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Lecture Outline
1. Recap & Logistics


2. Neural Networks for Image Recognition


3. Convolutional Neural Networks

After this lecture, you should be able to:

• explain why convolutional neural networks are more efficient to train on 

image data than dense feedforward networks

• define sparse interactions and parameter sharing

• define the convolution operation and demonstrate it on an example input

• define the pooling operation and demonstrate it on an example input



Logistics

• Assignment #3 is available


• Due Tuesday, March 26 Wednesday, March 27


• Submit via eClass


• Assignment #2: marked (not yet released)


• Midterm: will be done after Friday



Recap: 

Feedforward Neural Network

• A neural network is many units 
composed together


• Feedforward neural network: 
Units arranged into layers


• Each layer takes outputs of 
previous layer as its inputs
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Recap: Training Neural Networks
• Specify a loss  and a set of training examples:


 


• Training by gradient descent:


1. Compute loss on training data: 


2. Compute gradient of loss:       


3. Update parameters to make loss smaller:
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Recap: Automatic Differentiation
• Forward mode sweeps through the graph, computing  for each 


• The numerator varies, and the denominator is fixed


• At the end, we have computed  for a single input 


• Backward mode does the opposite:


• For each , computes the local gradient 


• The numerator is fixed, and the denominator varies


• At the end, we have computed  for each input 


• Key point: The intermediate results are computed numerically at each step
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Image Classification

Problem: Recognize the handwritten digit from an image


• What are the inputs?


• What are the outputs?


• What is the loss?

FIVE



Image Classification with 
Neural Networks

How can we use a neural network to 
solve this problem?


• How to represent the inputs?


• How to represent the outputs?


• What are the parameters?


• What is the loss?
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Image Recognition Issues
• For a large image, the number of 

parameters will be very large


• For 32x32 greyscale image, 
hidden layer of 512 units 
hidden layer of 256 units, 
1024×512 + 512×256 + 256×10  
= 657,920 weights (and 1,802 offsets)


• Needs lots of data to train


• Want to generalize over transformations 
of the input
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Convolutional Neural Networks
• Convolutional neural networks: a specialized architecture for image recognition


• Introduce two new operations:


1. Convolutions


2. Pooling


• Efficient learning via:


1. Sparse interactions


2. Parameter sharing


3. Equivariant representations



1. Sparse Interactions

(Goodfellow 2016)

Sparse Connectivity
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Figure 9.2: Sparse connectivity, viewed from below: We highlight one input unit, x3,
and also highlight the output units in s that are affected by this unit. (Top)When s is
formed by convolution with a kernel of width 3, only three outputs are affected by x.
(Bottom)When s is formed by matrix multiplication, connectivity is no longer sparse, so
all of the outputs are affected by x3.
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1. Sparse Interactions
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Figure 9.3: Sparse connectivity, viewed from above: We highlight one output unit, s3,
and also highlight the input units in x that affect this unit. These units are known
as the receptive field of s3. (Top)When s is formed by convolution with a kernel of
width 3, only three inputs affect s3. (Bottom)When s is formed by matrix multiplication,
connectivity is no longer sparse, so all of the inputs affect s3.
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Figure 9.4: The receptive field of the units in the deeper layers of a convolutional network
is larger than the receptive field of the units in the shallow layers. This effect increases if
the network includes architectural features like strided convolution (figure 9.12) or pooling
(section 9.3). This means that even though direct connections in a convolutional net are
very sparse, units in the deeper layers can be indirectly connected to all or most of the
input image.
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2. Parameter Sharing

(Goodfellow 2016)

Parameter SharingCHAPTER 9. CONVOLUTIONAL NETWORKS
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Figure 9.5: Parameter sharing: Black arrows indicate the connections that use a particular
parameter in two different models. (Top)The black arrows indicate uses of the central
element of a 3-element kernel in a convolutional model. Due to parameter sharing, this
single parameter is used at all input locations. (Bottom)The single black arrow indicates
the use of the central element of the weight matrix in a fully connected model. This model
has no parameter sharing so the parameter is used only once.

for every location, we learn only one set. This does not affect the runtime of
forward propagation—it is still O(k ⇥ n)—but it does further reduce the storage
requirements of the model to k parameters. Recall that k is usually several orders
of magnitude less than m. Since m and n are usually roughly the same size, k is
practically insignificant compared to m⇥n. Convolution is thus dramatically more
efficient than dense matrix multiplication in terms of the memory requirements
and statistical efficiency. For a graphical depiction of how parameter sharing works,
see figure 9.5.

