Inference in Belief Networks

CMPUT 261: Introduction to Artificial Intelligence
P\&M §8.4

Assignments

- Assignment \#1: Late deadline was last night
- Marking should be done by next week
- Assignment \#2 will be posted today by midnight
- Due Feb 29/2024 at 11:59pm

Lecture Outline

1. Recap
2. Factor Objects
3. Variable Elimination
4. Further Optimizations

After this lecture, you should be able to:

- encode a factoring of a joint distribution as a collection of factor objects for variable elimination
- define the factor operations used in variable elimination
- describe the high-level steps of variable elimination
- compare efficiency of different variable orderings for variable elimination
- trace an execution of variable elimination

Recap: Belief Networks

Definition:

A belief network (or Bayesian network) consists of:

1. A directed acyclic graph, with each node labelled by a random variable
2. A domain for each random variable
3. A conditional probability table for each variable given its parents

- The graph represents a specific factorization of the full joint distribution
- Key Property:

Every node is independent of its non-descendants, conditional on its parents

Recap: Queries

- The most common task for a belief network is to query posterior probabilities given some observations

- Easy cases:

- Posteriors of a single variable conditional only on parents
- Joint distributions of variables early in a compatible variable ordering
- Typically, the observations have no straightforward relationship to the target
- This lecture: mechanical procedure for computing arbitrary queries

A (Simplistic) Algorithm for Queries

```
P(F,T,A,L,S,R)=P(F)P(T)P(A|T,F)P(L|A)P(S|F)P(R|L)
```

Query: $P(F \mid S=1, R=1)$

1. Condition: $P(F, T, A, L, S=1, R=1)=P(F) P(T) P(A \mid T, F) P(S=1 \mid F) P(L \mid A) P(R=1 \mid L)$
2. Normalize: $P(F, T, A, L \mid S=1, R=1)=\frac{P(F, T, A, L, S=1, R=1)}{\sum_{\substack{f \in \operatorname{dom}(F), t \in \operatorname{dom}(T), a \in \operatorname{dom}(A), l \in \operatorname{dom}(L)}} P(F=f, T=t, A=a, L=l, S=1, R=1)}$
3. Marginalize: $P(F \mid S=1, R=1)=\sum_{\substack{t \in \operatorname{dom}(T), a \in \operatorname{dom}(A), l \in \operatorname{dom}(L)}} P(F, T=t, A=a, L=l \mid S=1, R=1)$

Factor Object

- The Variable Elimination algorithm exploits the factorization of a joint probability distribution encoded by a belief network in order to answer queries
- A factor object is a function $f\left(X_{1}, \ldots, X_{k}\right)$ from random variables to a real number
- Input: factors representing the conditional probability tables from the belief network

$$
P(L \mid A) P(S \mid F) P(A \mid T, F) P(T) P(F)
$$

becomes factor objects

$$
f_{1}(L, A) f_{2}(S, F) f_{3}(A, T, F) f_{4}(T) f_{5}(F)
$$

- Output: A new factor encoding the target posterior distribution
E.g., $f_{12}(T)$.

Conditional Probabilities as Factor Objects

- A conditional probability $P\left(Y \mid X_{1}, \ldots, X_{n}\right)$ is a factor object $f\left(Y, X_{1}, \ldots, X_{n}\right)$ that obeys the constraint:

$$
\forall v_{1} \in \operatorname{dom}\left(X_{1}\right), v_{2} \in \operatorname{dom}\left(X_{2}\right), \ldots, v_{n} \in \operatorname{dom}\left(X_{n}\right):\left[\sum_{y \in \operatorname{dom}(Y)} f\left(y, v_{1}, \ldots, v_{n}\right)\right]=1
$$

- Answer to a query is a factor object constructed by applying operations to the input factors
- Operations on factor objects are not guaranteed to maintain this constraint!
- Solution: Don't sweat it!
- Operate on unnormalized probabilities during the computation
- Normalize at the end of the algorithm to re-impose the constraint

