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Assignment #1

• Assignment #1 is due TODAY at 11:59pm 

• Hand in on eClass



Lecture Outline
1. Recap 

2. Structure 

3. Marginal Independence 

4. Conditional Independence

After this lecture, you should be able to: 
• Define marginal and conditional independence 
• Compute joint probabilities by exploiting marginal and conditional independence 
• Compute the minimal number of quantities needed to define a joint distribution 

given a particular structure / generating process  
• Identify marginally or conditionally independent random variables



Recap: Probability

• Probability is a numerical measure of uncertainty 

• Not a measure of truth 

• Semantics:  

• A possible world is a complete assignment of values to variables 

• Every possible world has a probability 

• Probability of a proposition is the sum of probabilities of possible worlds 
in which the statement is true



Recap: 
Conditional Probability

• When we receive evidence in the form of a proposition , it rules out all of the 
possible worlds in which  is false 

• We set those worlds' probability to 0, and rescale remaining probabilities to 
sum to 1 

• Result is probabilities conditional on e: 

e
e

P(h ∣ e)



Unstructured  
Joint Distributions

• Probabilities are not fully arbitrary 

• Semantics tell us probabilities given the joint distribution. 

• Semantics alone do not restrict probabilities very much 

• In general, we might need to explicitly specify the entire joint distribution 

• Question: Can I just assign arbitrary numbers in [0,1] to combinations of values? 

• Question: How many numbers do we need to assign to fully specify a joint 
distribution of  binary random variables? 

• We call situations where we have to explicitly enumerate the entire joint distribution 
unstructured

k



Structure
• Unstructured domains are very hard to reason about 

• Fortunately, most real problems are generated by some sort of 
underlying process 

• This gives us structure that we can exploit to represent and reason 
about probabilities in a more compact way 

• We can compute any required joint probabilities based on the process, 
instead of specifying every possible joint probability explicitly 

• Simplest kind of structure is when random variables don't interact 



Generating Process

Example: I keep flipping a fair coin until it come up Heads 

• Let  be a random variable that counts how many times I 
flipped the coin 

• Knowing the process that generates the probabilities 
gives us a way to compute the probabilities rather than 
explicitly specifying each one individually 

Example 2: Same as example 1, except that the coin comes 
up heads with probability 

S

p

Questions: 

1. What is ? 

2. What is   
(for integer ?) 

3. How many numbers 
would I have to assign 
to explicitly describe 
this distribution? 

4. How many numbers 
would I need to assign 
to succinctly describe 
the distribution from 
Example 2?

Pr(S = 1)
Pr(S = k)

k > 0



Marginal Independence

When the value of one variable never gives you information about the value of the 
other, we say the two variables are marginally independent. 

Definition: 
Random variables  and  are marginally independent iff 

1. , and  

2.  

for all values of  and .

X Y

P(X = x ∣ Y = y) = P(X = x)

P(Y = y ∣ X = x) = P(Y = y)

x ∈ dom(X) y ∈ dom(Y)



Marginal Independence Example
• I flip four fair coins, and get four results:  

• Question: What is the probability that  is heads? 

•  

• Suppose that , , and  are tails 

• Question: What is the conditional probability that  is heads? 

•  

• Why?

C1, C2, C3, C4

C1

P(C1 = heads)

C2 C3 C4

C1

P(C1 = heads ∣ C2 = tails, C3 = tails, C4 = tails)



Properties of Marginal Independence
Proposition: 
If  and  are marginally independent, then 

     

for all values of  and . 

Proof: 

1.    Chain rule 

2.                 Marginal independence 

    

X Y

P(X = x, Y = y) = P(X = x)P(Y = y)

x ∈ dom(X) y ∈ dom(Y)

P(X = x, Y = y) = P(X = x |Y = y)P(Y = y)

P(X = x, Y = y) = P(X = x)P(Y = y)

∎



Exploiting 
Marginal Independence

• Instead of storing the entire joint distribution, we 
can store 4 marginal distributions, and use them 
to recover joint probabilities 

• Question: How many numbers do we need to 
assign to fully specify the marginal distribution 
for a single binary variable? 

• If everything is independent, learning from 
observations is hopeless (why?) 

• But also if nothing is independent (why?) 
• The intermediate case, where many variables 

are independent, is ideal

C1 C2 C3 C4 P
H H H H 0.0625
H H H T 0.0625
H H T H 0.0625
H H T T 0.0625
H T H H 0.0625
H T H T 0.0625
H T T H 0.0625
H T T T 0.0625
T H H H 0.0625
T H H T 0.0625
T H T H 0.0625
T H T T 0.0625
T T H H 0.0625
T T H T 0.0625
T T T H 0.0625

C1 P
H 0.5

C2 P
H 0.5

C3 P
H 0.5

C4 P
H 0.5



Clock Scenario
Example: 
• I have a stylish but impractical clock with no number markings 
• Two students, Alice and Bob, both look at the clock at the same 

time, and form opinions about what time it is 
• Their opinion of the time is directly affected by the actual time 
• They don't talk to each other, so Alice's opinion of the time is 

not affected by Bob's opinion of the time (& vice versa) 

• Question: Are  and  marginally independent? 

