Supervised Learning Introduction & Framework

CMPUT 261: Introduction to Artificial Intelligence

P&M §7.1-7.3

Assignments

• Assignment #2 is now available

• Due Feb 29/2024 (three weeks from today) at 11:59pm

Recap: Uncertainty

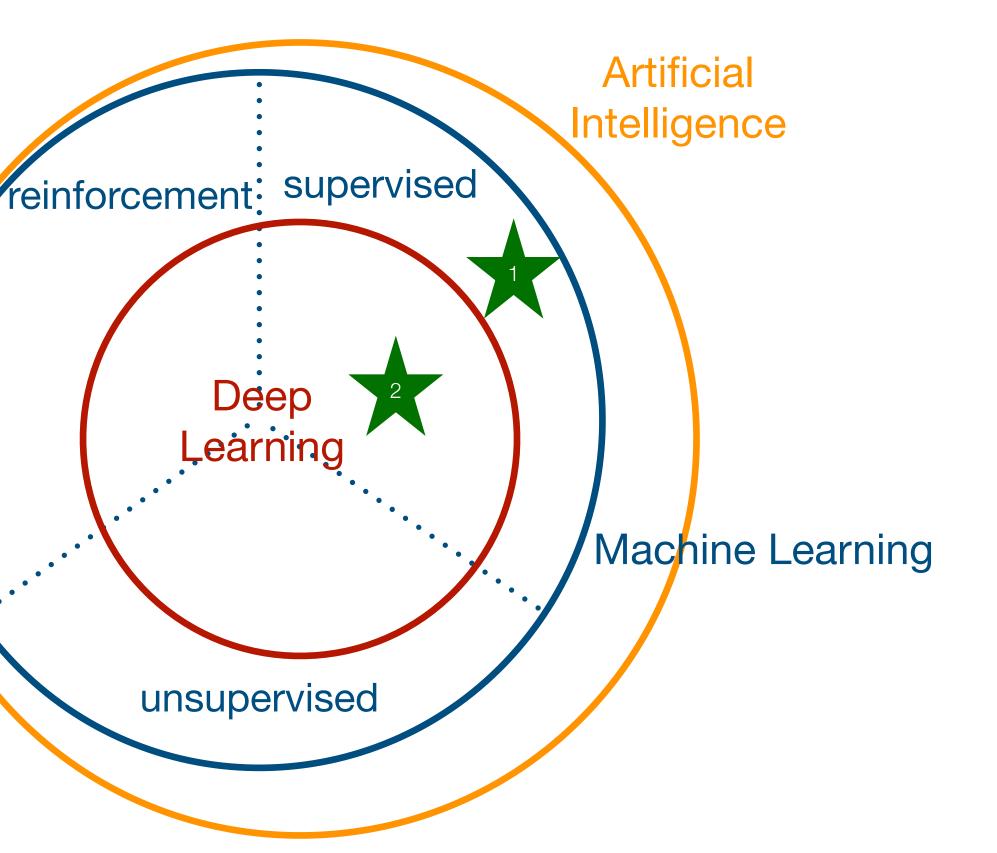
- We represent uncertainty about the world by **probabilities**
 - We update our knowledge by conditioning on observations
 - Observations = learning the value of a random variable
- Full, unstructured joint distributions are intractable to reason about
- Conditional independence is a kind of structure that is:
 - 1. widespread
 - 2. easy to reason about
 - 3. allows tractable **inference** (computing distribution of unobserved variables) **Belief networks** let us compactly represent joint distributions with a lot of
- Belief networks let us compactly represent conditional independence
 - Variable elimination is an algorithm for efficient inference on belief networks

Supervised Learning, informally

- In the uncertainty section, we took the probability distribution as given
 - Our only problem was to represent and derive distributions
- Question: Where do these probabilities come from?
- Supervised learning is a way to learn probabilities from examples
 - Probability of a target feature (or label) given input features
 - i.e., condition on input features to get probability of target
- Basic idea:
 - Take a bunch of inputs (e.g., images) and "correct" outputs
 - Learn a model that correctly maps inputs to outputs

Supervised Learning vs. Machine Learning vs. Deep Learning

What is the difference between Supervised Learning, Machine Learning, and Deep Learning?



