Linear Models

CMPUT 261: Introduction to Artificial Intelligence

P\&M §7.3

Assignment \#2

Assignment \#2 is due Thu Feb 29/2024 (two weeks from today) at 11:59pm

- Submissions past the deadline will have late penalty applied
- Leave yourself some margin for error when submitting!

Next week is reading week

- No lectures or labs next week

Recap: Supervised Learning

Definition: A supervised learning task consists of

- A set of input features X_{1}, \ldots, X_{n}
- A set of target features Y_{1}, \ldots, Y_{k}
- A set of training examples, for which both input and target features are given
- A set of test examples, for which only the input features are given

The goal is to predict the values of the target features given the input features;
i.e., Iearn a function $h(x)$ that will map features X to a prediction of Y

- We want to predict new, unseen data well; this is called generalization
- Can estimate generalization performance by reserving separate test examples

Recap: Loss Functions

- A loss function gives a quantitative measure of a hypothesis's performance
- There are many commonly-used loss functions, each with its own properties

Loss	Definition
0/1 error	$\sum_{i=1}^{n} 1\left[y^{(i)} \neq h\left(\mathbf{x}^{(i)}\right)\right]$
absolute error	$\sum_{i=1}^{n}\left\|y^{(i)}-h\left(\mathbf{x}^{(i)}\right)\right\|$
squared error	$\sum_{i=1}^{n}\left(y^{(i)}-h\left(\mathbf{x}^{(i)}\right)\right)^{2}$
worst case	$\max _{1 \leq i \leq n}\left\|y^{(i)}-h\left(\mathbf{x}^{(i)}\right)\right\|$
likelihood	$\operatorname{Pr}(S \mid h)=\prod_{(\mathbf{x}, y) \in S} h(\mathbf{x})_{y}$
log-likelihood	$\log \operatorname{Pr}(S \mid h)=\sum_{(\mathbf{x}, y) \in S} \log h(\mathbf{x})_{y}$

Recap: Loss Functions

- A loss function gives a quantitative measure of a hypothesis's performance
- There are many commonly-used loss functions, each with its own properties

Loss	Definition
0/1 error	$\sum_{i=1}^{n} 1\left[y^{(i)} \neq h\left(\mathbf{x}^{(i)}\right)\right]$
absolute error	$\sum_{i=1}^{n}\left\|y^{(i)}-h\left(\mathbf{x}^{(i)}\right)\right\|$
squared error	$\sum_{i=1}^{n}\left(y^{(i)}-h\left(\mathbf{x}^{(i)}\right)\right)^{2}$
worst case	$\max _{1 \leq i \leq n}\left\|y^{(i)}-h\left(\mathbf{x}^{(i)}\right)\right\|$
likelihood	$\operatorname{Pr}(S \mid h)=\prod_{(\mathbf{x}, y) \in S} h(\mathbf{x})_{y}$
log-likelihood	$\log \operatorname{Pr}(S \mid h)=\sum_{(\mathbf{x}, y) \in S} \log h(\mathbf{x})_{y}$

Probabilistic Predictors

- Rather than predicting exactly what a target value will be, many common algorithms predict a probability distribution over possible values
- Especially for classification tasks
- Vectors of indicator variables are the most common data representation for this scheme:
- Target features of training examples have a single 1 for the true value
- Predicted target values are probabilities that sum to 1

Probabilistic Predictions Example

Training examples

Output on test example

Likelihood

For probabilistic predictions, we can use likelihood to measure the performance of a learning algorithm

Definition:

The likelihood for a dataset S of examples and hypothesis h is the probability of independently observing the examples according to the probabilities assigned by the hypothesis:

$$
\operatorname{Pr}(S \mid h)=\prod_{(\mathbf{x}, y) \in S} h(\mathbf{x})_{y}
$$

- This has a clear Bayesian interpretation
- We want to maximize likelihood, so it's not a loss (why?)
- Question: What is the corresponding loss?
- Numerical stability issues: product of probabilities shrinks exponentially!
- Example: Probability of any sequence of 5000 coin tosses has probability 2^{-5000} !
- Floating point underflows almost immediately (double-precision floating point can't represent anything smaller than 2^{-1021})

Log-Likelihood

Definition:

The log-likelihood for a dataset S of examples and hypothesis h is the log-probability of independently observing the examples according to the probabilities assigned by the hypothesis:

$$
\begin{aligned}
\log \operatorname{Pr}(S \mid h) & =\log \prod_{(\mathbf{x}, y) \in S} h(\mathbf{x})_{y} \\
& =\sum_{(\mathbf{x}, y) \in S} \log h(\mathbf{x})_{y}
\end{aligned}
$$

