
Graph Search

CMPUT 261: Introduction to Artificial Intelligence

P&M §3.1-3.4

Logistics

• Lab conflicts:
• The main office can help fix these manually
• Email to csugrad@ualberta.ca if you have issues with lab time conflicts

• TA office hours:
• Still finalizing
• Will announce next lecture (and via eclass)

mailto:csugrad@ualberta.ca

Recap: Course Essentials
Course information: https://jrwright.info/introai/

• This is the main source of information about the class
• Syllabus, slides, readings, deadlines

Lectures: Tuesdays and Thursdays, 12:30-1:50pm in NRE 2-003
• In person

eClass: https://eclass.srv.ualberta.ca/course/view.php?id=84373
• Discussion forum for public questions about assignments, lecture material, etc.
• Handing in assignments

Email: james.wright@ualberta.ca for private questions
• (health problems, inquiries about grades)

Office hours: By appointment, or after lecture
• TA office hours will be announced next week
• There is no lab for this course

https://jrwright.info/introai/
https://eclass.srv.ualberta.ca/course/view.php?id=84373
mailto:james.wright@ualberta.ca

Lecture Outline
1. Recap & Logistics
2. Search Problems
3. Graph Search
4. Markov Assumption

After this lecture, you should be able to:
• Represent a search problem formally
• Represent a search problem as a search graph
• Implement a generic graph search
• Identify whether a representation satisfies the Markov assumption

Search
• It is often easier to recognize a solution than to compute it

• Search exploits this property!

• Agent searches internal representation to find solution

• All computation is purely internal to the agent.

• Outcomes are known and deterministic, so no need for observations

• Formally represent as searching a directed graph for a path to a goal state

• Question: Why might this be a good idea?

• Because it is very general. Many AI problems can be represented in this form,
and the same algorithms can solve them all.

State Space
• A state describes all the relevant information about a possible configuration

of the environment

• Markov assumption: How the environment got to a given configuration
doesn't matter, just the current configuration.

• It is always possible to construct such a representation (how?)

• A state is an assignment of values to one or more variables, e.g.:

• A single variable called "state"

• and coordinates, temperature, battery charge, etc.

• Actions change the environment from one state to another

x y

Search Problem
Definition: Search problem (textbook: state-space problem)

• A set of states

• A start state (or set of start states)

• A set of actions available at each state

• A successor function that maps from a state to a set of neighbour states

• The textbook calls this an "action function"

• A cost for moving from each state to each successor state

• A goal function that returns true when a state satisfies the goal

Example: DeliveryBot
Domain for Delivery Robot

lab4

stairs

lab1 lab2

lab3

r101 r103 r105 r107 r109 r111

r113

r115

r117

r119r121r123r125r127r129r131

c�D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 1.3, Page 2

DeliveryBot wants to get from outside room 103 to inside room 123

DeliveryBot as a
Search ProblemDomain for Delivery Robot

lab4

stairs

lab1 lab2

lab3

r101 r103 r105 r107 r109 r111

r113

r115

r117

r119r121r123r125r127r129r131

c�D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 1.3, Page 2

Example Problem for Delivery Robot

The robot wants to get from outside room 103 to the inside of
room 123.

stairs r101 r103 r105 r107 r109 r111

r113

r115

r117

r119r121r123r125r127r129r131

o101 o103 o105 o107 o109 o111

o113

o115

o117

o119o121o123o125o127o129o131

b1

b3 b4

b2

a2

a1

a3

d3

d1 d2

c2 c3

c1

tsmail

storage

main
office

c�D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 3.1, Page 5 5 / 17

States {r131, o131, 
 r129, o129, ...}

Actions {go-north, go-south,

go-east, go-west}

Start state o103

Successor function
succ(r101) = {r101, o101},

succ(o101) = {o101, lab1, r101,o105, ts},

...

Goal function goal(state): (state == r123)

https://artint.info/2e/html/ArtInt2e.Ch3.S2.html

Example: VacuumBot

• Two rooms, one cleaning robot

• Each room can be clean or dirty

• Robot has two actions:

• clean: makes the room the robot is in clean

• move: moves to the other room

Questions:

1. How many states are there?

2. How many goal states?

VacuumBot as a
Search Problem: States

(1,1,left)

(0,1,left)

(1,0,left)

(0,0,left)

(1,1,right)

(0,1,right)

(1,0,right)

(0,0,right)

icons by Icons8

https://icons8.com

Solving Search Problems, informally

1. Consider each start state

2. Consider every state that can be reached from some state that has been
previously considered (and remember how to reach the state)

3. Stop when you encounter a goal state, output plan for reaching the state

Directed Graphs
• A directed graph is a pair

• is a set of nodes

• is a set of ordered pairs called arcs

• Node is a neighbour of if there is an arc from to

• i.e.,

• A path is a sequence of nodes with

• Length of a path is number of arcs (not nodes)

G = (N, A)

N

A

n2 n1 n1 n2

⟨n1, n2⟩ ∈ A

⟨n0, n1, …, nk⟩ ⟨ni−1, ni⟩ ∈ A

Search Graph
We can represent any search problem as a search graph:

1. Nodes are the states

2. Neighbours are the successors of a state

• i.e., add one arc from state to each of 's successors

3. A solution is a path from a start node to a goal node

4. Label each arc with the cost for transitioning to the successor state

5. Optional: Label each arc with the action that leads to the successor state
• Question: Why is this optional?

s s

⟨n0, n1, …, nk⟩

DeliveryBot:
Search GraphState-Space Graph for the Delivery Robot

16

8 12

4

6

4

4

4 9

7

7

4

3

6

8

6

4

3

7

mail ts o103

b3

b1

c2

c1

c3

b2

b4

o109

o119

o111

o123

r123

o125

storage

c�D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 3.1, Page 12 8 / 17

Example Problem for Delivery Robot

The robot wants to get from outside room 103 to the inside of
room 123.

