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Logistics & Assignment #1
• Assignment #1 was released last week 

See eClass 

• Due January 31 at 11:59pm 

• Office hours have begun! 

• Not mandatory; for getting help from TAs 

• There are no labs for this course: You do not need to show up for 
your scheduled lab section 

• There will be an example/practice midterm



Recap
• Search problems are an extremely general encoding for choosing a 

sequence of actions from a start state to a goal state 

• Using heuristic functions can speed this process up 
• A* search is optimal but space-intensive 
• Branch & bound depth-first search is optimal and space 

efficient, but needs a good starting bound 
• Iterative Deepening A* (IDA*) finds a good bound by iterative 

restarts (like IDS), but can be quadratically less time-efficient 

• Varying the direction of search can exploit mismatches in forward 
and reverse branching factors



Lecture Outline
1. Recap & Logistics 

2. Local Search 

3. Hill Climbing 

4. Randomized Algorithms

After this lecture, you should be able to: 
• Implement stochastic local search and demonstrate its operation 
• Implement simulated annealing and demonstrate its operation 
• Identify when stochastic local search is more appropriate than graph search 
• Explain the relative advantages and disadvantages of different neighbourhood 

specifications



Searching for Goal Nodes

• State is the values of the different variables 

• Easy to recognize when we've succeeded, but computing a "satisfying 
assignment" is NP-complete in general 

• SAT is an example of a constraint satisfaction problem

Example (SAT problem): Given a Boolean formula, 

, 

is there an assignment of truth values to the variables  that makes the formula true?

P(X) = (X1 ∨ X2 ∨ ¬X3) ∧ … ∧ (¬Xk−2 ∨ ¬Xk−1 ∨ Xk)

Xi

Sometimes, we know how to recognize a goal node, but not how to 
construct one.



Searching for Goal Nodes
We can encode SAT as a graph search problem (assignments as states, variable 
value changes as actions), but: 

1. The space is too big to explore exhaustively 

• Question: How many states are there in a SAT problem with  variables? 

• Industrial SAT problems routinely have hundreds of thousands of 
variables 

2. We don't care about the sequence of actions 

• Once we have a satisfying assignment, we are done 

• In fact, there isn't even a "real" set of actions; we have to make 
something up!

k



Local Search
• Idea: start from a random assignment, and then search around in the space of 

possible assignments 

• Need not keep track of the sequence of moves that we took 

• Intuitively: 

1. Select an assignment of a value to each variable 

2. Repeat: 

(i) Select a variable to change 

(ii) Select a new value for that variable 

3. until a satisfying assignment is found



Local Search Problem
Definition: Local Search Problem 

• A constraint satisfaction problem: A set of variables, domains 
for the variables, and constraints on their joint assignment. 

• Neighbours function:  

• Maps from a node  to a set of "similar" nodes 

• Score function:  

• Evaluates the "quality" of an assignment

neighbours(n)

n

score(n)

Questions: 

1. What are the 
nodes? 

2. What are the 
goal nodes?



Neighbourhoods
• In previous graph search problems, the successor function represents 

states that can be reached from a given state by taking some actual action 

• In local search problems, the neighbours function is a design decision 

• We choose actions that will help us efficiently explore the space rather 
than trying to represent actual actions 

• Usually the neighbourhood is states that differ in small ways from the 
current state (variable assignment) 

• E.g.: Assignments that differ in  different variables, possibly by a 
small amount 

• Question: What might be a good neighbourhood function for SAT?

k



Heuristics vs. Scores
• Previously, the heuristic was optional, for improving efficiency 

• In local search problems, the score function is required 

• The state space is too big to exhaustively explore, so 
uninformed search is not an option 

• Sometimes we don't even have a goal, we just want to 
maximize the quality of the state 

• Example scores: number of satisfied clauses (in SAT); number of 
satisfied constraints (in CSP) 

• Note: we maximize a score (why?) 

• Unlike graph search, score doesn't need to be positive (why?)



