## Supervised Learning Introduction & Framework

CMPUT 261: Introduction to Artificial Intelligence

P&M §7.1-7.3

# Assignments

#### • Assignment #2 is now available

• Due Feb 29/2024 (three weeks from today) at 11:59pm

# Recap: Uncertainty

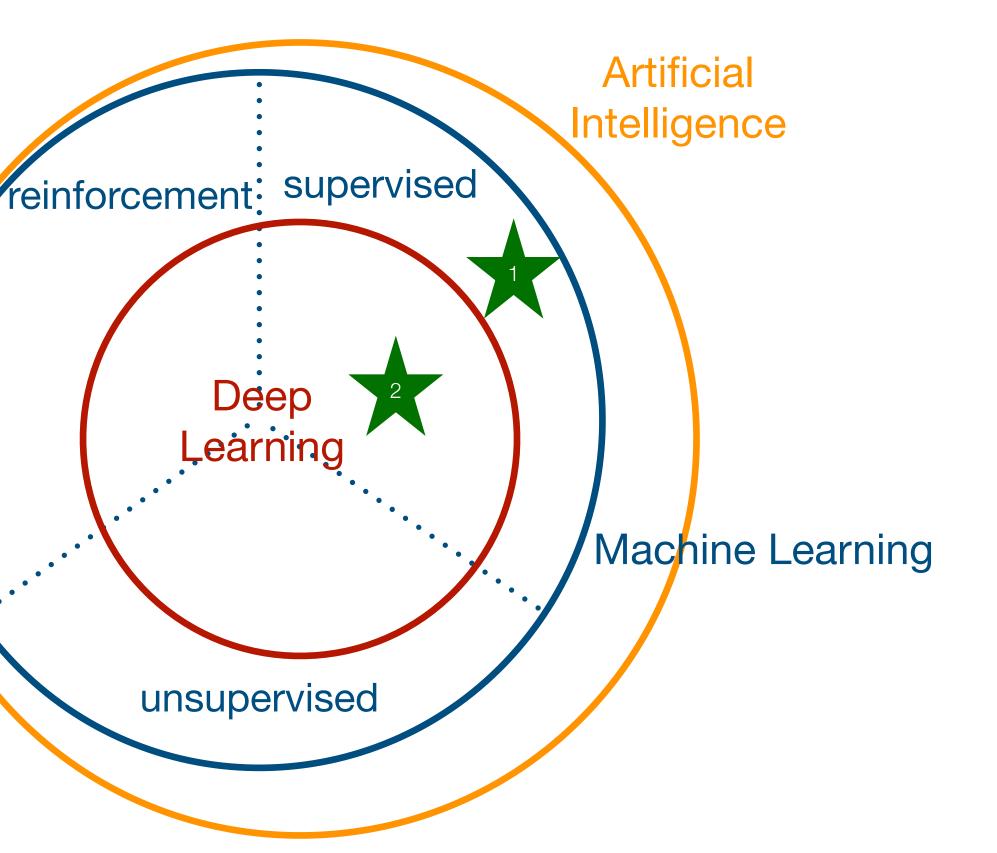
- We represent uncertainty about the world by **probabilities** 
  - We update our knowledge by conditioning on observations
  - Observations = learning the value of a random variable
- Full, unstructured joint distributions are intractable to reason about
- Conditional independence is a kind of structure that is:
  - 1. widespread
  - 2. easy to reason about
  - 3. allows tractable **inference** (computing distribution of unobserved variables) **Belief networks** let us compactly represent joint distributions with a lot of
- Belief networks let us compactly represent conditional independence
  - Variable elimination is an algorithm for efficient inference on belief networks

# Supervised Learning, informally

- In the uncertainty section, we took the probability distribution as given
  - Our only problem was to represent and derive distributions
- Question: Where do these probabilities come from?
- Supervised learning is a way to learn probabilities from examples
  - Probability of a target feature (or label) given input features
  - i.e., condition on input features to get probability of target
- Basic idea:
  - Take a bunch of inputs (e.g., images) and "correct" outputs
  - Learn a model that correctly maps inputs to outputs

### Supervised Learning vs. Machine Learning vs. Deep Learning

What is the difference between Supervised Learning, Machine Learning, and Deep Learning?