stairs r101 r103 r105 r107 r109 r111

r113

r115

r117

r119r121r123r125r127r129r131

o101 o103 o105 o107 o109 o111

o113

o115

o117

o119o121o123o125o127o129o131

b1

b3 b4

b2

a2

a1

a3

d3

d1 d2

c2 c3

c1

tsmail

storage

main
office

c�D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 3.1, Page 5 5 / 17

https://artint.info/2e/html/ArtInt2e.Ch3.S2.html https://artint.info/2e/html/ArtInt2e.Ch3.S3.SS1.html

VacuumBot: Search Graph

(1,1,left)

(0,1,left)

(1,0,left)

(0,0,left)

(1,1,right)

(0,1,right)

(1,0,right)

(0,0,right)

icons by Icons8

move

move

move

move

clean

clean

clean

clean

clean

clean

clean

clean

https://icons8.com

VacuumBot: Search Graph

V = {(0,0,left), (0,1,left), (1,0,left), (1,1,left), (0,0,right), (0,1,right), (1,0,right), (1,1,right)}

A = {⟨(x, y, p), (x′ , y′ , p′)⟩ ∣ (x′ , y′ , p′) = f(x, y, p) ∨ (x′ , y′ , p′) = g(x, y, p)}

f(x, y, p) = {(0,y, p) if p = left
(x,0,p) if p = right

g(x, y, p) = {(x, y, right) if p = left
(x, y, left) if p = right

goal(x, y, p) = (x = 0 ∧ y = 0)

cost(v1, v2) = 1

Generic Graph Search Algorithm
• Given a graph, start nodes, and goal, incrementally

explore paths from the start nodes

• Maintain a frontier of paths that have been explored

• As search proceeds, the frontier expands into the
unexplored nodes until a goal is encountered.

• The way the frontier is expanded defines the
search strategy

Problem Solving by Graph Searching

ends of
paths on
frontier

explored nodes

unexplored nodes

start
node

c�D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 3.1, Page 19 14 / 17

https://artint.info/2e/html/ArtInt2e.Ch3.S4.html

Generic Graph Search Algorithm
Input: a graph; a set of start nodes; a function

while is not empty:
 select a path from
 remove from
 if :
 return
 for each neighbour of :
 add to
end while

goal

frontier := {⟨s⟩ ∣ s is a start node}
frontier

⟨n0, …, nk⟩ frontier
⟨n0, …, nk⟩ frontier

goal(nk)
⟨n0, …, nk⟩

n nk
⟨n0, …, nk, n⟩ frontier

Search Problem with Costs

What if solutions have differing qualities?

• Add costs to each arc:

• Cost of a solution is the sum of the arc costs:

• An optimal solution is one with the lowest cost

cost (⟨ni−1, ni⟩)

cost (⟨n0, n1, …, nk⟩) =
k

∑
i=1

cost (⟨ni−1, ni⟩)

Questions:

1. Is this scheme sufficiently
general?

2. What if we only care about the
number of actions that the
agent takes?

3. What if we only care about the
quality of the solution we find?

DeliveryBot with CostsState-Space Graph for the Delivery Robot

16

8 12

4

6

4

4

4 9

7

7

4

3

6

8

6

4

3

7

mail ts o103

b3

b1

c2

c1

c3

b2

b4

o109

o119

o111

o123

r123

o125

storage

c�D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 3.1, Page 12 8 / 17

Example Problem for Delivery Robot

The robot wants to get from outside room 103 to the inside of
room 123.

stairs r101 r103 r105 r107 r109 r111

r113

r115

r117

r119r121r123r125r127r129r131

o101 o103 o105 o107 o109 o111

o113

o115

o117

o119o121o123o125o127o129o131

b1

b3 b4

b2

a2

a1

a3

d3

d1 d2

c2 c3

c1

tsmail

storage

main
office

c�D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 3.1, Page 5 5 / 17

https://artint.info/2e/html/ArtInt2e.Ch3.S2.html https://artint.info/2e/html/ArtInt2e.Ch3.S3.SS1.html

Markov Assumption
• Informally:

How the environment arrived at the current configuration "doesn't matter"

• Question: What does "doesn't matter" mean formally?

• Edge costs, available actions, neighbourhoods, all depend only on starting state
(and maybe action)

• NOT on "sequence of edges that led to the current state"

• Mathematically, this means that each of these is a function of the state not the
history

• E.g., defining costs as instead of guarantees
that the representation satisfies the Markov assumption (with respect to costs)

cost(s, z) cost(⟨n0, n1, n2, s⟩, z)

Markov Assumption: GasBot
The Markov assumption is crucial to the graph search algorithm

cost(pump, gas):
 5 if went through sensor

 10 otherwise

Getting to the pump:
from the left goes through sensor

from the right does not

Question: Does this environment representation satisfy the Markov
assumption? Why or why not?

S G

Left
Beep

pump

Right

Markov Assumption: GasBot
The Markov assumption is crucial to the graph search algorithm

S

sensor

no
sensor

pump G

Left

Right

Drive

Drive

Beep

55

Questions

1. Does this environment satisfy the Markov assumption? Why or why not?

2. How else could we have fixed up the previous example?

Summary
• Many AI tasks can be represented as search problems

• A single generic graph search algorithm can then solve them all!

• A search problem consists of states, actions, start states, a successor
function, a goal function, optionally a cost function

• Solution quality can be represented by labelling arcs of the search graph
with costs

• The Markov assumption is critical for graph search to work

