Markov Decision Processes

CMPUT 261: Introduction to Artificial Intelligence
S\&B §3.0-3.5

Lecture Outline

1. Recap \& Logistics
2. Markov Decision Processes
3. Returns \& Episodes
4. Policies \& Value Functions
5. Bellman Equations

After this lecture, you should be able to:

- define a Markov decision process
- represent a problem as a Markov decision process
- define a policy
- explain whether a task is episodic or continuing
- give expressions for the state-value function and the action-value function
- state the Bellman equation for v_{π}
- give expressions for episodic and discounted continuing returns

Logistics

- Assignment \#3 is available
- Due Fuesday, March 26 Wednesday, March 27
- Submit via eClass
- Please submit the correct files
- Assignment \#2 and midterm marks are released

Recap: Deep Learning

- Feedforward neural networks are extremely flexible parametric models that can be trained by gradient descent
- Convolutional neural networks add pooling and convolution operations
- Vastly more efficient to train on vision tasks, due to fewer parameters and domain-appropriate invariances
- Recurrent neural networks process elements of a sequence one at a time, while maintaining state
- Same function with same parameters applied to each (element + state)
- Transformers process elements of a sequence in parallel
- Each output element depends on weighed sum of transformed input elements, using same parameters
- Weights are dot product of input element's key and output element's query
- Keys and queries are computed using the same parameters for all elements

Recap: Supervised Learning

Neural networks are typically used to solve supervised learning tasks: Selecting a hypothesis $h: X \rightarrow Y$ that maps from input features to target features.

Training time

Test time

Example: CanBot

- CanBot's job is to find and recycle empty cans
- At any given time, its battery charge is either high or low
- It can do three actions: search for cans, wait, or recharge
- Goal: Find cans efficiently without running out of battery charge

Questions:

1. Is this an instance of a supervised learning problem?
2. Is this an instance of a search problem?

Reinforcement Learning

In a reinforcement learning task, an agent learns how to act based on feedback from the environment.

- The agent's actions may change the environment
- Actions now can impact effects of actions in later timesteps
- The "right answer" is not known
- Goal is to maximize total reward collected
- The task may be either episodic or continuing
- The agent makes decisions online: determines how to act while interacting with the environment

Interacting with the Environment

At each time $t=1,2,3, \ldots$

1. Agent receives input denoting current state S_{t}

2. Agent chooses action A_{t}
3. Next time step, agent receives reward R_{t+1} and new state S_{t+1}, chosen according to a distribution $p\left(s^{\prime}, r \mid s, a\right)$

This interaction between agent and environment produces a trajectory:

$$
S_{0}, A_{0}, R_{1}, S_{1}, A_{1}, R_{2}, S_{2}, A_{2}, R_{3}, \ldots
$$

Markov Decision Process

Definition:

A Markov decision process is a tuple $(\mathcal{S}, \mathscr{A}, \mathscr{R}, p)$, where

- $\mathcal{\delta}$ is a set of states,
- \mathscr{A} is a set of actions,
- $\mathscr{R} \in \mathbb{R}$ is a set of rewards,
- $p\left(s^{\prime}, r \mid s, a\right) \in[0,1]$ defines the dynamics of the process, and
- the probabilities from p completely characterize the environment's dynamics

Dynamics

The four-argument dynamics function returns the probability of every state transition:

$$
p\left(s^{\prime}, r \mid s, a\right) \doteq \operatorname{Pr}\left(S_{t}=s^{\prime}, R_{t}=r \mid S_{t-1}=s, A_{t-1}=a\right)
$$

It is often convenient to use shorthand notation rather than the full four-argument dynamics function:

$$
\begin{array}{rlrl}
p\left(s^{\prime} \mid s, a\right) \doteq \operatorname{Pr}\left(S_{t}=s^{\prime} \mid S_{t-1}=s, A_{t-1}=a\right) & =\sum_{r \in \mathscr{R}} p\left(s^{\prime}, r \mid s, a\right) \\
r(s, a) \doteq \mathbb{E}\left[R_{t} \mid S_{t-1}=s, A_{t-1}=a\right] & =\sum_{r \in \mathscr{R}} r \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime}, r \mid s, a\right) \\
r\left(s, a, s^{\prime}\right) \doteq \mathbb{E}\left[R_{t} \mid S_{t-1}=s, A_{t-1}=a, S_{t}=s^{\prime}\right] & & =\sum_{r \in \mathscr{R}} r \frac{p\left(s^{\prime}, r \mid s, a\right)}{p\left(s^{\prime} \mid s, a\right)}
\end{array}
$$

CanBot as a

Reinforcement Learning Agent

Question: How can we represent CanBot as a reinforcement learning agent?

- Need to define states, actions, rewards, and dynamics

s	a	s^{\prime}	$p\left(s^{\prime} \mid s, a\right)$	$r\left(s, a, s^{\prime}\right)$
high	search	high	α	$r_{\text {search }}$
high	search	low	$1-\alpha$	$r_{\text {search }}$
low	search	high	$1-\beta$	-3
low	search	low	β	$r_{\text {search }}$
high	wait	high	1	$r_{\text {wait }}$
high	wait	low	0	-
low	wait	high	0	-
low	wait	low	1	$r_{\text {wait }}$
low	recharge	high	1	0
low	recharge	low	0	

Reward Hypothesis

Definition: Reward hypothesis
An agent's goals and purposes can be entirely represented as the maximization of the expected value of the cumulative sum of a scalar signal.

Returns for Episodic Tasks

Question:

What does "maximize the expected value of the cumulative sum of rewards" mean?