Conditioning

Conditioning is an operation on a single factor

- Constructs a new factor that returns the values of the original factor with some of its inputs fixed

Definition:

For a factor $f_{1}\left(X_{1}, \ldots, X_{k}\right)$, conditioning on $X_{i}=v_{i}$ yields a new factor

$$
f_{2}\left(X_{1}, \ldots X_{i-1}, X_{i+1}, \ldots, X_{k}\right)=\left(f_{1}\right)_{X_{i}=v_{i}}
$$

such that for all values $v_{1}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{k}$ in the domain of $X_{1}, \ldots X_{i-1}, X_{i+1}, \ldots, X_{k}$

$$
f_{2}\left(v_{1}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{k}\right)=f_{1}\left(v_{1}, \ldots, v_{i-1}, \mathbf{v}_{\mathbf{i}}, v_{i+1}, \ldots, v_{k}\right) .
$$

Conditioning Example

$$
f_{2}(A, B)=f_{1}(A, B, C)_{C=t r u e}
$$

A	B	C	value
F	F	F	0.1
F	F	T	0.88
F	T	F	0.12
F	T	T	0.45
T	F	F	0.7
T	F	T	0.66
T	T	F	0.1
T	T	T	0.25

A	B	value
F	F	0.88
F	T	0.45
T	F	0.66
T	T	0.25

Multiplication

Multiplication is an operation on two factors

- Constructs a new factor that returns the product of the rows selected from each factor by its arguments

Definition:

For two factors $f_{1}\left(X_{1}, \ldots, X_{j}, Y_{1}, \ldots, Y_{k}\right)$ and $f_{2}\left(Y_{1}, \ldots, Y_{k}, Z_{1}, \ldots, Z_{\ell}\right)$, multiplication of f_{1} and f_{2} yields a new factor

$$
\left(f_{1} \times f_{2}\right)=f_{3}\left(X_{1}, \ldots, X_{j}, Y_{1}, \ldots, Y_{k}, Z_{1}, \ldots, Z_{\ell}\right)
$$

such that for all values $x_{1}, \ldots, x_{j}, y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{\ell}$,

$$
f_{3}\left(x_{1}, \ldots, x_{j}, y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{\ell}\right)=f_{1}\left(x_{1}, \ldots, x_{j}, y_{1}, \ldots, y_{k}\right) f_{2}\left(y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{\ell}\right)
$$

Multiplication Example

$$
f_{3}(A, B, C)=f_{1}(A, B) \times f_{2}(B, C)
$$

A	B	C	value
F	F	F	0.1
F	F	T	0
F	T	F	0.1
F	T	T	0.05
T	F	F	0.3
T	F	T	0
T	T	F	0.2
T	T	T	0.1

Summing Out

Summing out is an operation on a single factor

- Constructs a new factor that returns the sum over all values of a random variable of the original factor

Definition:

For a factor $f_{1}\left(X_{1}, \ldots, X_{k}\right)$, summing out a variable X_{i} yields a new factor

$$
f_{2}\left(X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{k}\right)=\left(\sum_{X_{i}} f_{1}\right)
$$

such that for all values $v_{1}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{k}$ in the domain of $X_{1}, \ldots X_{i-1}, X_{i+1}, \ldots, X_{k}$

$$
f_{2}\left(v_{1}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{k}\right)=\sum_{\mathrm{v}_{\mathrm{i}} \in \operatorname{dom}\left(X_{i}\right)} f_{1}\left(v_{1}, \ldots, v_{i-1}, \mathbf{v}_{\mathbf{i}}, v_{i+1}, \ldots, v_{k}\right) .
$$

Summing Out Example

$$
f_{2}(B)=\sum_{A} f_{1}(A, B)
$$

f_{1}
\mathbf{A} \mathbf{B} value F F \mathbf{F} T 0.1 T F 0.3 T

Variable Elimination

- Given observations $Y_{1}=v_{1}, \ldots, Y_{k}=v_{k}$ and query variable Q, we want

$$
P\left(Q \mid Y_{1}=v_{1}, \ldots, Y_{k}=v_{k}\right)=\frac{P\left(Q, Y_{1}=v_{1}, \ldots, Y_{k}=v_{k}\right)}{\sum_{q \in \operatorname{dom}(Q)} P\left(Q=q, Y_{1}=v_{1}, \ldots, Y_{k}=v_{k}\right)} .
$$

