
Local Search

CMPUT 261: Introduction to Artificial Intelligence

P&M §4.7

Logistics & Assignment #1
• Assignment #1 was released last week

See eClass

• Due January 31 at 11:59pm

• Office hours have begun!

• Not mandatory; for getting help from TAs

• There are no labs for this course: You do not need to show up for
your scheduled lab section

• There will be an example/practice midterm

Recap
• Search problems are an extremely general encoding for choosing a

sequence of actions from a start state to a goal state

• Using heuristic functions can speed this process up
• A* search is optimal but space-intensive
• Branch & bound depth-first search is optimal and space

efficient, but needs a good starting bound
• Iterative Deepening A* (IDA*) finds a good bound by iterative

restarts (like IDS), but can be quadratically less time-efficient

• Varying the direction of search can exploit mismatches in forward
and reverse branching factors

Lecture Outline
1. Recap & Logistics

2. Local Search

3. Hill Climbing

4. Randomized Algorithms

After this lecture, you should be able to:
• Implement stochastic local search and demonstrate its operation
• Implement simulated annealing and demonstrate its operation
• Identify when stochastic local search is more appropriate than graph search
• Explain the relative advantages and disadvantages of different neighbourhood

specifications

Searching for Goal Nodes

• State is the values of the different variables

• Easy to recognize when we've succeeded, but computing a "satisfying
assignment" is NP-complete in general

• SAT is an example of a constraint satisfaction problem

Example (SAT problem): Given a Boolean formula,

,

is there an assignment of truth values to the variables that makes the formula true?

P(X) = (X1 ∨ X2 ∨ ¬X3) ∧ … ∧ (¬Xk−2 ∨ ¬Xk−1 ∨ Xk)

Xi

Sometimes, we know how to recognize a goal node, but not how to
construct one.

Searching for Goal Nodes
We can encode SAT as a graph search problem (assignments as states, variable
value changes as actions), but:

1. The space is too big to explore exhaustively

• Question: How many states are there in a SAT problem with variables?

• Industrial SAT problems routinely have hundreds of thousands of
variables

2. We don't care about the sequence of actions

• Once we have a satisfying assignment, we are done

• In fact, there isn't even a "real" set of actions; we have to make
something up!

k

Local Search
• Idea: start from a random assignment, and then search around in the space of

possible assignments

• Need not keep track of the sequence of moves that we took

• Intuitively:

1. Select an assignment of a value to each variable

2. Repeat:

(i) Select a variable to change

(ii) Select a new value for that variable

3. until a satisfying assignment is found

Local Search Problem
Definition: Local Search Problem

• A constraint satisfaction problem: A set of variables, domains
for the variables, and constraints on their joint assignment.

• Neighbours function:

• Maps from a node to a set of "similar" nodes

• Score function:

• Evaluates the "quality" of an assignment

neighbours(n)

n

score(n)

Questions:

1. What are the
nodes?

2. What are the
goal nodes?

Neighbourhoods
• In previous graph search problems, the successor function represents

states that can be reached from a given state by taking some actual action

• In local search problems, the neighbours function is a design decision

• We choose actions that will help us efficiently explore the space rather
than trying to represent actual actions

• Usually the neighbourhood is states that differ in small ways from the
current state (variable assignment)

• E.g.: Assignments that differ in different variables, possibly by a
small amount

• Question: What might be a good neighbourhood function for SAT?

k

Heuristics vs. Scores
• Previously, the heuristic was optional, for improving efficiency

• In local search problems, the score function is required

• The state space is too big to exhaustively explore, so
uninformed search is not an option

• Sometimes we don't even have a goal, we just want to
maximize the quality of the state

• Example scores: number of satisfied clauses (in SAT); number of
satisfied constraints (in CSP)

• Note: we maximize a score (why?)

• Unlike graph search, score doesn't need to be positive (why?)