Lecture Outline

- Recap & Logistics
- 2. Supervised Learning Problem
- 3. Measuring Prediction Quality

After this lecture, you should be able to:

- define supervised learning task, classification, regression, loss function
- define generalization performance lacksquare
- identify an appropriate loss function for different tasks
- explain why a separate test set estimates generalization performance
- \bullet error

represent categorical target values in multiple ways (indicator variables, indexes)

define 0/1 error, absolute error, (log-)likelihood loss, mean squared error, worst-case

Supervised Learning

Definition: A supervised learning task consists of

- A set of input features X_1, \ldots, X_d
- A set of target features Y_1, \ldots, Y_k
- A set of training examples $S = \{(\mathbf{x} \ sampled randomly from some popul$
- A set of test examples $T = \{(\mathbf{x}^{(i)}, \mathbf{y})\}$ sampled from the same population

The goal is to predict the values of the target features given the input features; i.e., learn a function h(x) that will map features X to a prediction of Y

- Classification: Y_i are discrete
- **Regression:** Y_i are **real-valued**

$$\{\mathbf{x}^{(i)}, \mathbf{y}^{(i)}\}_{i=1}^{n}$$

lation
 $\{\mathbf{y}^{(i)}\}_{i=1}^{m}$

Supervised Learning Examples

- for the main object in the image
 - Input features: Pixel values of the image
 - *Target features:* One feature for each label (e.g., dog, plane, etc.)
- **Precision medicine:** Given examples of symptoms, test results, and treatments, output an 2. estimate of recovery time
 - Input features: symptoms, treatment indicators, test results, demographic information
 - *Target features:* recovery time, survival time, etc.
- **Natural language processing:** Given example sentences and labels representing З. "sentiment", output how positive or negative the sentence is
 - Input features: binary indicators for words or characters (**!)
 - *Target features:* One feature per label (e.g., **positive**, **negative**)

Computational vision: Given example images and labels representing objects, output a label

Regression Example

- Aim is to predict the value of target Y based on features X
- Both X and Y are real-valued
 - Exact values of both targets and features may not have been in the training set
 - Input 8 is an interpolation problem: X is within the range of the training examples' values
 - Input 9 is an **extrapolation** problem: X is outside the range of the training examples' values

i	X (i)	Y ⁽ⁱ⁾
1	0.7	1.7
2	1.1	2.4
3	1.3	2.5
4	1.9	1.7
5	2.6	2.1
6	3.1	2.3
7	3.9	7

8	2.9	?
9	5.0	?

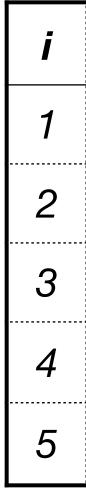
Data Representation

- For real-valued features, we typically just record the feature values
- For **discrete** features, there are multiple options:
 - Binary features: Can code $\{false, true\}$ as $\{0,1\}$ or $\{-1, +1\}$
 - Can record numeric values for each possible value
 - Cardinal values: Differences are meaningful (e.g., 1, 2, 7)
 - Ordinal values: Order is meaningful (e.g., Good, Fair, Poor)
 - Categorical values: Neither differences nor order meaningful (e.g., Red, Green, Blue)
 - Vector of **indicator variables**: One per feature value, exactly one is true (sometimes called a "one-hot" encoding) (e.g., *Red* as (1,0,0), *Green* as (0,1,0), etc.)

Classification Example: Holiday Preferences

- An agent wants to learn a person's preference for the length of holidays
- Holiday can be for 1,2,3,4,5, or 6 days
- Two possible representations:

i	y ⁽ⁱ⁾
1	1
2	6
3	6
4	2
5	1



Y ⁽ⁱ⁾ 1	y ⁽ⁱ⁾ 2	y ⁽ⁱ⁾ 3	y ⁽ⁱ⁾ 4	y ⁽ⁱ⁾ 5	y ⁽ⁱ⁾ 6
1	0	0	0	0	0
0	0	0	0	0	1
0	0	0	0	0	1
0	1	0	0	0	0
1	0	0	0	0	0

Question:

What are the advantages/ disadvantages of each representation?

Generalization

- Question: What does it mean for a trained model to perform well?
- We want to be able to make correct predictions on **unseen** data, not just the training examples
 - We are even willing to sacrifice some training accuracy to achieve this
 - We want our learners to generalize: to go beyond the given training examples to classify new examples well
 - **Problem:** We can't measure performance on unobserved examples!
- We can estimate generalization performance by evaluating performance on the test set (Why?)
 - The learning algorithm doesn't have access to the test data, but we do

Generalization Example

Example: Consider binary two classifiers, **P** and **N**

- P classifies all the **positive examples** from the training data as true, and all others as false
- N classifies all of the **negative examples** from the training data as false, and all others as true

Question: Which classifier generalizes better?

- **Question:** Which classifier performs better on the training data?