 

• Question: If we know it is 10:09.  Are  and  independent? 

  

A B

P(A ∣ B) ≠ P(A)
A B

P(A ∣ B, T = 10:09) = P(A ∣ T = 10:09)

Random variables: 

 - Time Alice thinks it is 

 - Time Bob thinks it is 

 - Actual time

A

B

T



Conditional Independence
When knowing the value of a third variable  makes two variables  
independent, we say that they are conditionally independent given  (or 
independent conditional on ). 

Definition: 
Random variables  and  are conditionally independent given Z iff 

  

for all values of , , and .   
We can write this using the notation  . 

Clock example:  and  are conditionally independent given .

Z A, B
Z

Z

X Y

P(X = x ∣ Y = y, Z = z) = P(X = x ∣ Z = z)

x ∈ dom(X) y ∈ dom(Y) z ∈ dom(Z)
X ⊥⊥ Y ∣ Z

A B T



Properties of  
Conditional Independence

Proposition: 
If  and  are conditionally independent given , then 

     

for all values of , , and . 

Proof: 

1.       Chain rule 

2.    Conditional independence 

    

X Y Z

P(X = x, Y = y ∣ Z = z) = P(X = x ∣ Z = z)P(Y = y ∣ Z = z)

x ∈ dom(X) y ∈ dom(Y) z ∈ dom(Z)

P(X = x, Y = y ∣ Z = z) = P(X = x |Y = y, Z = z)P(Y = y ∣ Z = z)

P(X = x, Y = y ∣ Z = z) = P(X = x ∣ Z)P(Y = y ∣ Z = z)

∎



Properties of  
Conditional Independence

Question: Is conditional independence commutative? 

• i.e., If , is it also true that ? 

Proof: 

  previous result 

                     commutativity of multiplication 

                   

X ⊥⊥ Y ∣ Z Y ⊥⊥ X ∣ Z

X ⊥⊥ Y ∣ Z ⟺ P(X, Y ∣ Z) = P(X ∣ Z)P(Y ∣ Z)

⟺ P(Y, X ∣ Z) = P(Y ∣ Z)P(X ∣ Z)

⟺ Y ⊥⊥ X ∣ Z ∎



Exploiting Conditional Independence

If  and  are marginally independent given , then we can again just store smaller 
tables and recover joint distributions by multiplication. 

• Question: How many tables do we need to store in order to be able to compute 
the joint distribution of  when  and  are independent given ? 

• i.e., how many tables to be able to compute  for every 
combination of ? 

Preview: In the upcoming lectures, we will see how to efficiently exploit complex 
structures of conditional independence

X Y Z

X, Y, Z X Y Z

P(X = x, Y = y, Z = z)
x, y, z



Simplified Clock Example
A T P(A | T)

12 1 0.25

1 1 0.50

2 1 0.25

1 2 0.25

2 2 0.50

3 2 0.25

2 3 0.25

3 3 0.50

4 3 0.25

⋮

B T P(B | T)

12 1 0.25

1 1 0.5

2 1 0.25

1 2 0.25

2 2 0.5

3 2 0.25

2 3 0.25

3 3 0.5

4 3 0.25

⋮

T P(T)

1 0

2 1/10

3 1/10

4 1/10

5 1/10

6 1/10

7 1/10

8 1/10

9 1/10

10 1/10

11 1/10

12 0

P(A = 1,B = 2,T = 2)
= P(A = 1 ∣ T = 2)P(B = 2 ∣ T = 2)P(T = 2)
= 0.25 × 0.5 × 0.10
= 0.0125

P(A = 1,B = 2,T = 1)
= P(A = 1 ∣ T = 1)P(B = 2 ∣ T = 1)P(T = 1)
= 0.5 × 0.25 × 0.0
= 0



Warnings
• Often, when two variables are marginally independent, they are also conditionally independent 

given a third variable 

• E.g., coins , and  are marginally independent, and also conditionally independent given 
:  Learning the value of  does not make  any more informative about . 

• This is not always true 

• Consider another random variable:  is true if both  and  are the same value 

•  and  are marginally independent:  

• In fact,  and  are also both marginally independent of B:  

• But if I know the value of , then knowing the value of  tells me exactly what the value of  
must be:  

•  and  are not conditionally independent given B

C1 C2
C3 C3 C2 C1

B C1 C2

C1 C2 P(C1 = heads ∣ C2 = heads) = P(C1 = heads)

C1 C2 P(C1 ∣ B = true) = P(C1)

B C1 C2
P(C1 = heads ∣ B = true, C2 = heads) ≠ P(C1 = heads ∣ B = true)

C1 C2



Summary
• Unstructured joint distributions are exponentially expensive to represent (and 

operate on) 

• Marginal and conditional independence are especially important forms of 
structure that a distribution can have 

• Vastly reduces the cost of representation and computation 

• Beware: The relationship between marginal and conditional independence 
is not fixed 

• Joint probabilities of (conditionally or marginally) independent random variables 
can be computed by multiplication


