Uninformed Search

CMPUT 261: Introduction to Artificial Intelligence

P&M §3.5

Logistics

- TA office hours begin next week
 - Moemen: Mondays at 11am
 - Alireza: Tuesdays at 4pm
 - Mahdi: Wednesdays at 1pm
 - Amir: Thursdays at 4pm
- Assignment #1 released next week
- Python tutorials next week during TA office hours

See eClass page for meeting links / locations and email addresses

Recap: Graph Search

- - them all!
- function
- search graph with costs

 Many AI tasks can be represented as search problems • A single generic graph search algorithm can then solve

• A search problem consists of states, actions, start states, a successor function, a goal function, optionally a cost

Solution quality can be represented by labelling arcs of the

Recap: Generic Graph Search Algorithm

Input: a graph; a set of start nodes; a goal function

frontier := $\{\langle s \rangle \mid s \text{ is a start node}\}$ while *frontier* is not empty: **select** a path $\langle n_0, ..., n_k \rangle$ from *frontier* **remove** $\langle n_0, \ldots, n_k \rangle$ from *frontier* if $goal(n_k)$: return $\langle n_0, \ldots, n_k \rangle$ for each neighbour n of n_k : add $\langle n_0, \ldots, n_k, n \rangle$ to *frontier* end while

https://artint.info/2e/html/ArtInt2e.Ch3.S4.html

Lecture Outline

- Logistics & Recap
- 2. Properties of Algorithms and Search Graphs
- Depth First and Breadth First Search З.
- 4. Iterative Deepening Search
- Least Cost First Search 5.

After this lecture, you should be able to:

- least-cost-first search on a graph
- Derive the time and space requirements for instantiations of the generic graph search algorithm

Demonstrate the operation of depth-first, breadth-first, iterative-deepening, and

• Implement depth-first, breadth-first, iterative deepening, and least-cost first search

Algorithm Properties

What properties of algorithms do we want to analyze?

- 1. A search algorithm is **complete** if it is guaranteed to find a solution within a finite amount of time whenever a solution exists.
- 2. The time complexity of a search algorithm is a measure of how much time the algorithm will take to run, in the worst case.
 - In this section we measure by total number of paths added to the frontier.
- The **space complexity** of a search algorithm is a measure of how much З. **space** the algorithm will use, in the **worst case**.
 - We measure by maximum number of paths in the frontier at one time.

Search Graph Properties

- Forward branch factor: Maximum number of neighbours Notation: *b*
- Maximum path length. (Could be infinite!) Notation: *m*
- Presence of cycles
- Length of the **shortest** path to a **goal** node

What properties of the search graph do algorithmic properties depend on?

Depth First Search

Input: a graph; a set of start nodes; a goal function

frontier := $\{\langle s \rangle \mid s \text{ is a start node}\}$ while *frontier* is not empty: select the newest path $\langle n_0, \ldots, n_k \rangle$ from frontier **remove** $\langle n_0, \ldots, n_k \rangle$ from *frontier* if $goal(n_k)$: return $\langle n_0, \ldots, n_k \rangle$ for each neighbour n of n_k : add $\langle n_0, \ldots, n_k, n \rangle$ to *frontier* end while

Question:

What data structure for the frontier implements this search strategy?

Depth First Search

Depth-first search always removes one of the **longest** paths from the frontier.

Example: Frontier: $[p_1, p_2, p_3, p_4]$ $successors(p_1) = \{n_1, n_2, n_3\}$

What happens?

- 1. Remove p_1 ; test p_1 for goal
- 3. New frontier: $[\langle p_1, n_1 \rangle, \langle p_1, n_2 \rangle]$

Question: When is $\langle p_1, n_3 \rangle$ selected?

2. Add $\{\langle p_1, n_1 \rangle, \langle p_1, n_2 \rangle, \langle p_1, n_3 \rangle\}$ to **front** of frontier (assume remove-from-front)

$$\langle \rangle, \langle p_1, n3 \rangle, p_2, p_3, p_4]$$

4. p_2 is selected only after all paths starting with p_1 have been explored

Depth First Search Analysis

For a search graph with maximum branch factor b and maximum path length m...

- 1. What is the worst-case time complexity of depth-first search?
 - [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]
- 2. When is depth-first search complete?
- 3. What is the worst-case **space complexity of** depth-first search?
 - [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]

When to Use Depth First Search

- When is depth-first search appropriate?
 - Memory is restricted
 - All solutions at same approximate depth
 - Order in which neighbours are searched can be tuned to find solution quickly
- When is depth-first search inappropriate?
 - Infinite paths exist
 - When there are likely to be shallow solutions
 - Especially if some other solutions are very deep

Breadth First Search

Input: a graph; a set of start nodes; a goal function

frontier := $\{\langle s \rangle \mid s \text{ is a start node}\}$ while *frontier* is not empty: select the oldest path $\langle n_0, \ldots, n_k \rangle$ from frontier **remove** $\langle n_0, \ldots, n_k \rangle$ from *frontier* if $goal(n_k)$: return $\langle n_0, \ldots, n_k \rangle$ for each neighbour n of n_k : add $\langle n_0, \ldots, n_k, n \rangle$ to *frontier* end while

Question:

What data structure for the frontier implements this search strategy?

Breadth First Search

Breadth-first search always removes one of the **shortest** paths from the frontier.

Example:

Frontier: $[p_1, p_2, p_3, p_4]$ $successors(p_1) = \{n_1, n_2, n_3\}$

What happens?

