
Neural Networks

CMPUT 261: Introduction to Artificial Intelligence

P §3.1-3.6

Lecture Outline
1. Recap

2. Nonlinear models

3. Feedforward neural networks

After this lecture, you should be able to:
• define an activation function
• define a rectified linear activation and give an expression for its value
• describe how the units in a feedforward neural network are connected
• give an expression in matrix notation for a layer of a feedforward network
• explain (high level) what the Universal Approximation Theorem guarantees
• describe the basic procedure for training a neural network
• identify the parameters of a feedforward neural network

Recap: Supervised Learning
• Supervised learning task:

predict the values of target features based on input features
• Formally: Choose a hypothesis from a hypothesis space

• We use the value of a loss function applied to a set of training examples
 to choose the hypothesis

• Regularization penalty biases optimization toward simpler functions:

• Simpler functions are more likely to generalize
• Generalization performance is evaluated on the test set
• Another way to reduce overfitting: Learn distribution over hypotheses (Bayesian)

• Many regularization approaches amount to a MAP estimate with a particular prior

Y X
h : 𝒳 → 𝒴 ℋ

L
S = {(x(1), y(1)), …, (x(n), y(n))}

ĥ = arg min
h∈ℋ

L(h) =
n

∑
i=1

ℓ(h(x(i)), y(i)) + λ penalty(h)

(Generalized) Linear Models
• Supervised models we have considered so far have been linear:

• Linear classification / regression

• Logistic regression

• Advantages: Efficient to fit (closed form sometimes!)

• Disadvantages: Can be really limited

y = h(x; w) = g(w⊤x) = g (
n

∑
i=1

wixi)
Linear model

weights

inputs

activation 
function

Example: XOR
• The function

is not linearly separable

• There is no way to draw a straight line
with all of the 1's on one side and all of
the 0's on the other

• This means that no linear model can
represent XOR exactly; there will always
be some errors

• Question: What else could we do?

h(x1, x2) = (x1 XOR x2)

(Goodfellow 2017)

XOR is not linearly separable

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

0 1

x1

0

1

x
2

Original x space

Figure 6.1: Solving the XOR problem by learning a representation. The bold numbers
printed on the plot indicate the value that the learned function must output at each point.
(Left) A linear model applied directly to the original input cannot implement the XOR
function. When x1 = 0, the model’s output must increase as x2 increases. When x1 = 1,
the model’s output must decrease as x2 increases. A linear model must apply a fixed
coefficient w2 to x2. The linear model therefore cannot use the value of x1 to change
the coefficient on x2 and cannot solve this problem. (Right) In the transformed space
represented by the features extracted by a neural network, a linear model can now solve
the problem. In our example solution, the two points that must have output 1 have been
collapsed into a single point in feature space. In other words, the nonlinear features have
mapped both x = [1, 0]> and x = [0, 1]> to a single point in feature space, h = [1, 0]>.
The linear model can now describe the function as increasing in h1 and decreasing in h2.
In this example, the motivation for learning the feature space is only to make the model
capacity greater so that it can fit the training set. In more realistic applications, learned
representations can also help the model to generalize.

169

Figure 6.1, left

(Image: Goodfellow 2017)

Nonlinear Features

One option: Learn a linear model on richer inputs

1. Define a feature mapping that returns functions of the original inputs

2. Learn a linear model of the features instead of the inputs

h(x; w) = g(w⊤x) = g
d

∑
j=1

wjxj

ϕ(x)

h(x; w) = g(w⊤ϕ(x)) = g
d

∑
j=1

wj[ϕ(x)]j

Nonlinear Features for XOR
• Question:

What additional features would help?

• The product of and !

•

•

• for and
 for and

x1 x2

ϕ(x1, x2) = [1,x1, x2, x1x2]⊤

w = [−0.2, 0.5, 0.5, − 2]⊤

h(x; w) = w⊤ϕ(x) > 0 (0,1) (1,0)
h(x; w) = w⊤ϕ(x) < 0 (1,1) (0,0)

(Goodfellow 2017)

XOR is not linearly separable

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

0 1

x1

0

1

x
2

Original x space

Figure 6.1: Solving the XOR problem by learning a representation. The bold numbers
printed on the plot indicate the value that the learned function must output at each point.
(Left) A linear model applied directly to the original input cannot implement the XOR
function. When x1 = 0, the model’s output must increase as x2 increases. When x1 = 1,
the model’s output must decrease as x2 increases. A linear model must apply a fixed
coefficient w2 to x2. The linear model therefore cannot use the value of x1 to change
the coefficient on x2 and cannot solve this problem. (Right) In the transformed space
represented by the features extracted by a neural network, a linear model can now solve
the problem. In our example solution, the two points that must have output 1 have been
collapsed into a single point in feature space. In other words, the nonlinear features have
mapped both x = [1, 0]> and x = [0, 1]> to a single point in feature space, h = [1, 0]>.
The linear model can now describe the function as increasing in h1 and decreasing in h2.
In this example, the motivation for learning the feature space is only to make the model
capacity greater so that it can fit the training set. In more realistic applications, learned
representations can also help the model to generalize.

