Probability Theory

CMPUT 261: Introduction to Artificial Intelligence

P&M §8.1

Logistics & Assignment #1

- Assignment #1 was released last week See eClass
 - Due **Tuesday, January 31** at 11:59pm
- Office hours have begun!
 - Not mandatory; for getting help from TAs
 - your scheduled lab section
- There will be an **example/practice midterm**

• There are no labs for this course: You do not need to show up for

Recap: Search

- Agent searches internal representation to find solution
- Fully-observable, deterministic, offline, single-agent problems
- Graph search finds a sequence of actions to a goal node
 - Efficiency gains from using heuristic functions to encode domain knowledge
- Local search finds a goal node by repeatedly making small changes to the current state
 - Random steps and random restarts help handle local optima, completeness

Lecture Outline

- 1. Recap
- 2. Uncertainty
- 3. Probability Semantics
- 4. Conditional Probability
- 5. Expected Value

After this lecture, you should be able to:

- Compute joint, marginal, and conditional probabilities
- Compute expected values
- Apply Bayes' rule to compute posterior probabilities
- Apply the Chain rule to compute joint probabilities

to: ditional probabilities

sterior probabilities oint probabilities

Uncertainty

- In most applications, an agent cannot just make assumptions and then act according to those assumptions
- Knowledge is **uncertain**:
 - Must consider **multiple** hypotheses

In search problems, agent has perfect knowledge of the world and its dynamics

Must update beliefs about which hypotheses are likely given observations

Example: Wearing a Seatbelt

- An agent has to decide between three actions:
 - 1. Drive without wearing a seatbelt
 - 2. Drive while wearing a seatbelt
 - 3. Stay home
- If the agent knows that an accident will happen, it will just stay home
- If the agent knows that an accident will not happen, it will not bother to wear a seatbelt!
- Wearing a seatbelt only makes sense because the agent is uncertain about whether driving will lead to an accident.

Measuring Uncertainty

- Probability is a way of measuring uncertainty
- We assign a number between 0 and 1 to events (hypotheses):
 - 0 means absolutely certain that statement is false
 - 1 means absolutely certain that statement is true
 - Intermediate values mean more or less certain
- Probability is a measurement of uncertainty, not truth
 - A statement with probability .75 is not "mostly true"
 - Rather, we believe it is more likely to be true than not

Subjective vs. Objective: The Frequentist Perspective

- Probabilities can be interpreted as objective statements about the world, or as subjective statements about an agent's beliefs.
- Objective view is called **frequentist:**
 - The probability of an event is the proportion of times it would happen in the long run of repeated experiments
 - Every event has a single, true probability
 - Events that can only happen once don't have a well-defined probability

Subjective vs. Objective: The Bayesian Perspective

- Probabilities can be interpreted as objective statements about the world, or as subjective statements about an agent's beliefs.
- Subjective view is called **Bayesian**:
 - The probability of an event is a measure of an agent's belief about its likelihood
 - Different agents can legitimately have different beliefs, so they can legitimately assign different probabilities to the same event
 - There is only one way to update those beliefs in response to new data
- In this course, we will primarily take the **Bayesian** view

Example: Dice

- Diane rolls a fair, six-sided die, and gets the number X
 - Question: What is P(X = 5)? (the probability that Diane rolled a 5)
- Diane truthfully tells Oliver that she rolled an odd number.
 - Question: What should Oliver believe P(X = 5) is?
- Diane truthfully tells Greta that she rolled a number ≥ 5 .
 - Question: What should Greta believe P(X = 5) is?
- Question: What is P(X = 5)?