As an example of both of these first two principles in action, figure 9.6 shows
how sparse connectivity and parameter sharing can dramatically improve the
efficiency of a linear function for detecting edges in an image.

In the case of convolution, the particular form of parameter sharing causes the
layer to have a property called equivariance to translation. To say a function is
equivariant means that if the input changes, the output changes in the same way.
Specifically, a function f(x) is equivariant to a function g if f(g(x)) = g(f(x)).
In the case of convolution, if we let g be any function that translates the input,
i.e., shifts it, then the convolution function is equivariant to g. For example, let I
be a function giving image brightness at integer coordinates. Let g be a function
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3. Equivariant Representations
• We want to be able to recognize 

transformed versions of inputs 
we have seen before


• e.g., translation


• Without having been trained on  
all transformed versions


• Equivariance: Changes in the 
input induce the same changes 
in the output

=
FIVE NONE

NONENONE

=
FIVENONE

NONENONE



Operation: Matrix Product
Recall that we can represent the 
activations in a densely connected 
neural network by a matrix product
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y = gy (W(3)h2 + b(3))(Image: Goodfellow 2016)
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Operation: 2D Convolution
Convolution scans a small block of 
weights (called the kernel) over the 
elements of the inputs, taking 
weighted averages


• Note that input and output 
dimensions need not match


• Same weights used for very 
many combinations


• The number of elements skipped by 
each "slide" is called the stride


• This example has a stride of 1 (Goodfellow 2016)

2D Convolution
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Figure 9.1: An example of 2-D convolution without kernel-flipping. In this case we restrict
the output to only positions where the kernel lies entirely within the image, called “valid”
convolution in some contexts. We draw boxes with arrows to indicate how the upper-left
element of the output tensor is formed by applying the kernel to the corresponding
upper-left region of the input tensor.
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Replace Matrix Multiplication by 
Convolution

Main idea: Replace matrix multiplications with convolutions


• Sparsity: Inputs only combined with neighbours


• Parameter sharing: Same kernel used for entire input



Example: Edge Detection

(Goodfellow 2016)

Edge Detection by Convolution
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Figure 9.6: Efficiency of edge detection. The image on the right was formed by taking
each pixel in the original image and subtracting the value of its neighboring pixel on the
left. This shows the strength of all of the vertically oriented edges in the input image,
which can be a useful operation for object detection. Both images are 280 pixels tall.
The input image is 320 pixels wide while the output image is 319 pixels wide. This
transformation can be described by a convolution kernel containing two elements, and
requires 319 ⇥ 280 ⇥ 3 = 267, 960 floating point operations (two multiplications and
one addition per output pixel) to compute using convolution. To describe the same
transformation with a matrix multiplication would take 320 ⇥ 280 ⇥ 319 ⇥ 280, or over
eight billion, entries in the matrix, making convolution four billion times more efficient for
representing this transformation. The straightforward matrix multiplication algorithm
performs over sixteen billion floating point operations, making convolution roughly 60,000
times more efficient computationally. Of course, most of the entries of the matrix would be
zero. If we stored only the nonzero entries of the matrix, then both matrix multiplication
and convolution would require the same number of floating point operations to compute.
The matrix would still need to contain 2 ⇥ 319 ⇥ 280 = 178, 640 entries. Convolution
is an extremely efficient way of describing transformations that apply the same linear
transformation of a small, local region across the entire input. (Photo credit: Paula
Goodfellow)
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Efficiency of Convolution
Input size: 320 by 280
Kernel size: 2 by 1
Output size: 319 by 280