- 1. Remove p_1 ; test p_1 for goal
- 3. New frontier: $[p_2, p_3, p_4, \langle p_1, n_1 \rangle, \langle p_1, n_2 \rangle, \langle p_1, n_3 \rangle]$
- 4. p_2 is selected **next**

2. Add $\{\langle p_1, n_1 \rangle, \langle p_1, n_2 \rangle, \langle p_1, n_3 \rangle\}$ to **end** of frontier (assume remove-from-front)

For a search graph with maximum branch factor b and maximum path length m...

- 1. What is the worst-case time complexity?
 - [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]
- 2. When is breadth-first search complete?
- 3. What is the worst-case **space complexity**?

Breadth First Search Analysis

• [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]

When to Use Breadth First Search

- When is breadth-first search appropriate?
 - When there might be infinite paths
 - When there are likely to be shallow solutions, or
 - When we want to guarantee a solution with fewest arcs
- When is breadth-first search inappropriate?
 - Large branching factor
 - All solutions located deep in the graph
 - Memory is restricted

Time complexity

- Run depth-first search to a maximum depth \bullet
 - then try again with a larger maximum •
 - until either goal found or graph completely searched

Comparing DFS vs. BFS

epth-first	Breadth-first
nly for finite	Complete

graphs	Complete
O(mb)	O(b ^m)
<i>O(b^m)</i>	<i>O(b^m)</i>

• Can we get the space benefits of depth-first search without giving up completeness?

Iterative Deepening Search

Input: a *graph*; a set of *start nodes*; a *goal* function

for max_depth from 1 to ∞:
 Perform depth-first search to a maximum depth max_depth
end for

Iterative Deepening Search

Input: a graph; a set of start nodes; a goal function

for max_depth from 1 to ∞ : *more_nodes* := False frontier := $\{\langle s \rangle \mid s \text{ is a start node}\}$ while *frontier* is not empty: **remove** $\langle n_0, \ldots, n_k \rangle$ from *frontier* if $goal(n_k)$: return $\langle n_0, \ldots, n_k \rangle$ if k < max_depth: for each neighbour n of n_k : add $\langle n_0, \ldots, n_k, n \rangle$ to frontier else if n_k has neighbours: *more_nodes* := True end-while if more_nodes = False: return None

select the newest path $\langle n_0, ..., n_k \rangle$ from *frontier*

Iterative Deepening Search Analysis

For a search graph with maximum branch factor b and maximum path length m...

- What is the worst-case **time complexity**?
 - [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]
- When is iterative deepening search **complete**? 2.
- What is the worst-case **space complexity**? З.
 - [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]

When to Use Iterative Deepening Search

- When is iterative deepening search **appropriate**?
 - Memory is limited, **and** \bullet
 - Both deep and shallow solutions may exist \bullet
 - or we prefer shallow ones
 - Search graph may contain infinite paths

Optimality

Definition:

An algorithm is optimal if it is guaranteed to return an optimal (i.e., **minimal-cost**) solution **first**.

Question: Which of the three algorithms presented so far is optimal? Why?

Least Cost First Search

- None of the algorithms described so far is guided by arc costs
 - BFS and IDS are implicitly guided by **path length**, which can be the same for uniform-cost arcs
- They return a path to a goal node as soon as they happen to blunder across one, but it may not be the optimal one
- Least Cost First Search is a search strategy that is guided by arc costs

Least Cost First Search

Input: a graph; a set of start nodes; a goal function frontier := $\{\langle s \rangle \mid s \text{ is a start node}\}$ $|\text{i.e., } cost(\langle n_0, \dots, n_k \rangle) \le cost(p)|$ for all other paths $p \in frontier$ while *frontier* is not empty: select the cheapest path $\langle n_0, \ldots, n_k \rangle$ from frontier **remove** $\langle n_0, ..., n_k \rangle$ from *frontier* if $goal(n_k)$: return $\langle n_0, \ldots, n_k \rangle$ **Question:** for each neighbour n of n_k : What data structure for the add $\langle n_0, \ldots, n_k, n \rangle$ to frontier frontier implements this search end while strategy?

Least Cost First Search Analysis

- lacksquare $cost(\langle n_1, n_2 \rangle) > \epsilon$ for every arc $\langle n_1, n_2 \rangle$:
 - 1. Suppose $\langle n_0, \ldots, n_k \rangle$ is the optimal solution
 - 2. Suppose that *p* is any non-optimal solution So, $cost(p) > \langle n_0, \dots, n_k \rangle$
 - 3. For every $0 \le \ell \le k$, $cost(\langle n_0, ..., n_\ell \rangle) < cost(p)$
 - 4. So p will never be removed from the frontier before $\langle n_0, \ldots, n_k \rangle$
- What is the worst-case **space complexity** of Least Cost First Search? [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]
- When does Least Cost First Search have to expand every node of the graph?

Theorem: Least Cost First Search is complete and optimal if there is $\epsilon > 0$ with

- Consider the infinite search graph below
- Every cost is larger than 0
- But there's no single positive value that is smaller than all costs \bullet
- But then $c(\langle s, a_0, g \rangle) > c(\langle s, a_0, g \rangle)$
 - The solution $\langle s, a_0, g \rangle$ will **never be removed** from the frontier

Why $c(n_1, n_2) > \epsilon > 0$ instead of just $c(n_1, n_2) > 0$?

Can make arc costs arbitrarily small by following the right-hand path far enough

$$(a_1, \ldots, a_n)$$
 for **all** values of *n*

Summary

Different search strategies have different properties and behaviour

- **Depth first search** is space-efficient but not always complete or time-efficient
- **Breadth first search** is complete and always finds the shortest path to a goal, but is not space-efficient
- **Iterative deepening search** can provide the benefits of both, at the expense of some time-efficiency
- All three strategies must potentially expand every node, and are not guaranteed to return an optimal solution
- Least cost first search is optimal (under some conditions), but still must potentially expand every node