- Taking log of the likelihood fixes the underflow issue (why?)
- The log function grows monotonically, so maximizing log-likelihood is the same thing as maximizing likelihood:

$$
\left(\operatorname{Pr}\left(S \mid h_{1}\right)>\operatorname{Pr}\left(S \mid h_{2}\right)\right) \Longleftrightarrow\left(\log \operatorname{Pr}\left(S \mid h_{1}\right)>\log \operatorname{Pr}\left(S \mid h_{2}\right)\right)
$$

Trivial Predictors

- The simplest possible predictor ignores all input features and just predicts the same value v for any example
- Question: Why would we every want to think about these?

Optimal Trivial Predictors for Binary Data

- Suppose we are predicting a binary target
- n_{0} negative examples
- n_{1} positive examples
- Question: What is the optimal single prediction?

Measure	Optimal Prediction
$0 / 1$ error	0 if $n_{0}>n_{1}$ else 1
absolute error	0 if $n_{0}>n_{1}$ else 1
squared error	$\begin{cases}0 & \frac{n_{1}}{n_{0}+n_{1}} \\ 1 & \text { if } n_{1}=0 \\ \text { if } n_{0}=0 \\ 0.5 & \text { otherwise }\end{cases}$
worst case	$\frac{n_{1}}{n_{0}+n_{1}}$
likelihood	$\frac{n_{1}}{n_{0}+n_{1}}$
log-likelihood	

Optimal Trivial Predictor Derivations

$0 / 1$ error $\quad 0$ if $n_{0}>n_{1}$ else 1

$$
L(v)=v n_{0}+(1-v) n_{1}
$$

(negative)
log-likelihood

$$
\frac{n_{1}}{n_{0}+n_{1}}
$$

$$
\begin{aligned}
L(v) & =-\log \operatorname{Pr}(S \mid v) \\
& =-n_{1} \log v-n_{0} \log (1-v)
\end{aligned}
$$

$$
\frac{d}{d v} L(v)=0
$$

$$
0=-\frac{n_{1}}{v}+\frac{n_{0}}{1-v}
$$

$$
\frac{n_{1}}{v}=\frac{n_{0}}{1-v}
$$

$$
\frac{n_{1}}{n_{0}}=\frac{v}{1-v} \wedge(0<v<1) \Longrightarrow v=\frac{n_{1}}{n_{0}+n_{1}}
$$

Lecture Outline

1. Recap \& Logistics
2. Trivial Predictors
3. Linear Regression
4. Linear Classification

After this lecture, you should be able to:

- specify and/or implement linear regression, linear classification, logistic regression
- explain the benefits of different approaches to learning linear models

Linear Regression

- Linear regression is the problem of fitting a linear function to a set of training examples
- Both input and target features must be numeric
- Linear function of the input features:

$$
\begin{aligned}
h(\mathbf{x} ; \mathbf{w}) & =w_{0}+w_{1} x_{1}+\ldots+w_{d} x_{d}(e) \\
& =\sum_{j=0}^{d} w_{\substack{\text { For convenience, we often add a special } \\
\text { "constant feature" } x_{0}=1 \text { for all examples }}}^{w_{j} x_{j}}
\end{aligned}
$$

Ordinary Least-Squares

For the squared error loss, it is possible to find the optimal predictor for a dataset analytically:

1. $L(\mathbf{w})=\sum_{i=1}^{n}\left(y^{(i)}-h\left(\mathbf{x}^{(i)} ; \mathbf{w}^{(i)}\right)\right)^{2}=\sum_{i=1}^{n}\left(y^{(i)}-\sum_{j=0}^{d} w_{j}^{(i)} x_{j}^{(i)}\right)^{2}$
2. Recall that $\nabla L\left(\mathbf{w}^{*}\right)=0$ for $\mathbf{w}^{*} \in \arg \min _{\mathbf{w} \in \mathbb{R}^{d+1}} L(\mathbf{w})$
3. Derive an expression for $\nabla L\left(\mathbf{w}^{*}\right)$ and solve for 0

- For d input features, solve a system of $d+1$ equations
- Requires inverting a $(d+1) \times(d+1)$ matrix

$$
O\left(d^{3}\right)
$$

- Constructing the matrix requires adding n matrices (one for each example) $O\left(n d^{2}\right)$
- Total cost: $O\left(n d^{2}+d^{3}\right)$