- The hypothesis space is the set of possible hypotheses
 - "Training a model" = "Choosing a hypothesis from the hypothesis space based on data"
- A preference for one hypothesis over another is called **bias**
 - Bias is not a bad thing in this context!
 - Preference for "simple" models is a bias
 - Which bias works best for generalization is an empirical question

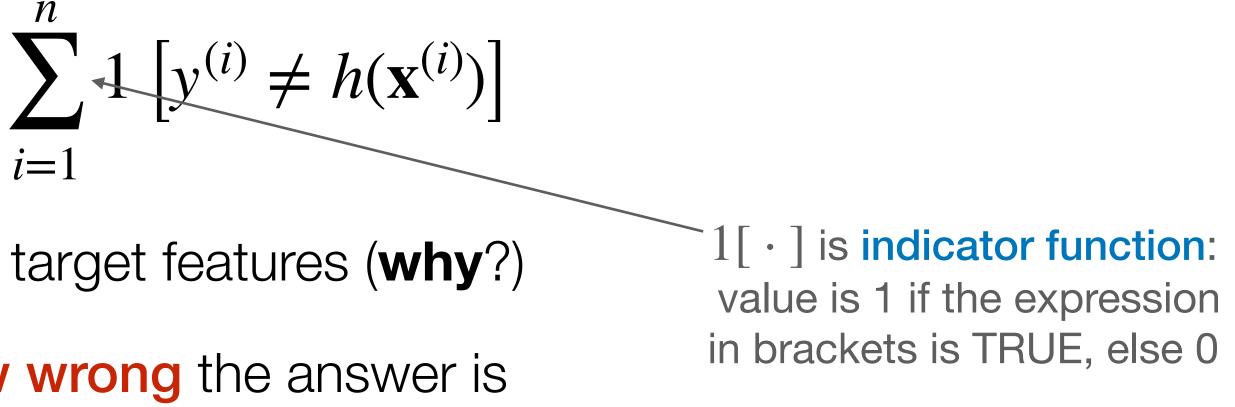
Bias

Measuring Prediction Error

- We choose our hypothesis partly by measuring its performance on training data
 - **Question:** What is the other consideration?
- This is usually described as minimizing some quantitative measurement of error (or loss)
 - Question: What might error mean?

Definition:

The 0/1 error for a dataset of n examples and hypothesis h is the number of examples for which the prediction was not correct:



- Not appropriate for **real-valued** target features (**why**?) •
- Does not take into account how wrong the answer is

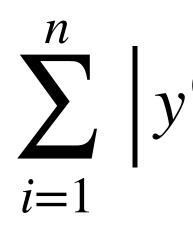
• e.g.,
$$1 \left[2 \neq 1 \right] = 1 \left[6 \neq 1 \right]$$

Most appropriate for **binary** or **categorical** target features \bullet

0/1 Error

Absolute Error

Definition:



- Meaningless for categorical variables
- Takes account of how wrong the predictions are
- Most appropriate for cardinal or possibly ordinal values lacksquare

The absolute error for a dataset of *n* examples and hypothesis *h* is the sum of absolute distances between the predicted target value and the actual target value:

$$(i) - h(\mathbf{x}^{(i)})$$

Squared Error

Definition:

n examples and hypothesis h is the sum of squared distances between the predicted target value and the actual target value:

- Meaningless for **categorical** variables
- Takes account of how wrong the predictions are
 - Large errors are much more important than small errors
- Most appropriate for **cardinal** values

The squared error (or sum of squares error or mean squared error) for a dataset of

$$(i) - h(\mathbf{x}^{(i)}))^2$$

Worst-Case Error

Definition:

The worst-case error for a dataset of *n* examples and hypothesis *h* is the maximum absolute difference between the predicted target value and the actual target value:

max $1 \leq i \leq n$

- Meaningless for **categorical** variables
- Takes account of how wrong the predictions are
 - but only on **one example** (the one whose prediction is furthest from the true target)
- Most appropriate for cardinal values

$$y^{(i)} - h(\mathbf{x}^{(i)})$$

Probabilistic Predictors

- Rather than predicting exactly what a target value will be, many common algorithms predict a **probability distribution** over possible values
 - Especially for **classification** tasks
- scheme:

 - Predicted target values are probabilities that sum to 1

Vectors of indicator variables are the most common data representation for this

• Target features of training examples have a single 1 for the true value

Probabilistic Predictions Example

Training examples



Output on test example

X	h(X) _{cat}	h(X) _{dog}	h(X) panda
	0.5	0.45	0.05

Likelihood

Definition:

The likelihood for a dataset S of examples and hypothesis h is the probability of independently observing the examples according to the probabilities assigned by the **hypothesis**:

$Pr(S \mid h)$

- This has a clear Bayesian interpretation
- We want to maximize likelihood, so it's not a loss (**why?**)
 - **Question:** What is the corresponding loss? \bullet
- **Numerical stability issues:** product of probabilities shrinks **exponentially**! lacksquare
 - *Example:* Probability of **any** sequence of 5000 coin tosses has probability 2^{-5000} ! \bullet
 - Floating point underflows almost immediately (double-precision floating point can't represent anything smaller than 2^{-1021})

• For probabilistic predictions, we can use likelihood to measure the performance of a learning algorithm

$$h(\mathbf{x}) = \prod_{(\mathbf{x},y)\in S} h(\mathbf{x})_y$$

Log-Likelihood

Definition:

The log-likelihood for a dataset S of examples and hypothesis h is the log-probability of independently observing the examples according to the probabilities assigned by the hypothesis:

 $\log \Pr(S \mid h)$

- Taking log of the likelihood fixes the underflow issue (**why**?)
- maximizing likelihood:

$$\left(\Pr(S \mid h_1) > \Pr(S \mid h_2)\right) \iff \left(\log\Pr(S \mid h_1) > \log\Pr(S \mid h_2)\right)$$

$$= \log \prod_{(\mathbf{x},y) \in S} h(\mathbf{x})_{y}$$
$$= \sum_{(\mathbf{x},y) \in S} \log h(\mathbf{x})_{y}$$

The log function grows monotonically, so maximizing log-likelihood is the same thing as

Trivial Predictors

- **same value** *v* for any example
- **Question:** Why would we every want to think about these? ullet

• The simplest possible predictor **ignores all input features** and just predicts the

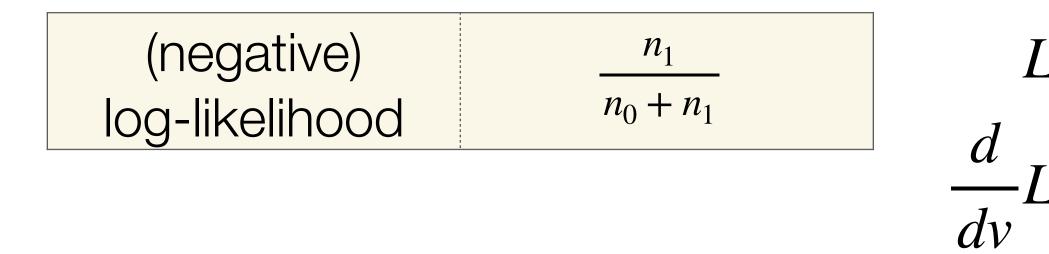
Optimal Trivial Predictors for Binary Data

- Suppose we are predicting a binary target
- *n*₀ **negative** examples
- *n*₁ **positive** examples
- **Question:** What is the optimal single prediction?

Measure	Optimal Prediction	
0/1 error	0 if $n_0 > n_1$ else 1	
absolute error	0 if $n_0 > n_1$ else 1	
squared error	$\frac{n_1}{n_0 + n_1}$	
worst case	$\begin{cases} 0 & \text{if } n_1 = 0 \\ 1 & \text{if } n_0 = 0 \\ 0.5 & \text{otherwise} \end{cases}$	
likelihood	$\frac{n_1}{n_0 + n_1}$	
log-likelihood	$\frac{n_1}{n_0 + n_1}$	

Optimal Trivial Predictor Derivations

0/1 error 0 if $n_0 > n_1 \text{ else } 1$



 $L(v) = vn_0 + (1 - v)n_1$

$$L(v) = -n_1 \log v - n_0 \log(1 - v)$$

 $L(v) = 0$

$$0 = -\frac{n_1}{v} + \frac{n_0}{1 - v}$$

$$\frac{n_1}{v} = \frac{n_0}{1 - v}$$

$$\frac{n_1}{n_0} = \frac{v}{1 - v} \land (0 < v < 1) \implies v = \frac{n_1}{n_0 + n_1}$$

Summary

- Supervised learning is learning a hypothesis function from training examples
 - Maps from input features to target features
 - Classification: Discrete target features
 - Regression: Real-valued target features
- Preferences among hypotheses are called bias
- Choice of error measurement (loss) is an important design decision
- Different losses have different optimal trivial predictors
 - Trivial predictors are a baseline: your real model better outperform the trivial predictor