- Basic idea of variable elimination:

1. Condition on observations by conditioning
2. Construct joint distribution factor by multiplication
3. Remove unwanted variables (neither query nor observed) by summing out
4. Normalize at the end

- Doing these steps in order is correct but not efficient
- Efficiency comes from interleaving the order of operations

Sums of Products

2. Construct joint distribution factor by multiplication
3. Remove unwanted variables (neither query nor observed) by summing out

The computationally intensive part of variable elimination is computing sums of products

Example: multiply factors $f_{1}(Q, A, B, C), f_{2}(C, D, E)$; sum out A, E

1. $f_{3}(Q, A, B, C, D, E)=f_{1}(Q, A, B, C) \times f_{2}(C, D, E): 2^{6}$ multiplications
2. $f_{4}(Q, B, C, D)=\sum_{A, E} f_{3}(Q, A, B, C, D, E): 3 \times 16$ additions

Total: 112 computations

Efficient Sums of Products

We can reduce the number of computations required by changing their order.

$$
\begin{array}{ll}
\sum_{A} \sum_{E} f_{1}(Q, A, B, C) \times f_{2}(C, D, E) & \sum_{A} \sum_{E} f_{1}(Q, A, B, C) \times f_{2}(C, D, E) \\
= & \sum_{A} f_{1}(Q, A, B, C)\left(\sum_{E} f_{2}(C, D, E)\right) \\
=\left(\sum_{A} f_{1}(Q, A, B, C)\right) \times\left(\sum_{E} f_{2}(C, D, E)\right)=\left(\sum_{E} f_{2}(C, D, E)\right) \sum_{A} f_{1}(Q, A, B, C)
\end{array}
$$

1. $f_{3}(C, D)=\Sigma_{E} f_{2}(C, D, E): 2^{2}$ additions
2. $f_{4}(Q, B, C)=\Sigma_{A} f_{1}(Q, A, B, C): 2^{3}$ additions
3. $f_{5}(Q, B, C, D)=f_{3}(Q, B, C) \times f_{4}(B, C, D): 2^{4}$ multiplications

Total: 28 computations

Variable Elimination Algorithm

Input: query variable Q; set of variables $V s$; observations O; factors $P s$ representing conditional probability tables

```
Fs:= Ps
for each }X\mathrm{ in Vs\{Q} according to some elimination ordering:
    Rs:={F\inFs|Finvolves X}
    if }X\inO\mathrm{ :
        for each F F\inRs:
            F
            Fs:=(Fs\{F})\cup{\mp@subsup{F}{}{\prime}}
    else:
        T:= product of factors in Rs
        N:= sum X out of T
        Fs:=(Fs\Rs)\cup{N}
T:= product of factors in Fs
N:= sum Q out of T
return T/N (i.e., normalize T)
```


Variable Elimination Example: Conditioning

Query: $P(T \mid S=1, R=1)$
Variable ordering: S, R, F, A, L
$P(T, F, A, S, L, R)=P(T) P(F) P(A \mid T, F) P(S \mid F) P(L \mid A) P(R \mid L)$
Construct factors for each table:
$\left\{f_{0}(T), f_{1}(F), f_{2}(T, A, F), f_{3}(S, F), f_{4}(L, A), f_{5}(R, L)\right\}$
Condition on S : $f_{6}=\left(f_{3}\right)_{S=1}$
$\left\{f_{0}(T), f_{1}(F), f_{2}(T, A, F), f_{6}(F), f_{4}(L, A), f_{5}(R, L)\right\}$
Condition on R : $f_{7}=\left(f_{5}\right)_{R=1}$
$\left\{f_{0}(T), f_{1}(F), f_{2}(T, A, F), f_{6}(F), f_{4}(L, A), f_{7}(L)\right\}$

