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Logistics & Assignment #1
• Assignment #1 was released last week 

See eClass 

• Due Tuesday, January 31 at 11:59pm 

• Office hours have begun! 

• Not mandatory; for getting help from TAs 

• There are no labs for this course: You do not need to show up for 
your scheduled lab section 

• There will be an example/practice midterm



Recap: Search
• Agent searches internal representation to find solution 

• Fully-observable, deterministic, offline, single-agent problems 

• Graph search finds a sequence of actions to a goal node 

• Efficiency gains from using heuristic functions to encode 
domain knowledge 

• Local search finds a goal node by repeatedly making small changes to the 
current state 

• Random steps and random restarts help handle local optima, 
completeness



Lecture Outline
1. Recap 
2. Uncertainty 
3. Probability Semantics 
4. Conditional Probability 
5. Expected Value

After this lecture, you should be able to: 
• Compute joint, marginal, and conditional probabilities 
• Compute expected values 
• Apply Bayes' rule to compute posterior probabilities 
• Apply the Chain rule to compute joint probabilities



Uncertainty

• In search problems, agent has perfect knowledge of the world and its dynamics 

• In most applications, an agent cannot just make assumptions and then act 
according to those assumptions 

• Knowledge is uncertain: 

• Must consider multiple hypotheses 

• Must update beliefs about which hypotheses are likely given observations



Example: Wearing a Seatbelt
• An agent has to decide between three actions: 

1. Drive without wearing a seatbelt 

2. Drive while wearing a seatbelt 

3. Stay home 

• If the agent knows that an accident will happen, it will just stay home 

• If the agent knows that an accident will not happen, it will not bother to wear a 
seatbelt! 

• Wearing a seatbelt only makes sense because the agent is uncertain about 
whether driving will lead to an accident.



Measuring Uncertainty
• Probability is a way of measuring uncertainty 

• We assign a number between 0 and 1 to events (hypotheses): 

• 0 means absolutely certain that statement is false 

• 1 means absolutely certain that statement is true 

• Intermediate values mean more or less certain 

• Probability is a measurement of uncertainty, not truth 

• A statement with probability .75 is not "mostly true" 

• Rather, we believe it is more likely to be true than not



Subjective vs. Objective: 
The Frequentist Perspective

• Probabilities can be interpreted 
as objective statements about the world, or 
as subjective statements about an agent's beliefs. 

• Objective view is called frequentist: 

• The probability of an event is the proportion of times it would happen in the 
long run of repeated experiments 

• Every event has a single, true probability 

• Events that can only happen once don't have a well-defined probability



Subjective vs. Objective: 
The Bayesian Perspective

• Probabilities can be interpreted 
as objective statements about the world, or 
as subjective statements about an agent's beliefs. 

• Subjective view is called Bayesian: 

• The probability of an event is a measure of an agent's belief about its likelihood 

• Different agents can legitimately have different beliefs, so they can legitimately 
assign different probabilities to the same event 

• There is only one way to update those beliefs in response to new data 

• In this course, we will primarily take the Bayesian view



Example: Dice
• Diane rolls a fair, six-sided die, and gets the number  

• Question: What is ?  (the probability that Diane rolled a 5) 

• Diane truthfully tells Oliver that she rolled an odd number. 

• Question: What should Oliver believe  is? 

• Diane truthfully tells Greta that she rolled a number . 

• Question: What should Greta believe  is? 

• Question: What is ?

X

P(X = 5)

P(X = 5)

≥ 5

P(X = 5)

P(X = 5)



Semantics: 
Possible Worlds

• Random variables take values from a domain.  
We will write them as uppercase letters (e.g., , etc.) 

• A possible world is a complete assignment of values to variables 
We will usually write a single "world" as  and the set of all possible worlds as  
In this lecture: worlds are discrete (i.e., we can take sums) 

• A probability measure is a function  over possible worlds ω satisfying: 

1.   

2.   