Semantics: Possible Worlds

- Random variables take values from a domain.
 We will write them as uppercase letters (e.g., X, Y, D, etc.)
- A **possible world** is a **complete assignment** of values to variables We will usually write a single "world" as ω and the set of all possible worlds as Ω In this lecture: worlds are **discrete** (i.e., we can take sums)
- A probability measure is a function $P: \Omega \to \mathbb{R}$ over possible worlds ω satisfying:

1.
$$\sum_{\omega \in \Omega} P(\omega) = 1$$

2. $P(\omega) \ge 0 \ \forall \omega \in \Omega$

Propositions

- A **primitive proposition** is an equality or inequality expression E.g., X = 5 or $X \ge 4$
- A proposition is built up from other propositions using logical connectives. E.g., $(X = 1 \lor X = 3 \lor X = 5)$
- The **probability** of a proposition is the sum of the probabilities of the **possible worlds in which that** lacksquareproposition is true:

 $P(\alpha)$

Therefore: \bullet

$$= \sum_{\omega:\omega\models\alpha} P(\omega) \qquad \omega\models\alpha \text{ means } "\alpha \text{ is true in } \omega"$$

- $P(\alpha \lor \beta) \ge P(\alpha)$ $P(\alpha \land \beta) \leq P(\alpha)$ $P(\neg \alpha) = 1 - P(\alpha)$
- $\alpha \lor \beta$ means " α OR β " $\alpha \land \beta$ means " α AND β " $\neg \alpha$ means "NOT α "

Joint Distributions

- In our dice example, there was a single random variable
- We typically want to think about the interactions of multiple random variables
- A **joint distribution** assigns a probability to each full assignment of values to variables
 - e.g., P(X = 1, Y = 5). Equivalent to $P(X 1 \land Y = 5)$
 - Can view this as another way of specifying a single possible world

Joint Distribution Example

- What might a day be like in Edmonton? Random variables:
 - Weather, with domain {clear, snowing}
 - Temperature, with domain {mild, cold, very_cold}
- Joint distribution
 P(Weather, Temperature):

Weather	Temperature	Ρ
clear	mild	0.20
clear	cold	0.30
clear	very cold	0.25
snowing	mild	0.05
snowing	cold	0.10
snowing	very cold	0.10

Marginalization

- **Marginalization** is using a joint distribution $P(X_1, \ldots, X_m, \ldots, X_n)$ to compute a distribution over a smaller number of variables $P(X_1, \ldots, X_m)$
 - Smaller distribution is called the marginal distribution of its variables (e.g., marginal distribution of X_1, \ldots, X_m)
- We compute the marginal distribution by summing out the other variables:

$$P(X, Y) = \sum_{w \in \text{dom}(W)} \sum_{z \in \text{dom}(Z)} P(W = w, X, Y, Z = z)$$

Question:

What is the marginal distribution of Weather?

Weather	Temperature	Ρ
clear	mild	0.20
clear	cold	0.30
clear	very cold	0.25
snowing	mild	0.05
snowing	cold	0.10
snowing	very cold	0.10

Conditional Probability

- This process is called conditioning
- observed evidence e"
 - $P(h \mid e)$ is the probability of h conditional on e

Agents need to be able to update their beliefs based on new observations

• We write $P(h \mid e)$ to denote "probability of hypothesis h given that we have

Semantics of Conditional Probability

- Evidence *e* lets us rule out all of the worlds that are incompatible with *e*
 - E.g., if I observe that the weather is clear, I should no longer assign any probability to the worlds in which it is snowing
 - the probabilities of possible worlds sum to 1

$$P(\omega \mid e) = \begin{cases} c \\ 0 \end{cases}$$

• We need to normalize the probabilities of the remaining worlds to ensure that

 $\times P(\omega)$ if $\omega \models e$, otherwise.

Semantics of Conditional Probability

- Evidence *e* lets us rule out all of the worlds that are incompatible with *e*
 - E.g., if I observe that the weather is clear, I should no longer assign any probability to the worlds in which it is snowing
 - the probabilities of possible worlds sum to 1

$$P(\omega \mid e) = \begin{cases} \frac{1}{2} \\ 0 \end{cases}$$

• We need to **normalize** the probabilities of the remaining worlds to ensure that

 $\frac{1}{P(e)} \times P(\omega) \quad \text{if } \omega \models e,$ otherwise.