# Lecture Outline

- Recap & Logistics
- 2. Supervised Learning Problem
- 3. Measuring Prediction Quality

#### After this lecture, you should be able to:

- define supervised learning task, classification, regression, loss function
- define generalization performance lacksquare
- identify an appropriate loss function for different tasks
- explain why a separate test set estimates generalization performance
- $\bullet$ error

represent categorical target values in multiple ways (indicator variables, indexes)

define 0/1 error, absolute error, (log-)likelihood loss, mean squared error, worst-case

# Supervised Learning

Definition: A supervised learning task consists of

- A set of input features  $X_1, \ldots, X_d$
- A set of target features  $Y_1, \ldots, Y_k$
- A set of training examples  $S = \{(\mathbf{x} \ sampled randomly from some popul$
- A set of test examples  $T = \{(\mathbf{x}^{(i)}, \mathbf{y})\}$ sampled from the same population

The goal is to predict the values of the target features given the input features; i.e., learn a function h(x) that will map features X to a prediction of Y

- Classification:  $Y_i$  are discrete
- **Regression:**  $Y_i$  are **real-valued**

$$\{\mathbf{x}^{(i)}, \mathbf{y}^{(i)}\}_{i=1}^{n}$$
  
lation  
 $\{\mathbf{y}^{(i)}\}_{i=1}^{m}$ 

# Supervised Learning Examples

- for the main object in the image
  - Input features: Pixel values of the image
  - *Target features:* One feature for each label (e.g., dog, plane, etc.)
- **Precision medicine:** Given examples of symptoms, test results, and treatments, output an 2. estimate of recovery time
  - Input features: symptoms, treatment indicators, test results, demographic information
  - *Target features:* recovery time, survival time, etc.
- **Natural language processing:** Given example sentences and labels representing З. "sentiment", output how positive or negative the sentence is
  - Input features: binary indicators for words or characters (\*\*!)
  - *Target features:* One feature per label (e.g., **positive**, **negative**)

**Computational vision:** Given example images and labels representing objects, output a label

# Regression Example

- Aim is to predict the value of target Y based on features X
- Both X and Y are real-valued
  - Exact values of both targets and features may not have been in the training set
  - Input 8 is an interpolation problem: X is within the range of the training examples' values
  - Input 9 is an **extrapolation** problem: X is outside the range of the training examples' values

| i | <b>X</b> (i) | <b>Y</b> <sup>(i)</sup> |
|---|--------------|-------------------------|
| 1 | 0.7          | 1.7                     |
| 2 | 1.1          | 2.4                     |
| 3 | 1.3          | 2.5                     |
| 4 | 1.9          | 1.7                     |
| 5 | 2.6          | 2.1                     |
| 6 | 3.1          | 2.3                     |
| 7 | 3.9          | 7                       |

| 8 | 2.9 | ? |
|---|-----|---|
| 9 | 5.0 | ? |

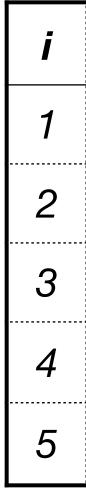
# Data Representation

- For real-valued features, we typically just record the feature values
- For **discrete** features, there are multiple options:
  - Binary features: Can code  $\{false, true\}$  as  $\{0,1\}$  or  $\{-1, +1\}$
  - Can record numeric values for each possible value
    - Cardinal values: Differences are meaningful (e.g., 1, 2, 7)
    - Ordinal values: Order is meaningful (e.g., Good, Fair, Poor)
    - Categorical values: Neither differences nor order meaningful (e.g., Red, Green, Blue)
  - Vector of **indicator variables**: One per feature value, exactly one is true (sometimes called a "one-hot" encoding) (e.g., *Red* as (1,0,0), *Green* as (0,1,0), etc.)