X, Y, D

ω Ω

P : Ω → ℝ

∑
ω∈Ω

P(ω) = 1

P(ω) ≥ 0 ∀ω ∈ Ω



Propositions
• A primitive proposition is an equality or inequality expression 

E.g.,  or  

• A proposition is built up from other propositions using logical connectives.   
E.g.,  

• The probability of a proposition is the sum of the probabilities of the possible worlds in which that 
proposition is true: 

   

• Therefore: 

X = 5 X ≥ 4

(X = 1 ∨ X = 3 ∨ X = 5)

P(α) = ∑
ω:ω⊧α

P(ω)

P(α ∨ β) ≥ P(α)
P(α ∧ β) ≤ P(α)

P(¬α) = 1 − P(α)

         means "𝛼 is true in ω"ω ⊧ α

𝛼∨β means "𝛼 OR β"

𝛼∧β means "𝛼 AND β"

¬𝛼 means "NOT 𝛼"



Joint Distributions

• In our dice example, there was a single random variable 

• We typically want to think about the interactions of multiple random variables 

• A joint distribution assigns a probability to each full assignment of values to 
variables 

• e.g., . Equivalent to  

• Can view this as another way of specifying a single possible world

P(X = 1,Y = 5) P(X − 1 ∧ Y = 5)



Joint Distribution Example

• What might a day be like in Edmonton?  
Random variables: 

• Weather,  
with domain {clear, snowing} 

• Temperature,  
with domain {mild, cold, very_cold} 

• Joint distribution  
P(Weather, Temperature):

Weather Temperature P

clear mild 0.20

clear cold 0.30

clear very cold 0.25

snowing mild 0.05

snowing cold 0.10

snowing very cold 0.10



Weather P

clear 0.75

snowing 0.25

Marginalization
• Marginalization is using a joint distribution 

 to compute a distribution 
over a smaller number of variables  

• Smaller distribution is called the 
marginal distribution of its variables (e.g., 
marginal distribution of ) 

• We compute the marginal distribution by 
summing out the other variables: 

P(X1, …, Xm, …Xn)
P(X1, …, Xm)

X1, …, Xm

P(X, Y) = ∑
w∈dom(W)

∑
z∈dom(Z)

P(W = w, X, Y, Z = z)

Weather Temperature P

clear mild 0.20

clear cold 0.30

clear very cold 0.25

snowing mild 0.05

snowing cold 0.10

snowing very cold 0.10

Question: 
What is the marginal 
distribution of 
Weather?



Conditional Probability

• Agents need to be able to update their beliefs based on new observations 

• This process is called conditioning 

• We write  to denote "probability of hypothesis  given that we have 
observed evidence " 

•  is the probability of  conditional on 

P(h ∣ e) h
e

P(h ∣ e) h e



Semantics of  
Conditional Probability

• Evidence  lets us rule out all of the worlds that are incompatible with  

• E.g., if I observe that the weather is clear, I should no longer assign any 
probability to the worlds in which it is snowing 

• We need to normalize the probabilities of the remaining worlds to ensure that 
the probabilities of possible worlds sum to 1

e e

P(ω ∣ e) = {c × P(ω) if ω ⊧ e,
0 otherwise.



P(ω ∣ e) = {
1

P(e) × P(ω) if ω ⊧ e,

0 otherwise.

Semantics of  
Conditional Probability

• Evidence  lets us rule out all of the worlds that are incompatible with  

• E.g., if I observe that the weather is clear, I should no longer assign any 
probability to the worlds in which it is snowing 

• We need to normalize the probabilities of the remaining worlds to ensure that 
the probabilities of possible worlds sum to 1

e e



Conditional Probability Example
• My initial marginal belief about the weather was:  

 

• Suppose I observe that the temperature is mild. 

• Question: What probability should I now 
assign to ? 

