Neural Networks for
Sequence Data

CMPUT 261: Introduction to Artificial Intelligence

| ecture Outline

After this lecture, you should be able to:

demonstrate unfolding a recurrent
expression

1. Recap & Logistics
2. Unfolding Computations
3. Recurrent Neural Networks

4. Attention & Transformers

exp
seQ

ain the prob

uence input

US

ems with handling

Nng dense or

convolutional neural networks

explain tr
neural ne

describe how se
INputs to genera

e high-level idea behind
'WOorks and transformers

f-attention combines
e Its outputs

describe the architecture of a
transtormer layer

explain the high-level idea lbehind
encoder-decoder architectures

| ogistics

 Assignment #3 Is available

* Due tuesday-Marer26 Wednesday, March 27

e Submit via eClass

e Please submit the correct files

 Assignment #2 and midterm marks are released

Recap:
Convolutional Neural Networks

* (Convolutional networks: Specialized architecture for images

 Number of parameters controlled by using convolutions
and pooling operations instead of dense connections

* Fewer parameters means more efficient to train

IIIII

uuuuuu

Kernel

(Images: Goodfellow 2016)

Sequence Modelling

* For many tasks, especially involving language, we want to model the
behaviour of sequences

« Example: Iranslation

e The catis on the carpet = Le chat est sur le tapis

 Example: Sentiment analysis

 This pie is great = POSITIVE

 This pie is okay, not great = NEUTRAL

 This pie is not okay = NEGATIV

Sequential Inputs

The cat is on the carpet

Question: How should we represent sequential input
to a neural network” O o

carpet @
O cat @ O
1. 1-hot vector for each word O O O
(Sequence must be a specific length?) the @ o, o,
2. 1-hot vector for last few words 8 carpet 8
(n-gram) O O
the @ ®
3. Single vector indicating each word that is present
(lbag of words) carpet @
cat @
O

One-Hot Representations

One-hot representations of words have some problems:

1. Wasteful: Each input vector must have a dimension equal to the size of
the vocabulary (possible words)

e |f vocabulary has 30,000 words, then each vector has 29,999 zeros

2. Poor generalization: |deally, similar words would be treated similarly

e EXp
feat

oiting meaningful similarity between images was an important

Jre of convolutional neural networks

carpet

|
!

|
|

Semantic Embeddings

he usual approach is to first learn a semantic

embedding for one-hot vectors rug
carpet

Every word gets represented as a dense vector with mattress

smaller dimension than the vocabulary
(typical size: 1,024)

Goal: Words with similar meanings will have small
distance between embedded vectors; words with
different meanings will have large distance between
embedded vectors

turnip

(Pre-)Training Semantic Embeddings

Question: How many parameters are required to convert a one-hot encoding for
vocabulary of V words into a D-dimensional embedding?

* Embeddings require the training of many parameters
* Fortunately, this can be done with unlabeled data

e Trick: "Pre-train” neural network for a task that we don't care about
* But which can be evaluated using unlabeled data

 Predicting words from k nearby words

* Predicting "masked" words

* Keep the weights that convert the one-hot layer into a dense
embedding layer

 Throw away the weights that convert the embedding layer into output

Processing
Variable-Length Sequences

Image inputs can be restricted to a standard size (20x20, 1024x768, etc.)
Sequence inputs (e.qg., text) are variable-length

 And often very long
Solution: Apply the same operations to each position in the sequence
Two such approaches:

1. Recurrent neural networks:
INnput Is current token + fixed-dimension "state” from previous operation

2. Transformers / self-attention: Size of state varies with size of
seqguence

Dynamical Systems

A dynamical system is a system whose state at
time ¢ + 1 depends on its state at time t:

s = f(s""; 0)

* An expression that depends on the same expression
at an earlier time Is recurrent.

(T

Unfolding Computations

* A recurrent expression can be converted to a non-recurrent
expression by unfolding:

s©) = f(s); 0)
— As; 0); 0)

\ -7 f -

External Signals

* Dynamical systems can also be driven by external signals;
() — f(s(t_l), X(t); 0)

* [hese systems can also be represented by non-recurrent, unfolded
computations:

Recurrent Neural Networks

Recurrent neural network: a specialized architecture for modelling
sequential data

carpet @

Input presented one element at a time (6)
X —

00O

Parameter sharing by:
* [reating the sequence as a system with state
* [ntroducing hidden layers that represent state

 Computing state transitions and output using same functions at each
stage

The same computation is applied to each pair of state and input

o But the state Is different after each application

Recurrent Hidden Units:
Seqguence to Sequence

* |nput values x connected to hidden state h
by weights U

 Hidden state h mapped to output o by
weights V

o Hidden state h"V connected to hidden
state h'” by weights W

* (Gradients computed by back propagation
through time: from final loss all the way back
to initial input.