Dense matrix Sparse matrix Convolution

Stored floats 319*280*320*280 
> 8e9

2*319*280 = 
178,640 2

Float muls or 
adds > 16e9

Same as 
convolution 
(267,960)

319*280*3 = 
267,960

(Goodfellow 2016)



Operation: 2D Pooling

• Pooling summarizes its inputs into 
a single value, e.g.,


• max

• average


• Max-pooling is parameter-free (no 
bias or edge weights to learn)


• This example has stride of 1
(Goodfellow 2016)
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(Image: adapted from Goodfellow 2016)
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Operation: 1D Softmax

• Softmax converts a vector of real 
values into a vector of probabilities


• Often used as the final operation in 
a classifier
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Channels & Kernels
• Convolution of a  image with 

an  kernel with a stride of  yields 
a single  output


• But we might want to learn more than one 
kernel!


• If we apply  different kernels to the input 
image, we will get  different  
outputs


• Each output is called a channel


• Convolution with a single kernel yields 
a single channel 
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Example Architecture: AlexNet

[Krizhevsky et al. 2012]
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Figure 10.16 AlexNet. The input is a
224× 224 color image and the output
is a 1000 dimensional vector represent-
ing class probabilities. The network first
convolves with 11×11 kernels and stride
4 to create 96 channels. It decreases the
resolution again using a max-pool oper-
ation and applies a 5×5 convolutional
layer. Another max-pooling layer follows
and three 3×3 convolutional layers are
applied. After a final max-pooling oper-
ation, the result is vectorized and passed
through three fully connected (FC) lay-
ers and finally the softmax layer.

The dataset size was augmented by a factor of 2048 using (i) spatial transformations
and (ii) modifications of the input intensities. At test time five different cropped and
mirrored versions of the image were run through the network and their predictions av-
eraged. The system was learned using SGD with a momentum coefficient of 0.9 and a
batch size of 128. Dropout was applied in the fully connected layers, and an L2 (weight
decay) regularizer was used. This system achieved a 16.4% top-5 error rate and a 38.1%
top-1 error rate. At the time, this was an enormous leap forward in performance at a
task that was considered to be far beyond the capabilities of contemporary methods.

The VGG network (Simonyan & Zisserman 2014) was also targeted at classification
in the ImageNet task, and achieved considerably better performance of 6.8% top-5 error
rate and a 23.7% top-1 error rate. This network is also composed of a series of inter-
spersed convolutional and max-pooling layers, followed by three fully connected layers
(figure 10.17). It was also trained using data augmentation, weight decay, and dropout.

Although there were various minor differences in the training regime, the most impor-
tant change between AlexNet and VGG was the depth of the network. The latter used Problem 10.1619 hidden layers and 144 million parameters. The networks in figures 10.16 and 10.17
are depicted at the same scale for comparison. There was a general trend for several
years for performance on this task to improve as the depth of the networks increased,
and this is evidence that depth is important in neural networks.

10.5.2 Object detection

A second application of convolutional networks is object detection; here the goal is to
identify and localize multiple objects within the image. An early deep object detection
method was You Only Look Once or YOLO for short (Redmon et al. 2016). The input to
the YOLO network is a 448×448 RGB image. This is passed through 24 convolutional
layers that gradually decrease the representation size using max-pooling operations while
concurrently increasing the number of channels in a similar way to the VGG network.
The final convolutional layer is of size 7× 7 and has 1024 channels. This is reshaped to
a vector and a fully connected layer maps it to 4096 values. One further fully connected

Draft: please send errata to udlbookmail@gmail.com.

(Image: Prince 2023)

Question: 


1. How many weights 
are needed to convert 
the 43,264 vector after 
the final convolution 
layer into the 4096 
vector of the next 
hidden layer?


2. How many biases?



Summary

• Classifying images with a standard feedforward network requires vast 
quantities of parameters (and hence data)


• Convolutional networks add pooling and convolution


• Sparse connectivity


• Parameter sharing


• Translation equivariance


• Fewer parameters means far more efficient to train