Definition: A task is episodic if it ends after some finite number T of time steps in a special terminal state S_{T}.

Definition: The return G_{t} after time t is the sum of rewards received after time $t: G_{t} \doteq R_{t+1}+R_{t+2}+R_{t+3}+\ldots+R_{T}$.

Answer: The return G_{t} is a random variable. In an episodic task, we want to maximize its expected value $\mathbb{E}\left[G_{t}\right]$.

Returns for Continuing Tasks

Definition: A task is continuing if it does not end (i.e., $T=\infty$).

- In a continuing task, we can't just maximize the sum of rewards (why?)
- Instead, we maximize the discounted return:

$$
\begin{aligned}
& G_{t} \doteq R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\ldots \\
&=\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \\
& \gamma \leq 1 \text { is the discount factor }
\end{aligned}
$$

- Returns are recursively related to each other:

$$
\begin{aligned}
G_{t} & \doteq R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\ldots \\
& =R_{t+1}+\gamma G_{t+1}
\end{aligned}
$$

Policies

Question: How should an agent in a Markov decision process choose its actions?

- Markov assumption: The state incorporates all of the necessary information about the history up until this point
- i.e., Probabilities of future rewards \& transitions are the same from state S_{t} regardless of how you got there
- So the agent can choose its actions based only on S_{t}
- This is called a (memoryless) policy: $\pi(a \mid s) \in[0,1]$ is the probability of taking action a given that the current state is s

State-Value Function

- Once you know the policy π and the dynamics p, you can compute the probability of every possible state transition starting from any given state
- It is often valuable to know the expected return starting from a given state s under a given policy π (why?)
- The state-value function v_{π} returns this quantity:

$$
\begin{aligned}
v_{\pi}(s) & \doteq \mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s\right] \\
& =\mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t}=s\right]
\end{aligned}
$$

Using State-Value Function

Question: Suppose state transitions are deterministic. Does it make sense to always choose the action that leads to the next state s^{\prime} with the highest $v_{\pi}(s)$?

Using State-Value Function

Question: Suppose state transitions are deterministic. Does it make sense to always choose the action that leads to the next state s^{\prime} with the highest $v_{\pi}(s)$?

Not always; the reward for the transition itself is also important!

Action-Value Function

The action-value function $q_{\pi}(s, a)$ estimates the expected return G_{t} starting from state s if we

1. Take action a in state $S_{t}=s$, and then
2. Follow policy π for every state S_{t+1} afterward

$$
\begin{aligned}
q_{\pi}(s, a) & \doteq \mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s, A_{t}=a\right] \\
& =\mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t}=s, A_{t}=a\right]
\end{aligned}
$$

Question:

How is this any different from the state-value function $v_{\pi}(s)$?

Bellman Equations

Value functions satisfy a recursive consistency condition

$$
G_{t} \doteq R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\ldots
$$ called the Bellman equation:

$$
=R_{t+1}+\gamma\left(R_{t+2}+\gamma R_{t+3}+\ldots\right)
$$

$$
=R_{t+1}+\gamma G_{t+1}
$$

$$
\mathbb{E}[A+c B]=\mathbb{E}[A]+c \mathbb{E}[B]
$$

$$
=\sum_{a} \sum_{s^{\prime}} \sum_{r} \operatorname{Pr}\left[S_{t+1}=s^{\prime}, R_{t+1}=r \mid S_{t}=s, A_{t}=a\right] \operatorname{Pr}\left[A_{t}=a \mid S_{t}=s\right]\left[r+\gamma \mathbb{E}_{\pi}\left[G_{t+1} \mid S_{t+1}=s^{\prime}\right]\right]
$$

- v_{π} is the unique solution to π 's Bellman equation
- There is also a Bellman equation for π 's action-value function

$$
\begin{aligned}
& v_{\pi}(s) \doteq \mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s\right] \\
& =\mathbb{E}_{\pi}\left[R_{t+1}+\gamma G_{t+1} \mid S_{t}=s\right] \\
& =\mathbb{E}_{\pi}\left[R_{t+1} \mid S_{t}=s\right]+\gamma \mathbb{E}_{\pi}\left[G_{t+1} \mid S_{t}=s\right] \\
& =\sum_{a} \pi(a \mid s) \sum_{s^{\prime}} \sum_{r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\sqrt{\mathbb{E}_{\pi}\left[G_{t+1} \mid S_{t+1}=s^{\prime}\right]}\right.
\end{aligned}
$$

Backup Diagrams

Backup diagrams help to visualize the flow of information back to a state from its successor states or action-state pairs:

$$
\begin{aligned}
v_{\pi}(s) & \doteq \mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s\right] \\
& =\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{\pi}\left(s^{\prime}\right)\right]
\end{aligned}
$$

Backup diagram for v_{π}

GridWorld

- At each cell, can go north, south, east, west
- Try to go off the edge: reward of -1
- Leaving state A : takes you to state $A^{\prime \prime}$, reward of +10
- Leaving state B : takes you to state $B^{\prime \prime}$, reward of +5

GridWorld

Reward dynamics

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

State-value function v_{π} for random policy

$$
\pi(a \mid s)=0.25
$$

Summary

- Supervised learning models are trained offline using labelled training examples, and then make predictions
- Reinforcement learning agents choose their actions online, and update their behaviour based on rewards from the environment
- We can formally represent reinforcement learning environments using Markov decision processes, for both episodic and continuing tasks
- Reinforcement learning agents maximize expected returns
- Policies map states to (distribution over) actions
- Given a policy π, every state s has an expected value $v_{\pi}(s)$
- State-value and action-value functions satisfy the Bellman equations