Variable Elimination Example: Elimination

Query: $P(T \mid S=1, R=1)$
Variable ordering: \mathbb{S}, R, F, A, L
$\left\{f_{0}(T), f_{1}(F), f_{2}(T, A, F), f_{6}(F), f_{4}(L, A), f_{7}(L)\right\}$
Sum out F from product of $f_{1}, f_{2}, f_{6}: f_{8}=\sum_{F}\left(f_{1} \times f_{2} \times f_{6}\right)$
$\left\{f_{0}(T), f_{8}(T, A), f_{4}(L, A), f_{7}(L)\right\}$
Sum out A from product of $f_{8}, f_{4}: f_{9}=\sum_{A}\left(f_{8} \times f_{4}\right)$
$f_{0}(T), f_{9}(T, L), f_{7}(L)$
Sum out L from product of $f_{9}, f_{7}: f_{10}=\sum_{L}\left(f_{9} \times f_{7}\right)$
$\left\{f_{0}(T), f_{10}(T)\right\}$

Variable Elimination Example: Normalization

Query: $P(T \mid S=1, R=1)$
Variable ordering: S, R, Γ, A, L
$\left\{f_{0}(T), f_{10}(T)\right\}$
Product of remaining factors: $f_{11}=f_{0} \times f_{10}$
$\left\{f_{11}(T)\right\}$
Normalize by division:
$f_{12}(T)=\frac{f_{11}(T)}{\sum_{T} f_{11}(T)}$

Optimizing Elimination Order

- Variable elimination exploits efficient sums of products on a factored joint distribution
- The elimination order of the variables affects the efficiency of the algorithm
- Finding an optimal elimination ordering is NP-hard
- Heuristics (rules of thumb) for good orderings:
- Observations first: Condition on all of the observed variables first
- Min-factor: At every stage, select the variable that constructs the smallest new factor
- Problem-specific heuristics

Min-Factor Example

Factors:

$\left\{f_{1}(Z, B), f_{2}(B, C), f_{3}(C), f_{4}(D, C), f_{5}(A, B, C), f_{6}(E, C)\right\}$

- Which variable creates the largest new factor when it is eliminated?
- C : Remove $f_{2}(B, C), f_{3}(C), f_{4}(D, C), f_{5}(A, B, C), f_{6}(E, C)$,

$$
\text { Add } f_{7}(A, B, D, E)
$$

- Which variable creates the smallest new factor when it is eliminated?
- Z : Remove $f_{1}(Z, B)$, add $f_{7}(B)$
- (E would also work)
- Number of rows is what matters, not number of arguments

Optimization: Pruning

- The structure of the graph can allow us to drop leaf nodes that are neither observed nor queried
- Summing them out for free
- We can repeat this process:

Optimization: Preprocessing

Finally, if we know that we are always going to be observing and/or querying the same variables, we can preprocess our graph; e.g.:

1. Precompute the joint distribution of all the variables we will observe and/or query
2. Precompute conditional distributions for our exact queries

Summary

- Variable elimination is an algorithm for answering queries based on a belief network
- Operates by using three operations on factors to reduce graph to a single posterior distribution

1. Conditioning
2. Multiplication
3. Summing out
4. (Once only): Normalization

- Distributes operations more efficiently than taking full product and then summing out
- Optimal order of operations is NP-hard to compute
- Additional optimization techniques: heuristic ordering, pruning, precomputation

HACK THE COMPUTER －DPEN THE BOX

Upcoming event：

RSVP now！
While this event is beginner friendly， having some background knowledge
Are you ready to embark on a journey into the exciting world of cybersecurity？ You are invited to CHADS＇annual
cybersecurity competition，Hack the Computer Open the Box！
would be beneficial．：）
There will be food，drinks，prizes ！！
FEB 24TH 1:00 PM © ETLC E5-013
FEB 24TH 1:00 PM © ETLC E5-013
回里回＜Join our discord
Follow us on Instagram＞