"
—

* All hidden states computed must be stored
for computing gradients

Recurrent Hidden Units:
Seqguence to Single Output

o Update state as inputs are provided

* Only compute a single output at the end

« W, U still shared at every stage

~ =

e Back propagation through time still
requires evaluating every state in
gradient computation

Encoder/Decoder Architecture for
Seqguence to Sequence

Encoder

Can combine approaches for
seqguence-to-sequence:

1. Accept entire input to construct a
single "context" output C

2. (Construct new segquence using
context C as only input

| ong-Range Dependence

The submarine, which was the subject of a well known song by the Beatles, was yellow.

\

B e

e Information sometimes needs to be accumulated

 But how long an individ

should be accumulated

for a long part of the sequence

ual piece of information

'S context-dependent

* [ong-range dependence can be difficult for a

recurrent network

o (Often need to accumulate information in the
state, and then forget it later

Self-Attention vs. RNN
—

self attention

NS

o * RNN: accept "previous" state and
¢ current input; output "next” state
e e Final output Is last state

» Self-attention: Accept ALL inputs
d * Final output Is ALL states

Self-Attention

e Each input is transformed into a single output

« N inputs means NV outputs

 An output iIs computed by:

1. Each input X; transformed into value v; by a linear operation

v; = p, + L2,

2. Each output y; Is a weighted combination of the values:

= Sk

Dot-Product Self-Attention

* A self-attention unit computes three values for

Szif-attention

N

Attention,
Softmax [K' Q]

each input X;: W
 Query g,, Key k;, and Value v; D,
* These values are computed in the same way for Queries,
each input Q=0,1" +2,X
* Each output is a weighted combination of the values . 5
of all inputs:
Input, X Keys,
V= Z alx;, xj]vl- = Z W;iV; K=03,17 + QX
[[N
« Weight for output Y of value X; is proportional to the D
dot-product of j's query and 1's key Values,
T V:BvlT + Q,X
exp(g; k;)
W..

. z Y CXP (q]ka)

- Softmax

D,

Output,

K'Q]

Transtormer Blocks

A transformer layer is a self-
attention unit followed by a dense
feedforward network

 [he same feedforward network gets

applied to each output of the self-
attention unit:

Vi = mlp(xj; Q) forj=1,....,N

e |n atypical transformer architecture,
several transformer blocks will be

strung together in parallel ("multiple
heads")

Training a lranstormer Network
(for encoding tasks)

Transformers are trained in two phases:

1. Semi-supervised pre-training: Using a very large dataset, train the
network to perform task for which dataset implies the answer

* we need not label the examples manually ~—__

- " Question: s this important? Why?
* e.g., predicting masked words

2. Fully supervised fine-tuning:

Add another layer or two at the end, and train for the real task using
manually labelled examples

* e.9g., sentiment analysis, word classification, text span prediction

Pre-training

Word Linear + Probability of
embeddings Transformer softmax masked token
AR — —
<cls>— i— : > : -
I I : I
The— — i () E —
! L I
<mask>—>i E— E ~(O— i (x K) —»()—»
[' ' Y Y I
| 1 l |
| 1 i
| I : :
<mask>—>i i— i ~C E "()_’
|
station — | i ()~ : .
\ SN - o o o NN
__ 5 g 23
s g S ®
i

e Subset of tokens in an example sequence are masked (replaced with a special token)
* Neural network applied to each masked output predicts probabilities for missing token
* [ossis back-propagated through entire network

* At end of training, that neural network is thrown away

-ine-tuning: BERT
for Sentiment classification

Word MLP + Probability of
embeddings Transformer sigmoid positive review

"""""""""""""""""""""""
—>() >

—————————————————

<cls>— —

\z
!
:

Y

000000

The —>§ i—

¢
4
X

/)
7

4/ «(z
4 4“4
N\

N

N
‘
o
N
),

i |
|

soup —s-! —
|

D

\qu
S5
b‘(" v 4 :
A\

N
N
N
4
Q

tasted—>i E—

)
)

M
Vel
W\
B
55
X

N ¢ (/
)\
\4\ ¢ 3
151 4/
4)
/1, r«' P'
16
O 4 &

\
7

like—= =

e

Y
’
)

| |
socks—= —

——————————————————

__

* Sentiment classification: Predict if a sequence is positive or negative
* First token of sequence Is always a special "classify” token

* Neural network trained on corresponding output token using labelled dataset

Summary

Naively representing sequential inputs for a neural network requires infeasibly many input nodes (and
hence parameters)

One-hot encodings are wastefully large and have no semantic structure
 Embeddings solve these problems and can be trained without explicit labels

Recurrent neural networks are a specialized architecture for sequential inputs
e State accumulates across input elements
 Each stage computed from previous stage using same parameters

Transformers are another specialized architecture!
» Self-attention to combine inputs instead of accumulating state
o All states output (not just last in a sequence)
* Improved abllity to attend to long-range dependence
 Admits of better parallel evaluation

* Pre-training followed by fine-tuning
» (Classification: attend to the output corresponding to a special "classify" input token

