Branch & Bound

or, How I Learned to Stop Worrying and Love Depth First Search

CMPUT 261: Introduction to Artificial Intelligence

P&M §3.7-3.8

Logistics

Assignment #1 was released on Tuesday

- Available on eClass
- Due: Tuesday January 31 at 11:59pm

Recap: Heuristics

Definition:

A heuristic function is a function h(n) that returns a non-negative estimate of the cost of the cheapest path from n to a goal node.

• e.g., Euclidean distance instead of travelled distance

Definition:

A heuristic function is **admissible** if h(n) is always less than or equal to the cost of the cheapest path from n to a goal node.

• i.e., h(n) is a lower bound on $cost(\langle n, ..., g \rangle)$ for any goal node g

Recap: A* Search

- A* search uses **both** path cost information and heuristic information to select paths from the frontier
- Let f(p) = cost(p) + h(p)
 - f(p) estimates the total cost to the nearest goal node starting from p
- A* removes paths from the frontier with smallest f(p)
- When h is admissible, $p^* = \langle s, ..., n, ..., g \rangle$ is a solution, and $p = \langle s, ..., n \rangle$ is a prefix of p^* :

•
$$f(p) \leq \cot(p^*)$$

$$\underbrace{\frac{\text{actual}}{\text{cost(p)}} n}_{\text{cost(p)}} \underbrace{\frac{\text{estimated}}{\text{h(n)}}}_{\text{goal}}$$

Recap: A* Search Algorithm

i.e., $f(\langle n_0, ..., n_k \rangle) \le f(p)$

Input: a *graph*; a set of *start nodes*; a *goal* function

```
frontier := \{\langle s \rangle \mid s \text{ is a start node}\}
                                                                          for all other paths p \in frontier
while frontier is not empty:
    select f-minimizing path \langle n_0, ..., n_k \rangle from frontier
   remove \langle n_0, ..., n_k \rangle from frontier
   if goal(n_k):
       return \langle n_0, \ldots, n_k \rangle
   for each neighbour n of n_k:
       add \langle n_0, ..., n_k, n \rangle to frontier
end while
```

Recap: A* is Optimal

Theorem:

If there is a solution, A^* using heuristic function h always returns an **optimal** solution (in **finite time**), if

- 1. The branching factor is finite,
- 2. All arc costs are greater than some $\epsilon > 0$, and
- 3. h is an admissible heuristic.

Proof:

- 1. The optimal solution is guaranteed to be removed from the frontier eventually
- 2. **No suboptimal solution** will be removed from the frontier whenever the frontier contains a **prefix of the optimal solution**

Lecture Outline

- 1. Recap & Logistics
- 2. Cycle Pruning
- 3. Branch & Bound
- 4. Exploiting Search Direction

After this lecture, you should be able to:

- Implement cycle pruning
- Explain when cycle pruning is and is not space- and time-efficient
- Implement branch & bound and IDA* and demonstrate their operation
- Derive the space and time complexity for branch & bound and IDA*
- Predict whether forward, backward, or bidirectional search are more efficient for a search problem

Cycle Pruning

- Even on finite graphs, depth-first search may not be complete, because it can get trapped in a cycle.
- A search algorithm can prune any path that ends in a node already on the path without missing an optimal solution (Why?)

Questions:

- Is depth-first search on with cycle pruning complete for finite graphs?
- 2. What is the time complexity for cycle checking in depth-first search?
- 3. What is the time complexity for cycle checking in breadth-first search?

Cycle Pruning Depth First Search

Input: a *graph*; a set of *start nodes*; a *goal* function $frontier := \{\langle s \rangle \mid s \text{ is a start node}\}$ while *frontier* is not empty: **select** the newest path $\langle n_0, ..., n_k \rangle$ from *frontier* **remove** $\langle n_0, ..., n_k \rangle$ from *frontier* if $n_k \neq n_j$ for all $0 \leq j < k$: if $goal(n_k)$: return $\langle n_0, \ldots, n_k \rangle$ for each neighbour n of n_k : add $\langle n_0, ..., n_k, n \rangle$ to *frontier* end while

Branch & Bound

- The f(p) function provides a **path-specific lower bound** on solution cost starting from p
- Idea: Maintain a global upper bound on solution cost also
 - Then prune any path whose lower bound exceeds the upper bound
- Question: Where does the upper bound come from?
 - Cheapest solution found so far
 - Before solutions found, specified on entry