Gradient Descent

- The analytic solution is tractable for small datasets with few input features
- ImageNet has about 14 million images with $256 \times 256=65,536$ input features
- For others, we use gradient descent
- Gradient descent is an iterative method to find the minimum of a function.
- For minimizing error:

$$
w_{j}^{(t+1)} \leftarrow w_{j}^{(t)}-\eta \frac{\partial}{\partial w_{j}^{(t)}} \operatorname{error}\left(S, \mathbf{w}^{(t)}\right)
$$

Recap: Gradient Descent

- The gradient of a function tells how to change every element of a vector to increase the function
- If the partial derivative of x_{i} is positive, increase x_{i}
- Gradient descent:

Iteratively choose new values of x in the (opposite) direction of the gradient:

$$
\mathbf{x}^{\text {new }}=\mathbf{x}^{\text {old }}-\eta \underbrace{\nabla f\left(\mathbf{x}^{\text {old }}\right) .}
$$

- This only works for sufficiently small changes (why?)
- Question: How much should we change $\mathbf{x}^{\text {old }}$?

Gradient Descent Variations

- Incremental gradient descent: update each weight after each example in turn

$$
\forall 1 \leq i \leq n: w_{j}^{(t+1)} \leftarrow w_{j}^{(t)}-\eta \frac{\partial}{\partial w_{j}^{(t)}} \operatorname{error}\left(\left\{\left(\mathbf{x}^{(i)}, y^{(i)}\right)\right\}, w^{(t)}\right)
$$

- Batched gradient descent: update each weight based on a batch of examples

$$
\forall S_{i}: w_{j}^{(t+1)} \leftarrow w_{j}^{(t)}-\eta \frac{\partial}{\partial w_{j}^{(t)}} \operatorname{error}\left(S_{i}, w^{(t)}\right)
$$

Question

Why would we ever use any of these?

- Stochastic gradient descent: update repeatedly on random examples:

$$
i \sim U(\{1, \ldots, n\}): w_{j}^{(t+1)} \leftarrow w_{j}^{(t)}-\eta \frac{\partial}{\partial w_{j}^{(t)}} \operatorname{error}\left(\left\{\left(\mathbf{x}^{(i)}, y^{(i)}\right)\right\}, \mathbf{w}^{(t)}\right)
$$

Linear Classification

- For binary targets, we can use linear regression to do classification
- Represent binary classes by $\{-1,+1\}$
- If regression target is negative, predict -1 , else predict +1

$$
h(\mathbf{x} ; \mathbf{w})=\underset{/}{\operatorname{sgn}}\left(\sum_{j=0}^{d} w_{j} x_{j}\right)
$$

- The line defined by $\sum_{j=0}^{d} w_{j} x_{j}=0$ is called the decision boundary

Probabilistic Linear Classification

- For binary targets represented by $\{0,1\}$ or numeric input features, we can use linear function to estimate the probability of the class
- Issue: we need to constrain the output to lie within $[0,1]$
- Instead of outputting results of the function directly, send it through an activation function $f: \mathbb{R} \rightarrow[0,1]$ instead:

$$
h(\mathbf{x} ; \mathbf{w})=f\left(\sum_{j=0}^{d} w_{j} x_{j}\right)
$$

Logistic Regression

- A very commonly used activation function is the logistic function:

$$
s(t)=\frac{1}{1+e^{-t}}
$$

- Linear classification with a logistic activation function is often referred to as logistic regression:

$$
h(\mathbf{x} ; \mathbf{w})=s\left(\sum_{j=0}^{d} w_{j} x_{j}\right)
$$

Question: What is the decision boundary in logistic regression?

Non-Binary Target Features

What if the target feature has $k>2$ values?

1. Use k indicator variables
2. Learn each indicator variable separately
3. Normalize the predictions:

$$
h_{\ell}(\mathbf{x} ; \mathbf{w})=\frac{\exp \left(\sum_{j=0}^{d} w_{\ell, j} x_{j}\right)}{\sum_{p=1}^{k} \exp \left(\sum_{j=0}^{d} w_{p, j} x_{j}\right)}
$$

Summary

- Linear regression is a simple model for predicting real quantities
- Linear classification can be built from linear regression
- Based on sign of prediction ("discriminative"), or
- Using logistic regression ("probabilistic")
- For non-binary target features, can normalize probabilistic predictions for individual classes
- Gradient descent is a general, widely-used training procedure (with several variants)
- Linear models can be optimized in closed form for certain losses
- In practice often optimized with gradient descent