1. Rule out incompatible worlds 

2. Normalize remaining probabilities 

3. Result: 

P(Weather = snow) = 0.25

Weather = snow

P(Weather = snow ∣ Temperature = mild) = 0.20

Weather Temperature P

clear mild 0.20

clear cold 0.30

clear very cold 0.25

snowing mild 0.05

snowing cold 0.10

snowing very cold 0.10

Weather P

clear .20 / (.20 + .05) = 0.8

snowing .05 / (.20 + .05) = 0.2



Chain Rule
Definition: conditional probability 

  

• We can run this in reverse to get 

  

Definition: chain rule 

 

P(h ∣ e) =
P(h, e)
P(e)

P(h, e) = P(h ∣ e) × P(e)

P(α1, …, αn) = P(α1) × P(α2 ∣ α1) × ⋯ × P(αn ∣ α1, …, αn−1)
= Πn

i=1P(αi ∣ α1, …, αi−1)



Bayes' Rule

• From the chain rule, we have 

 

• Often,  is easier to compute than . 

Bayes' Rule: 

P(h, e) = P(h ∣ e)P(e)
= P(e ∣ h)P(h)

P(e ∣ h) P(h ∣ e)

P(h |e) =
P(e |h) P(h)

P(e)

Posterior
Likelihood

Prior

Evidence



Bayes' Rule Example: Urns
80 black
20 white

25 black
75 white

G = b G = w

• 6 urns with 100 balls each 
• Four have 80 black balls, 20 white; the other 2 have 

25 black balls, 75 white 
• I roll a fair die and choose the urn with the 

corresponding number 
• Q: With what probability are the majority of the 

balls in the chosen urn white? i.e.,  
• I draw a ball from the urn; it's white!  i.e.,  
• Conditional on that observation, with what 

probability are most of the balls in the urn white? 
i.e., 

Pr(G = w)
X = w

Pr(G = w ∣ X = w)
G = ? X = w

icons by Icons8
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Bayes' Rule Example: Urns
80 black
20 white

25 black
75 white

G = b G = w

G = ? X = w

Pr(G = w) =
2
6

Pr(X = w ∣ G = w) = 0.75

Pr(G = w ∣ X = w) = ?

Pr(G = w ∣ X = w) =
Pr(X = w ∣ G = w) Pr(G = w)

Pr(X = w)

=
Pr(X = w ∣ G = w) Pr(G = w)
∑g∈dom(G) Pr(X = w, G = g)

=
Pr(X = w ∣ G = w) Pr(G = w)

∑g∈dom(G) Pr(X = w ∣ G = g) Pr(G = g)

=
0.75 × 0.33

0.75 × 0.33 + 0.20 × 0.67 icons by Icons8

https://icons8.com


Expected Value
• The expected value of a function  on a random variable is the weighted 

average of that function over the domain of the random variable, weighted by 
the probability of each value: 

  

• The conditional expected value of a function  is the average value of the 
function over the domain, weighted by the conditional probability of each value: 

 

f

𝔼 [f(X)] = ∑
x∈dom(X)

P(X = x)f(x)

f

𝔼 [f(X) ∣ Y = y] = ∑
x∈dom(X)

P(X = x ∣ Y = y)f(x)



Expected Value Examples

1 2 3 4 51 2 3 4 5

𝔼[X] = 3 𝔼[X] = 3

𝔼[X2] ≃ 10 𝔼[X2] ≃ 12

X X

P(
X

)

P(
X

)



Expected Value Examples

1 2 3 4 5

𝔼[X] = ∑
x∈dom(X)

x Pr[X = x]

=
1
12

1 +
3
12

2 +
4
12

3 +
3
12

4 +
1
12

5

= 3

1 2 3 4 5

𝔼[X] = ∑
x∈dom(X)

x Pr[X = x]

= (0.37)1 + (0.125)2 + (0.01)3 + (0.125)4 + (0.37)5
= 3

P(
X

)

P(
X

)

X X



Summary
• Probability is a numerical measure of uncertainty 

• Formal semantics: 

• Weights over possible worlds sum to 1 

• Probability of a proposition is total weight of possible worlds in which  
that proposition is true 

• Conditional probability updates beliefs based on evidence 

• Expected value of a function is its probability-weighted average over 
possible worlds