### Classification Example: Holiday Preferences

- An agent wants to learn a person's preference for the length of holidays
- Holiday can be for 1,2,3,4,5, or 6 days
- Two possible representations:

| i | <b>y</b> <sup>(i)</sup> |
|---|-------------------------|
| 1 | 1                       |
| 2 | 6                       |
| 3 | 6                       |
| 4 | 2                       |
| 5 | 1                       |



| <b>Y</b> <sup>(i)</sup> 1 | <b>y</b> <sup>(i)</sup> 2 | <b>y</b> <sup>(i)</sup> 3 | <b>y</b> <sup>(i)</sup> 4 | <b>y</b> <sup>(i)</sup> 5 | <b>y</b> <sup>(i)</sup> 6 |
|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| 1                         | 0                         | 0                         | 0                         | 0                         | 0                         |
| 0                         | 0                         | 0                         | 0                         | 0                         | 1                         |
| 0                         | 0                         | 0                         | 0                         | 0                         | 1                         |
| 0                         | 1                         | 0                         | 0                         | 0                         | 0                         |
| 1                         | 0                         | 0                         | 0                         | 0                         | 0                         |

#### **Question:**

What are the advantages/ disadvantages of each representation?



## Generalization

- Question: What does it mean for a trained model to perform well?
- We want to be able to make correct predictions on **unseen** data, not just the training examples
  - We are even willing to sacrifice some training accuracy to achieve this
  - We want our learners to generalize: to go beyond the given training examples to classify new examples well
  - **Problem:** We can't measure performance on unobserved examples!
- We can estimate generalization performance by evaluating performance on the test set (Why?)
  - The learning algorithm doesn't have access to the test data, but we do

# Generalization Example

**Example:** Consider binary two classifiers, **P** and **N** 

- P classifies all the **positive examples** from the training data as true, and all others as false
- N classifies all of the **negative examples** from the training data as false, and all others as true

Question: Which classifier generalizes better?

- **Question:** Which classifier performs better on the training data?



- The hypothesis space is the set of possible hypotheses
  - "Training a model" = "Choosing a hypothesis from the hypothesis space based on data"
- A preference for one hypothesis over another is called **bias** 
  - Bias is not a bad thing in this context!
  - Preference for "simple" models is a bias
  - Which bias works best for generalization is an empirical question

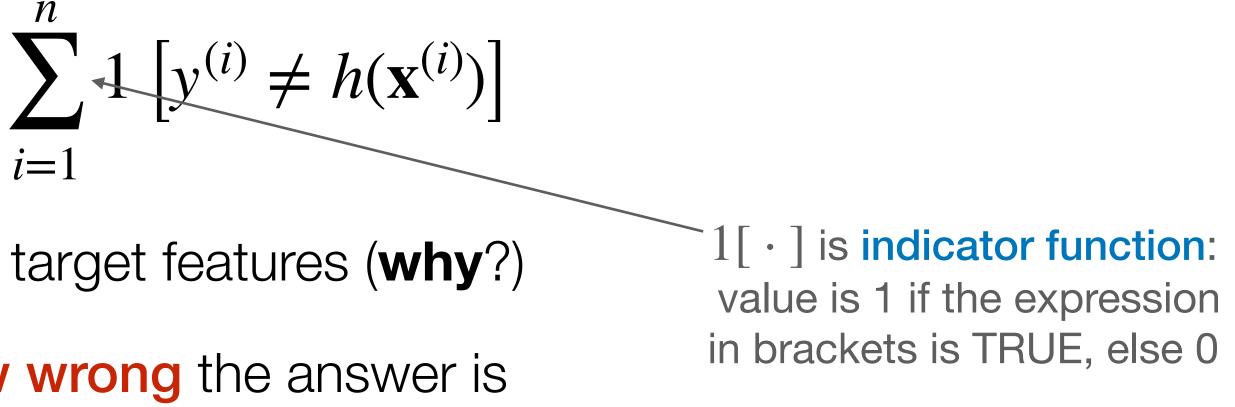
### Bias

# Measuring Prediction Error

- We choose our hypothesis partly by measuring its performance on training data
  - **Question:** What is the other consideration?
- This is usually described as minimizing some quantitative measurement of error (or loss)
  - Question: What might error mean?