Generic Local Search Algorithm
Input: a constraint satisfaction problem; a neighbours function; 
a score function to maximize; a stop_walk criterion 

current := random assignment of values to variables 
incumbent := current 
repeat 
    if incumbent is a satisfying assignment: 
        return incumbent 
    if stop_walk(): 
        current := new random assignment of values to variables 
    else: 
        select a current from neighbours(current) 
    if score(current) > score(incumbent): 
        incumbent := current 
until termination



Hill Climbing
• Idea: Select the neighbour with the highest score 

• This is called an improving step 

• If no improving steps available, halt and return incumbent 

• We'll move toward the best solution once we are close enough 

• This algorithm is called hill climbing: 

• It seeks the highest point on the scoring function's graph 

• It moves only uphill (i.e., it makes only improving steps)



Hill Climbing Algorithm
Input: a constraint satisfaction problem; a neighbours function; a score function 

current := random assignment of values to variables 
incumbent := current 
repeat 
    if incumbent is a satisfying assignment: 
        return incumbent 
    if False: 
        current := new random assignment of values to variables 
    else: 
        current := n from neighbours(current) with maximum score(n) 
    if score(current) > score(incumbent): 
        incumbent := current 
    else: 
        return incumbent 
until termination

Questions: 

1. Is hill climbing 
complete? 

2. Is hill climbing 
optimal?



Hill Climbing Problems
1. Foothills: Local maxima that are not global maxima 

2. Plateaus: Regions of the state space where the score is uninformative 

3. Ridges: Foothills that would not be foothills with a larger neighbourhood 

4. Ignorance of the global optimum: Unless we reach a satisfying 
assignment, we cannot be sure that an optimum returned by local search 
is the global optimum.

Ridge

Foothill

Plateau

Global 
optimum



Randomized Algorithms

• Adding random moves can fix some hill climbing problems 

• Two main kinds of random move: 

1. Random restart:  Start searching from a completely random new 
location 

2. Random step: Choose a random neighbour 

• Stochastic local search: Add both kinds of random moves to hill climbing



Stochastic Local Search
Input: a constraint satisfaction problem; a neighbours function; a score 
function to maximize; a stop_walk criterion; a random_step criterion 

current := random assignment of values to variables 
incumbent := current 
repeat 
    if incumbent is a satisfying assignment: 
        return incumbent 
    if stop_walk(): 
        current := new random assignment of values to variables 
    else if random_step(): 
        current := a random element from neighbours(current) 
    else: 
        current := n from neighbours(current) with maximum score(n) 
    if score(current) > score(incumbent): 
        incumbent := current

Questions: 

1. Is stochastic 
local search 
complete? 
(Why?) 

2. Is stochastic 
local search 
optimal? 
(Why?)



Two Examples
• Consider two partial algorithms: 

1. Hill climbing plus random restart only 

2. Hill climbing plus random steps only 

• Question: Which finds the maximum most easily 
on each of these two search spaces?  Why?



Sampling from a Neighbourhood
• So far we have a sharp distinction between random steps and greedy steps 
• We either 

1. Move to a new current state that maximizes the score in the 
neighbourhood, OR 

2. Choose a new current state completely at random from the 
neighbourhood, regardless of its score 

• Question: Is there something in between that we could do? 
• Simulated annealing:  

• Choose a random neighbour 
• Make a random decision about whether to "accept" that neighbour that 

depends on the new neighbour's score



Simulated Annealing
Input: a constraint satisfaction problem; a neighbours function; a score function to maximize; a 
"temperature schedule"  

 := random assignment of values to variables 
 :=  

repeat for  
    Randomly choose  from  
    if  
        always accept (i.e.,  := ) 
    else  
        accept with probability 

 

T1, T2, …

current
incumbent current

T = T1, T2, …
new neighbours(current)

score(new) > score(current)
current new

e[(score(new)−score(current))/T]



Simulated Annealing cont.

• Small neighbourhoods are good, because they are more efficient to search 

• Large neighbourhoods are good, because they are more likely to contain an improvement 

• Simulated annealing allows for a large neighbourhood and efficient searching 
• You don't have to generate the whole neighbourhood for greedy steps, just randomly 

construct a single neighbour 
• But you will tend to move to parts of the state space with good score 

• Can also change sampling distribution over time  
• More random in early iterations, more likely to be a "nearby" state in later iterations

e[(score(new)−score(current))/T]
• Worse  means lower acceptance probability 

• Always negative (why?)

score(new) • Higher T makes 
negative value smaller


• Higher acceptance 
probability 



Summary
• For some problems, we only care about finding a goal node, not the actions 

we took to find it 

• Local search: Look for goal states by iteratively moving from a current state 
to a neighbouring state 

• Hill climbing: Always move to the highest-score neighbour 

• Random step: Sometimes choose a random neighbour 

• Random restart: Sometimes start again from an entirely random state 

• Simulated annealing: Every move is random, but the sampling 
distribution is increasingly non-uniform, and we don't always "accept" the 
sampled state


