Course Overview

CMPUT 261: Introduction to Artificial Intelligence

Introduction to Al

- This is a survey course about Artificial Intelligence
- Learn the basics of a **broad range** of core subareas
 - 1. Search
 - 2. Reasoning Under Uncertainty
 - 3. Supervised Learning
 - Deep Learning
 - 4. Reinforcement Learning
 - 5. Multiagent Systems
- Take specialized courses next for more depth
- This class was previously taught as CMPUT 366; you should not take both

What is Artificial Intelligence?

Computing Science but not Artificial Intelligence: Specify a good algorithm for accomplishing a **task** (with a computer)

- Send data over a possibly-congested link
- Schedule processes and threads
- Photorealistic rendering of a geometric model
- Convert source code to optimized machine code lacksquare
- Meta: Properties of algorithms that make them efficient

What is Artificial Intelligence?

Artificial Intelligence:

Accomplish a task without explicitly specifying the procedure

- Find fastest route from point A to point B
- Optimal crop rotations
- Detect spam

. . .

- Detect diseased plants from images
- Play games (chess, go, poker, etc.)
- Schedule processes and threads
- Choose personalized medical treatments \bullet

Hang on...

- Surely we explicitly 1. specify something?
- 2. Didn't we see one of these tasks on the previous slide?

Lecture Outline

- Course Logistics 1.
- 2. Course Topics
- 3. Al Seminar!

After this lecture, you should be able to:

- Understand the policies and procedures of the course \bullet
- Describe the basic overview of the course material
- Decide whether you want to take the course \bullet

Course information: <u>https://jrwright.info/introai/</u>

- This is the main source of information about the class
- Syllabus, slides, readings, deadlines

Lectures: Tuesdays and Thursdays, 12:30-1:50pm in NRE 2-003

In person \bullet

eClass: https://eclass.srv.ualberta.ca/course/view.php?id=84373

- Discussion forum for **public** questions about assignments, lecture material, etc.
- Handing in assignments \bullet

Email: james.wright@ualberta.ca for private questions

(health problems, inquiries about grades) lacksquare

Office hours: By appointment, or after lecture

- TA office hours will be announced next week
- There is **no lab** for this course

Course Essentials

Readings

We will draw from a lot of texts for this class. BUT, they are all available online for free:

- [P&M] David Poole and Alan Mackworth, \bullet Artificial Intelligence: Foundations of Computational Agents, 2nd edition.
- [GBC] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning.
- [P] Simon J.D. Prince, Understanding Deep Learning. \bullet
- [<u>S&B</u>] Richard S. Sutton and Andrew G. Barto, \bullet Reinforcement Learning: An Introduction, 2nd edition.
- [<u>S&LB</u>] Yoav Shoham and Kevin Leyton-Brown, Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations.

Optional readings for each lecture are listed on the schedule.

Evaluation

Grade breakdown

- Assignments: 30%
 - (due Jan 31, Feb 16, Mar 23, and Apr 11)
- Midterm exam: 35%
- Final exam: 35%

Late assignments

- 20% deducted for all late submissions
- 2 days late maximum
- Deadlines are **very firm**

Assignments

- There will be **four assignments**
- Types of questions:
 - Short answer: definitions, distinctions, etc. "What is a Nash equilibrium?"

 - algorithm to answer XYZ? Why?"
 - Small **implementation** task
- Assignments are submitted electronically (via eClass)

Model construction: "Represent XYZ as a graph search problem"

• Algorithmic considerations: "What would be an appropriate

Collaboration Policy

Detailed version on the syllabus

You are **encouraged to discuss assignments** with other students:

- 1. You may not share or look at each other's written work or code.
- 2. You must write up your solutions individually

Individual work only on exams: No collaboration allowed

Exams are closed-book: No slides, outside material, etc.