Conditional Probability Example

- My initial marginal belief about the weather V = P(Weather = snow) = 0.25
- Suppose I observe that the temperature is r
 - **Question:** What probability should I now assign to Weather = snow?
- 1. Rule out incompatible worlds
- 2. Normalize remaining probabilities
- 3. Result: P(Weather = snow | Temperature = mild)

was:	Weather	P
mild.	clear	.20 / (.20 + .05) = <mark>0.8</mark>
	snowing	.05 / (.20 + .05) = 0.2
	clear	very cold 0.25
	snowing	mild 0.05
	- snowing	cold 0.10
() = 0.20	-snowing	vory cold 0.10

Chain Rule

Definition: conditional probability

 $P(h \mid e$

• We can run this **in reverse** to get P(h, e) =

Definition: chain rule

$$P(\alpha_1, \dots, \alpha_n) = P(\alpha_1) \times P(\alpha_1) = \prod_{i=1}^n P(\alpha_i \mid \alpha_i)$$

$$e) = \frac{P(h, e)}{P(e)}$$

$P(h, e) = P(h \mid e) \times P(e)$

 $\begin{aligned} & \boldsymbol{\alpha}_2 \mid \boldsymbol{\alpha}_1) \times \cdots \times P(\boldsymbol{\alpha}_n \mid \boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_{n-1}) \\ & \boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_{i-1}) \end{aligned}$

Bayes' Rule

- From the **chain rule**, we have P(h, e) =
- Often, $P(e \mid h)$ is easier to compute than $P(h \mid e)$.

Bayes' Rule:

Posterior $P(h \mid e) =$

 $P(h, e) = P(h \mid e)P(e)$ $= P(e \mid h)P(h)$

- 6 urns with 100 balls each
- Four have 80 black balls, 20 white; the other 2 have 25 black balls, 75 white
- I roll a fair die and choose the urn with the lacksquarecorresponding number
 - **Q:** With what probability are the majority of the balls in the chosen urn white? i.e., Pr(G = w)
- I draw a ball from the urn; it's white! i.e., X = w
- **Conditional on that observation**, with what probability are most of the balls in the urn white?

i.e.,
$$Pr(G = w | X = w)$$

Bayes' Rule Example: Urns

Bayes' Rule Exa

$$Pr(G = w) = \frac{2}{6}$$

$$Pr(X = w \mid G = w) = 0.75$$

$$Pr(G = w \mid X = w) = ?$$

$$Pr(G = w \mid X = w) = \frac{Pr(X = w \mid G = w) Pr(G = w)}{Pr(X = w)}$$

$$= \frac{Pr(X = w \mid G = w) Pr(G = w)}{\sum_{g \in \text{dom}(G)} Pr(X = w, G = w)}$$

$$= \frac{Pr(X = w \mid G = w) Pr(G = w)}{\sum_{g \in \text{dom}(G)} Pr(X = w \mid G = w)}$$

$$= \frac{0.75 \times 0.33}{0.75 \times 0.33 + 0.20 \times 0.67}$$

Example: Urns

Expected Value

• The **expected value** of a function f on a random variable is the weighted the **probability** of each value:

$$\mathbb{E}\left[f(X)\right] =$$

 $x \in C$

$$\mathbb{E}\left[f(X) \mid Y = y\right] =$$

 $x \in$

average of that function over the domain of the random variable, weighted by

$$\sum_{dom(X)} P(X = x)f(x)$$

• The conditional expected value of a function f is the average value of the function over the domain, weighted by the **conditional probability** of each value:

$$\sum_{x \in Om(X)} P(X = x \mid Y = y)f(x)$$

 $\mathbb{E}[X] = 3$ $\mathbb{E}[X^2] \simeq 10$

Expected Value Examples

 $\mathbb{E}[X] = 3$ $\mathbb{E}[X^2] \simeq 12$

= 3

Expected Value Examples

$\mathbb{E}[X] = \sum x \Pr[X = x]$ $x \in \text{dom}(X)$

= (0.37)1 + (0.125)2 + (0.01)3 + (0.125)4 + (0.37)5= 3

Summary

- **Probability** is a **numerical** measure of **uncertainty**
- Formal semantics:
 - Weights over **possible worlds** sum to 1
 - Probability of a proposition is total weight of possible worlds in which that proposition is true
- Conditional probability updates beliefs based on evidence
- Expected value of a function is its probability-weighted average over possible worlds