Generic Local Search Algorithm
Input: a constraint satisfaction problem; a neighbours function;
a score function to maximize; a stop_walk criterion

current := random assignment of values to variables
incumbent := current
repeat
 if incumbent is a satisfying assignment:
 return incumbent
 if stop_walk():
 current := new random assignment of values to variables
 else:
 select a current from neighbours(current)
 if score(current) > score(incumbent):
 incumbent := current
until termination

Hill Climbing
• Idea: Select the neighbour with the highest score

• This is called an improving step

• If no improving steps available, halt and return incumbent

• We'll move toward the best solution once we are close enough

• This algorithm is called hill climbing:

• It seeks the highest point on the scoring function's graph

• It moves only uphill (i.e., it makes only improving steps)

Hill Climbing Algorithm
Input: a constraint satisfaction problem; a neighbours function; a score function

current := random assignment of values to variables
incumbent := current
repeat
 if incumbent is a satisfying assignment:
 return incumbent
 if False:
 current := new random assignment of values to variables
 else:
 current := n from neighbours(current) with maximum score(n)
 if score(current) > score(incumbent):
 incumbent := current
 else: 
 return incumbent
until termination

Questions:

1. Is hill climbing
complete?

2. Is hill climbing
optimal?

Hill Climbing Problems
1. Foothills: Local maxima that are not global maxima

2. Plateaus: Regions of the state space where the score is uninformative

3. Ridges: Foothills that would not be foothills with a larger neighbourhood

4. Ignorance of the global optimum: Unless we reach a satisfying
assignment, we cannot be sure that an optimum returned by local search
is the global optimum.

Ridge

Foothill

Plateau

Global 
optimum

Randomized Algorithms

• Adding random moves can fix some hill climbing problems

• Two main kinds of random move:

1. Random restart: Start searching from a completely random new
location

2. Random step: Choose a random neighbour

• Stochastic local search: Add both kinds of random moves to hill climbing

Stochastic Local Search
Input: a constraint satisfaction problem; a neighbours function; a score
function to maximize; a stop_walk criterion; a random_step criterion

current := random assignment of values to variables
incumbent := current
repeat
 if incumbent is a satisfying assignment:
 return incumbent
 if stop_walk():
 current := new random assignment of values to variables
 else if random_step():
 current := a random element from neighbours(current)
 else:
 current := n from neighbours(current) with maximum score(n)
 if score(current) > score(incumbent):
 incumbent := current

Questions:

1. Is stochastic
local search
complete?
(Why?)

2. Is stochastic
local search
optimal?
(Why?)

Two Examples
• Consider two partial algorithms:

1. Hill climbing plus random restart only

2. Hill climbing plus random steps only

• Question: Which finds the maximum most easily
on each of these two search spaces? Why?

Sampling from a Neighbourhood
• So far we have a sharp distinction between random steps and greedy steps
• We either

1. Move to a new current state that maximizes the score in the
neighbourhood, OR

2. Choose a new current state completely at random from the
neighbourhood, regardless of its score

• Question: Is there something in between that we could do?
• Simulated annealing:

• Choose a random neighbour
• Make a random decision about whether to "accept" that neighbour that

depends on the new neighbour's score

Simulated Annealing
Input: a constraint satisfaction problem; a neighbours function; a score function to maximize; a
"temperature schedule"

 := random assignment of values to variables
 :=

repeat for
 Randomly choose from
 if
 always accept (i.e., :=)
 else
 accept with probability

T1, T2, …

current
incumbent current

T = T1, T2, …
new neighbours(current)

score(new) > score(current)
current new

e[(score(new)−score(current))/T]

Simulated Annealing cont.

• Small neighbourhoods are good, because they are more efficient to search

• Large neighbourhoods are good, because they are more likely to contain an improvement

• Simulated annealing allows for a large neighbourhood and efficient searching
• You don't have to generate the whole neighbourhood for greedy steps, just randomly

construct a single neighbour
• But you will tend to move to parts of the state space with good score

• Can also change sampling distribution over time
• More random in early iterations, more likely to be a "nearby" state in later iterations

e[(score(new)−score(current))/T]
• Worse means lower acceptance probability

• Always negative (why?)

score(new) • Higher T makes
negative value smaller

• Higher acceptance
probability

Summary
• For some problems, we only care about finding a goal node, not the actions

we took to find it

• Local search: Look for goal states by iteratively moving from a current state
to a neighbouring state

• Hill climbing: Always move to the highest-score neighbour

• Random step: Sometimes choose a random neighbour

• Random restart: Sometimes start again from an entirely random state

• Simulated annealing: Every move is random, but the sampling
distribution is increasingly non-uniform, and we don't always "accept" the
sampled state

