditional independence

Properties of Conditional Independence

Question: Is conditional independence commutative?

• i.e., If $X \perp\!\!\!\perp Y \mid Z$, is it also true that $Y \perp\!\!\!\perp X \mid Z$?

Proof:

$$X \perp\!\!\!\perp Y \mid Z \iff P(X,Y \mid Z) = P(X \mid Z)P(Y \mid Z)$$
 previous result
$$\iff P(Y,X \mid Z) = P(Y \mid Z)P(X \mid Z) \text{ commutativity of multiplication}$$

$$\iff Y \perp\!\!\!\perp X \mid Z \qquad \blacksquare$$

Exploiting Conditional Independence

If X and Y are marginally independent given Z, then we can again just store **smaller** tables and recover joint distributions by **multiplication**.

- Question: How many tables do we need to store in order to be able to compute the joint distribution of X,Y,Z when X and Y are independent given Z?
 - i.e., how many tables to be able to compute P(X=x,Y=y,Z=z) for every combination of x,y,z?

Preview: In the upcoming lectures, we will see how to efficiently exploit **complex structures** of conditional independence

Simplified Clock Example

A	T	P(A T)
12	1	0.25
1	1	0.50
2	1	0.25
1	2	0.25
2	2	0.50
3	2	0.25
2	3	0.25
3	3	0.50
4	3	0.25

В	T	P(B T)	
12	1	0.25	
1	1	0.5	
2	1	0.25	
1	2	0.25	
2	2	0.5	
3	2	0.25	
2	3	0.25	
3	3	0.5	
4	3	0.25	

T	P(T)
1	0
2	1/10
3	1/10
4	1/10
5	1/10
6	1/10
7	1/10
8	1/10
9	1/10
10	1/10
11	1/10
12	0

$$P(A = 1, B = 2, T = 2)$$

$$= P(A = 1 \mid T = 2)P(B = 2 \mid T = 2)P(T = 2)$$

$$= 0.25 \times 0.5 \times 0.10$$

$$= 0.0125$$

$$P(A = 1, B = 2, T = 1)$$

$$= P(A = 1 \mid T = 1)P(B = 2 \mid T = 1)P(T = 1)$$

$$= 0.5 \times 0.25 \times 0.0$$

$$= 0$$

Warnings

- Often, when two variables are marginally independent, they are also conditionally independent given a third variable
 - E.g., coins C_1 , and C_2 are marginally independent, and also conditionally independent given C_3 : Learning the value of C_3 does not make C_2 any more informative about C_1 .
- This is not always true
 - Consider another random variable: B is true if both C_1 and C_2 are the ${\sf same}$ value
 - C_1 and C_2 are marginally independent: $P(C_1 = heads \mid C_2 = heads) = P(C_1 = heads)$
 - In fact, C_1 and C_2 are also both marginally independent of \mathbf{B} : $P(C_1 \mid B = true) = P(C_1)$
 - But if I know the value of B, then knowing the value of C_1 tells me **exactly** what the value of C_2 must be: $P(C_1 = heads \mid B = true, C_2 = heads) \neq P(C_1 = heads \mid B = true)$
 - C_1 and C_2 are not conditionally independent given ${\it B}$

Summary

- Unstructured joint distributions are exponentially expensive to represent (and operate on)
- Marginal and conditional independence are especially important forms of structure that a distribution can have
 - Vastly reduces the cost of representation and computation
 - Beware: The relationship between marginal and conditional independence is not fixed
- Joint probabilities of (conditionally or marginally) independent random variables can be computed by multiplication