169

Figure 6.1, left

(Image: Goodfellow 2017)
(Goodfellow 2017)

Solving XOR

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

0 1

x1

0

1

x
2

Original x space

0 1 2

h1

0

1

h
2

Learned h space

Figure 6.1: Solving the XOR problem by learning a representation. The bold numbers
printed on the plot indicate the value that the learned function must output at each point.
(Left)A linear model applied directly to the original input cannot implement the XOR
function. When x1 = 0, the model’s output must increase as x2 increases. When x1 = 1,
the model’s output must decrease as x2 increases. A linear model must apply a fixed
coefficient w2 to x2. The linear model therefore cannot use the value of x1 to change
the coefficient on x2 and cannot solve this problem. (Right)In the transformed space
represented by the features extracted by a neural network, a linear model can now solve
the problem. In our example solution, the two points that must have output 1 have been
collapsed into a single point in feature space. In other words, the nonlinear features have
mapped both x = [1, 0]> and x = [0, 1]> to a single point in feature space, h = [1, 0]>.
The linear model can now describe the function as increasing in h1 and decreasing in h2.
In this example, the motivation for learning the feature space is only to make the model
capacity greater so that it can fit the training set. In more realistic applications, learned
representations can also help the model to generalize.

173

Figure 6.1
x1 + x2

x 1
 ×

 x
2

Learning Nonlinear Features

• Manually constructing good features is hard

• Manually constructed features are not transferrable between domains

• e.g., SIFT features were a revolution in computer vision, but are only for
computer vision

• Deep learning aims to learn automatically from the dataϕ

Neural Units
• Deep learning learns by composing little functions

• These function are called units

• Question: How is this different from a generalized linear model?

ϕ

h(x; w, b) = g(b + w⊤x) = g b +
d

∑
j=1

wjxj

weights activation 
function

offset
h

x1

x2

b
w1

w2

Feedforward Neural Network
• A neural network is many units composed together

• Feedforward neural network: Units arranged into layers

• Each layer takes outputs of previous layer as its inputs

h1

h2

y

x2

x1
w(1)

1,1

w(1)
1,2

w(1)
2,1

w(1)
2,2

h1 = g (w(1)
1,1x1 + w(1)

1,2x2 + b(1)
1)

h2 = g (w(1)
2,1x1 + w(1)

2,2x2 + b(1)
2)

y = g (w(2)
1 h1 + w(2)

2 h2 + b(2))
w(2)

1

w(2)
2

Example: XOR network
h1

h2

y

x2

x1
+1

-1

-1

+1

+1

+1

• Activation: ("rectified linear unit")

• Offsets:

• Weights:

• for ; for

• for

g(z) = max{0,z}

0

[+1, − 1] h1 [−1, + 1] h2

[+1, + 1] y

Question:

When does ?h1 = 1

Matrix Representation of Layers
• You can think of the outputs of

each layer as a vector

• The weights from all the outputs
of a previous layer to each of the
units of the layer can be collected
into a matrix

• The offset term for each unit can
be collected into a vector :

h

W ∈ ℝk×d

b ∈ ℝk

h = g (Wx + b)

hx y

h1

h2

y

x2

x1 # inputs# hidden units

Architecture

Design decisions:

1. Depth: number of layers

2. Width: number of nodes in each layer

3. Fully connected?

h1

h2

y
x2

x1

Universal Approximation Theorem

Theorem: (Hornik et al. 1989; Cybenko 1989; Leshno et al. 1993)
A feedforward network with one hidden layer with a "squashing"
activation or rectified linear activation and a linear output layer can
approximate any function to within any given error bound, given
enough hidden units.

• So a wide but shallow feedforward network can represent any
function we're trying to learn!

• Question: Why bother with multiple layers? (i.e., depth > 1)

Neural Network Parameters

A neural network is just a supervised model

• It is a function that takes inputs , and computes an output based on
parameters

• Question: What is in a feedforward neural network?

x y
θ

θ

h1

h2

y

x2

x1

 y = h(x; θ)

Training Neural Networks
• Specify a loss and a set of training examples:

• Training by gradient descent:

1. Compute loss on training data:

2. Compute gradient of loss:

3. Update parameters to make loss smaller:

L

S = (x(1), y(1)), . . . , (x(n), y(n))

L(W, b) =
n

∑
i=1

ℓ (h(x(i); W, b), y(i))

∇L(W, b)

[Wnew

bnew] = [Wold

bold] − η∇L(Wold, bold)

Prediction Target

Loss function 
(e.g., squared error)

(Subsequent lecture)

Hidden Unit Activations

• Default choice: Rectified linear units (ReLU)

• Other common types:

•

• (sigmoid)

• Sigmoid suffers from vanishing gradients; ReLU does not

g(z) = max{0,z}

tanh(z)
1

1 + e−z

Torch: Representating Layers

Torch thinks about operations rather than units

• We've been thinking about a unit as "weighted sum and then activation"

• Torch specifies the weighting (Linear) and then the activation (ReLU) separately

• This is especially handy for output layers, where you often want to normalize by the sum
of all the outputs (e.g., LogSoftmax)

Summary
• Generalized linear models are insufficiently expressive for many applications

• Composing GLMs into a network is arbitrarily expressive

• A neural network with a single hidden layer can approximate any function

• But the network might need to be impractically large, prone to overfitting, or
inefficient to train

• Neural networks are trained using variants of gradient descent

• Architectural choices can make a network easier to train, less prone to
overfitting