Academic Conduct

- Submitting someone else's work as your own is plagiarism.
- So is helping someone else to submit your work as their own.
- We report all cases of academic misconduct to the university.
- The university takes academic misconduct very seriously. Possible consequences:
 - Zero on the assignment or exam (virtually guaranteed)
 - Zero for the course
 - Permanent notation on transcript
 - Suspension or expulsion from the university

Prerequisites

- Prerequisites: one of STAT 141, 151, 235, or 265, or SCI 151. Corequisites: CMPUT 204 or 275.
- Comfort with or interest in formal, mathematical/algorithmic reasoning lacksquare
- Basic **probability**: random variables, expectations, conditional probability. (There will be a refresher lecture)
- Basic **calculus**: gradients, partial derivatives, vector norms (refresher lecture for this too)
- Basic graph theory: Nodes, edges
- Ability to program in **Python** \bullet
 - Most assignments will have a programming component
 - TAs will run a refresher session

Course Topics

- 1. Search
- 2. Reasoning Under Uncertainty
- 3. Supervised Learning
 - Deep Learning
- 4. Reinforcement Learning
- 5. Multiagent Systems

1. Search

Example: Farmer's raft

- A farmer needs to move a hen, fox, and bushel of grain from the left side of the river to the right using a raft. • The farmer can take one item at a time (hen, fox, or bushel of grain) using the raft.
- The hen cannot be left alone with the grain, or it will eat the grain.
- The fox cannot be left alone with the hen, or it will eat the hen.
- We want to compute a sequence of actions:
 - from a starting state (all of the animals on the left bank)
 - to a **goal state** (all of the animals on the right bank)
 - while satisfying **constraints** (nothing gets eaten)
- Every action has a known and deterministic result and cost
- Search: efficiently compute a cost-optimal solution based on known rules

2. Reasoning Under Uncertainty

Example: When to harvest?

A farmer has planted a crop which is vulnerable to a certain type of pest

- The pest typically arrives somewhat after a run of rain (how much varies)
- The crop benefits from watering, especially right before harvest
- Rain typically appears in runs (length varies)
- Harvesting too soon means less yield; harvesting after pests means total failure \bullet
- We want to choose an **action**, but: \bullet
 - Consequences are uncertain but have known probabilities
 - Observations of one event (rain) can predict others (pests) in complicated ways
 - Different outcomes have different **costs**
- solution that has an optimal **on-average** performance

Reasoning under uncertainty: Use known models of probabilities to compute a

3. Supervised Learning

Example: Is this food contaminated?

A spectrophotometer can measure a great many features of a grain sample

- These features can be predictive of grain contamination
- We have lots of samples of contaminated and uncontaminated grain
- We want to learn an unknown predictive model
- We don't know how the different observables related to each other, but \bullet
 - We have a lot of **examples**
 - We might have **qualitative** information about how they are related lacksquare
- Supervised learning: Derive a predictive mapping from input features to output lacksquarepredictions based on examples
 - **Deep learning:** Special case where the learned model is a deep neural network

4. Reinforcement Learning

Example: Inventory management

A warehouse needs to keep a certain amount of stock on hand in order to send to retailers

- There is a delay between when it orders from suppliers and when it receives shipments
- Order volume from retailers is unpredictable and depends on demand
- Keeping unsold inventory is costly
- We need to choose a sequence of actions, but
 - We don't know the outcome of the action until we take it lacksquare
 - **Rewards** (e.g., selling some stock to a retailer) may arrive a long time after actions that caused them (e.g., ordering from supplier)
 - The environment changes after each action
 - We don't know what a good policy is, and we might not have any examples
- **Reinforcement learning:** A way to learn a good **policy** for acting sequentially lacksquare

5. Multiagent Systems

Example: What crop to plant?

- Two farmers need to choose which crop to plant: a staple crop or a cash crop • Cash crop is very lucrative, but only if a single farmer plants it (the market for it is small) If both plant cash crop, they will both make much less money
- Need to choose an action (or series of actions), but:
 - Outcomes depend on the actions of other agents
 - Other agents' outcomes depend on our actions
- **Multiagent systems:** Framework for understanding how to achieve goals and preferences when interacting with other agents who have own goals and preferences

Summary

- Artificial Intelligence: Accomplishing tasks without specifying how
- Course information: https://jrwright.info/introai/
- Lectures: Tuesdays and Thursdays, 12:30-1:50pm in NRE 2-003
- Survey class of core areas of artificial intelligence:
 - 1. Search
 - 2. Uncertainty
 - 3. Supervised Learning (including deep learning)
 - 4. Reinforcement Learning
 - 5. Multiagent Systems

Al Seminar

What: Great talks on cutting-edge AI research External (e.g., DeepMind, IBM) and internal speakers

When: Fridays at noon

Website: sites.google.com/ualberta.ca/ai-seminar/
Announcements: Sign up for mailing list (bottom of webpage)