#### **Definition:**

The 0/1 error for a dataset of n examples and hypothesis h is the number of examples for which the prediction was not correct:



- Not appropriate for **real-valued** target features (**why**?) •
- Does not take into account how wrong the answer is

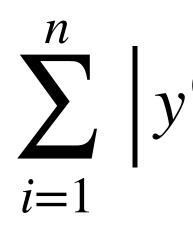
• e.g., 
$$1 \left[ 2 \neq 1 \right] = 1 \left[ 6 \neq 1 \right]$$

Most appropriate for **binary** or **categorical** target features  $\bullet$ 

### 0/1 Error

## Absolute Error

### **Definition:**



- Meaningless for categorical variables
- Takes account of how wrong the predictions are
- Most appropriate for cardinal or possibly ordinal values lacksquare

The absolute error for a dataset of *n* examples and hypothesis *h* is the sum of absolute distances between the predicted target value and the actual target value:

$$(i) - h(\mathbf{x}^{(i)})$$

# Squared Error

### **Definition:**

*n* examples and hypothesis h is the sum of squared distances between the predicted target value and the actual target value:

- Meaningless for **categorical** variables
- Takes account of how wrong the predictions are
  - Large errors are much more important than small errors
- Most appropriate for **cardinal** values

The squared error (or sum of squares error or mean squared error) for a dataset of

$$(i) - h(\mathbf{x}^{(i)}))^2$$

# Worst-Case Error

### **Definition:**

The worst-case error for a dataset of *n* examples and hypothesis *h* is the maximum absolute difference between the predicted target value and the actual target value:

max  $1 \leq i \leq n$ 

- Meaningless for **categorical** variables
- Takes account of how wrong the predictions are
  - but only on **one example** (the one whose prediction is furthest from the true target)
- Most appropriate for cardinal values

$$y^{(i)} - h(\mathbf{x}^{(i)})$$

# Probabilistic Predictors

- Rather than predicting exactly what a target value will be, many common algorithms predict a **probability distribution** over possible values
  - Especially for **classification** tasks
- scheme:

  - Predicted target values are probabilities that sum to 1

Vectors of indicator variables are the most common data representation for this

• Target features of training examples have a single 1 for the true value

# Probabilistic Predictions Example

### Training examples



Output on test example

| X | h(X) <sub>cat</sub> | h(X) <sub>dog</sub> | <b>h(X)</b> panda |
|---|---------------------|---------------------|-------------------|
|   | 0.5                 | 0.45                | 0.05              |

## Likelihood

#### **Definition:**

The likelihood for a dataset S of examples and hypothesis h is the probability of independently observing the examples according to the probabilities assigned by the **hypothesis**:

#### $Pr(S \mid h)$

- This has a clear Bayesian interpretation
- We want to maximize likelihood, so it's not a loss (**why?**)
  - **Question:** What is the corresponding loss?  $\bullet$
- **Numerical stability issues:** product of probabilities shrinks **exponentially**! lacksquare
  - *Example:* Probability of **any** sequence of 5000 coin tosses has probability  $2^{-5000}$ !  $\bullet$
  - Floating point underflows almost immediately (double-precision floating point can't represent anything smaller than  $2^{-1021}$ )

• For probabilistic predictions, we can use likelihood to measure the performance of a learning algorithm

$$h(\mathbf{x}) = \prod_{(\mathbf{x},y)\in S} h(\mathbf{x})_y$$

# Log-Likelihood

#### **Definition:**

The log-likelihood for a dataset S of examples and hypothesis h is the log-probability of independently observing the examples according to the probabilities assigned by the hypothesis:

 $\log \Pr(S \mid h)$ 

- Taking log of the likelihood fixes the underflow issue (**why**?)
- maximizing likelihood:

$$\left(\Pr(S \mid h_1) > \Pr(S \mid h_2)\right) \iff \left(\log\Pr(S \mid h_1) > \log\Pr(S \mid h_2)\right)$$

$$= \log \prod_{(\mathbf{x},y) \in S} h(\mathbf{x})_{y}$$
$$= \sum_{(\mathbf{x},y) \in S} \log h(\mathbf{x})_{y}$$

The log function grows monotonically, so maximizing log-likelihood is the same thing as

### Trivial Predictors

- **same value** *v* for any example
- **Question:** Why would we every want to think about these? ullet

### • The simplest possible predictor **ignores all input features** and just predicts the

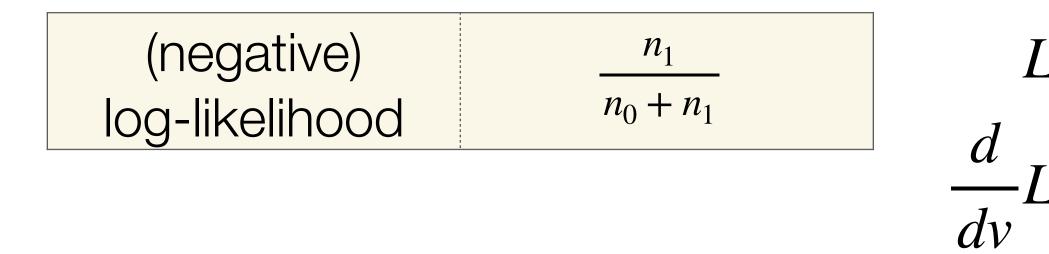
### Optimal Trivial Predictors for Binary Data

- Suppose we are predicting a binary target
- *n*<sub>0</sub> **negative** examples
- *n*<sub>1</sub> **positive** examples
- **Question:** What is the optimal single prediction?

| Measure        | <b>Optimal Prediction</b>                                                                              |  |
|----------------|--------------------------------------------------------------------------------------------------------|--|
| 0/1 error      | 0 if $n_0 > n_1$ else 1                                                                                |  |
| absolute error | 0 if $n_0 > n_1$ else 1                                                                                |  |
| squared error  | $\frac{n_1}{n_0 + n_1}$                                                                                |  |
| worst case     | $\begin{cases} 0 & \text{if } n_1 = 0 \\ 1 & \text{if } n_0 = 0 \\ 0.5 & \text{otherwise} \end{cases}$ |  |
| likelihood     | $\frac{n_1}{n_0 + n_1}$                                                                                |  |
| log-likelihood | $\frac{n_1}{n_0 + n_1}$                                                                                |  |

### **Optimal Trivial Predictor Derivations**

0/1 error 0 if  $n_0 > n_1 \text{ else } 1$ 



 $L(v) = vn_0 + (1 - v)n_1$ 

$$L(v) = -n_1 \log v - n_0 \log(1 - v)$$
  
 $L(v) = 0$ 

$$0 = -\frac{n_1}{v} + \frac{n_0}{1 - v}$$
  
$$\frac{n_1}{v} = \frac{n_0}{1 - v}$$
  
$$\frac{n_1}{n_0} = \frac{v}{1 - v} \land (0 < v < 1) \implies v = \frac{n_1}{n_0 + n_1}$$

# Summary

- Supervised learning is learning a hypothesis function from training examples
  - Maps from input features to target features
  - Classification: Discrete target features
  - Regression: Real-valued target features
- Preferences among hypotheses are called bias
- Choice of error measurement (loss) is an important design decision
- Different losses have different optimal trivial predictors
  - Trivial predictors are a baseline: your real model better outperform the trivial predictor