Branch & Bound Algorithm

```
Input: a graph; a set of start nodes; a goal function; heuristic h(n); bound<sub>0</sub>
frontier := \{\langle s \rangle \mid s \text{ is a start node}\}
bound := bound_0
best := \emptyset
while frontier is not empty:
   select the newest path \langle n_0, ..., n_k \rangle from frontier
   remove \langle n_0, ..., n_k \rangle from frontier
   if f(\langle n_0, ..., n_k \rangle) \leq bound:
      if goal(n_k):
         bound := cost(\langle n_0, ..., n_k \rangle)
                                                       Question: Why not f here?
         best := \langle n_0, ..., n_k \rangle
      else:
          for each neighbour n of n_k:
             add \langle n_0, ..., n_k, n \rangle to frontier
end while
return best
```

Choosing bound₀

- If $bound_0$ is set to just above the optimal cost, branch & bound will explore no more paths than A*
 - Won't explore any paths p' that are more costly than the optimal solution, because $f(p') > bound_0$
 - Will eventually find the optimal solution path p^* because $f(p^*) < bound_0$
- But we don't (in general) know the cost of the optimal solution!
- Solution: iteratively increase $bound_0$ (like with iterative deepening search)
 - This algorithm is sometimes called IDA*
 - Some lower-cost paths will be re-explored

Initialize $bound_0$

until solution found:

Perform **branch & bound** using $bound_0$

Increase bound₀

Iterative Deepening A* (IDA*)

- 1. What should we initialize $bound_0$ to?
- 2. How much should we increase $bound_0$ by at each step?
 - Iteratively increase bound to the lowest f-value path that was pruned
 - Guarantees at least one more path will be explored
 - Can stop immediately after finding a solution (why?)
 - Time complexity can be much worse than A*: $O(b^{2m})$ instead of $O(b^m)$ (why?)
 - Choosing next f-limit is an active area of research (see https://www.movingai.com/SAS/IDA/)

Initialize $bound_0$

until solution found:

Perform **branch & bound** using $bound_0$

Increase $bound_0$

Heuristic Depth First Search

	Heuristic Depth First	A*	Branch & Bound	IDA*
Space complexity	O(mb)	$O(b^m)$	O(mb)	O(mb)
Time Complexity	O(b ^m)	O(b ^m)	O(bm)	O(b ^{2m})
Heuristic Usage	Limited	Optimal	Optimal (if bound low enough)	Close to Optimal
Optimal?	No	Yes	Yes (if bound <i>high</i> enough)	Yes

Exploiting Search Direction

- When we care about finding the path to a known goal node, we can search forward, but we can often search backward
- Given a search graph G = (N, A), known goal node g, and set of start nodes S, can construct a reverse search problem $G = (N, A^r)$:
 - 1. Designate g as the start node
 - 2. $A^r = \{\langle n_2, n_1 \rangle \mid \langle n_1, n_2 \rangle \in A\}$
 - 3. $goal^r(n) = 1$ if $n \in S$ (i.e., if n is a start node of the original problem)

Questions:

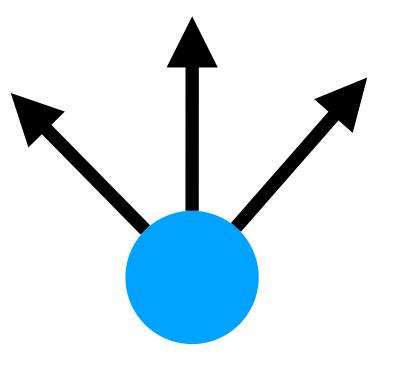
- 1. When is this useful?
- 2. When is this infeasible?

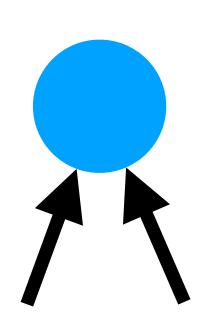
Reverse Search

Definitions:

- 1. Forward branch factor: Maximum number of outgoing neighbours Notation: \boldsymbol{b}
 - Time complexity of forward search: $O(b^m)$
- 2. Reverse branch factor: Maximum number of incoming neighbours Notation: r
 - Time complexity of reverse search: $O(r^m)$

When the reverse branch factor is **smaller** than the forward branch factor, reverse search is more **time-efficient**.





Bidirectional Search

- Idea: Search backward from from goal and forward from start simultaneously
- Time complexity is exponential in path length, so exploring half the path length is an exponential improvement
 - Even though must explore half the path length twice
- Main problems:
 - Guaranteeing that the frontiers meet
 - Checking that the frontiers have met

Questions:

What bidirectional combinations of search algorithm make sense?

- Breadth first +
 Breadth first?
- Depth first +Depth first?
- Breadth first + Depth first?

Summary

- The more accurate the heuristic is, the fewer the paths A* will explore
- Branch & bound combines the optimality guarantee and heuristic efficiency of A* with the space efficiency of depthfirst search
- IDA* is an iterative-deepening version of branch & bound that doesn't require that you get the initial bound "right"
 - But its time complexity can be significantly worse
- Tweaking the direction of search can yield efficiency gains