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Assignments

• Assignment #1: Late deadline was last night 

• Marking should be done by next week 

• Assignment #2 will be posted today by midnight 

• Due Feb 29/2024 at 11:59pm



Lecture Outline
1. Recap 

2. Factor Objects 

3. Variable Elimination 

4. Further Optimizations

After this lecture, you should be able to: 
• encode a factoring of a joint distribution as a collection of factor objects for 

variable elimination 
• define the factor operations used in variable elimination 
• describe the high-level steps of variable elimination 
• compare efficiency of different variable orderings for variable elimination 
• trace an execution of variable elimination



Recap: Belief Networks
Definition: 
A belief network (or Bayesian network) consists of: 

1. A directed acyclic graph, with each node labelled by a random variable 

2. A domain for each random variable 

3. A conditional probability table for each variable given its parents 

• The graph represents a specific factorization of the full joint distribution 

• Key Property:  
Every node is independent of its non-descendants, conditional on its parents



ReportReport

Fire

Recap: Queries
• The most common task for a belief network is to query 

posterior probabilities given some observations 

• Easy cases:  

• Posteriors of a single variable conditional only on 
parents 

• Joint distributions of variables early in a compatible 
variable ordering 

• Typically, the observations have no straightforward 
relationship to the target 

• This lecture: mechanical procedure for computing 
arbitrary queries
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A (Simplistic) Algorithm for Queries

1. Condition:   

2. Normalize:   

3. Marginalize:  

P(F, T, A, L, S = 1, R = 1) = P(F)P(T )P(A ∣ T, F)P(S = 1 ∣ F)P(L ∣ A)P(R = 1 ∣ L)

P(F, T, A, L ∣ S = 1,R = 1) =
P(F, T, A, L, S = 1,R = 1)

∑ f ∈ dom(F),
t ∈ dom(T),
a ∈ dom(A),
l ∈ dom(L)

P(F = f, T = t, A = a, L = l, S = 1,R = 1)

P(F ∣ S = 1,R = 1) = ∑
t ∈ dom(T),
a ∈ dom(A),
l ∈ dom(L)

P(F, T = t, A = a, L = l ∣ S = 1,R = 1)
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Query: 

P(F, T, A, L, S, R) = P(F)P(T)P(A ∣ T, F)P(L ∣ A)P(S ∣ F)P(R ∣ L)

P(F ∣ S = 1,R = 1)



Factor Object
• The Variable Elimination algorithm exploits the factorization of a joint probability 

distribution encoded by a belief network in order to answer queries 

• A factor object is a function  from random variables to a real number 

• Input: factors representing the conditional probability tables from the belief network 

 

              becomes factor objects 

 
• Output: A new factor encoding the target posterior distribution 

E.g., .

f(X1, . . . , Xk)

P(L ∣ A)P(S ∣ F)P(A ∣ T, F)P(T)P(F)

f1(L, A)f2(S, F)f3(A, T, F)f4(T)f5(F)

f12(T)



Conditional Probabilities 
as Factor Objects

• A conditional probability  is a factor object  that obeys 
the constraint: 

. 

• Answer to a query is a factor object constructed by applying operations to the input factors 

• Operations on factor objects are not guaranteed to maintain this constraint! 

• Solution: Don't sweat it! 

• Operate on unnormalized probabilities during the computation 

• Normalize at the end of the algorithm to re-impose the constraint

P(Y ∣ X1, . . . , Xn) f(Y, X1, . . . , Xn)

∀v1 ∈ dom(X1), v2 ∈ dom(X2), …, vn ∈ dom(Xn) : ∑
y∈dom(Y)

f(y, v1, …, vn) = 1



Conditioning
Conditioning is an operation on a single factor  

• Constructs a new factor that returns the values of the original factor with some of 
its inputs fixed 

Definition: 
For a factor , conditioning on  yields a new factor  

  

such that for all values  in the domain of , 

.

f1(X1, . . . , Xk) Xi = vi

f2(X1, …Xi−1, Xi+1, …, Xk) = ( f1)Xi=vi

v1, …, vi−1, vi+1, …, vk X1, …Xi−1, Xi+1, …, Xk

f2(v1, …, vi−1, vi+1, …, vk) = f1(v1, …, vi−1, vi, vi+1, …, vk)



Conditioning Example
 f2(A, B) = f1(A, B, C)C=true

A B C value
F F F 0.1
F F T 0.88
F T F 0.12
F T T 0.45
T F F 0.7
T F T 0.66
T T F 0.1
T T T 0.25

A B value

F F 0.88

F T 0.45

T F 0.66

T T 0.25

f1 f2



Multiplication
Multiplication is an operation on two factors 

• Constructs a new factor that returns the product of the rows selected from each 
factor by its arguments 

Definition: 
For two factors  and ,  
multiplication of  and  yields a new factor  

  

such that for all values , 

.

f1(X1, …, Xj, Y1, …, Yk) f2(Y1, …, Yk, Z1, …, Zℓ)
f1 f2

( f1 × f2) = f3(X1, …, Xj, Y1, …, Yk, Z1, …, Zℓ)

x1, …, xj, y1, …, yk, z1, …, zℓ

f3(x1, …, xj, y1, …, yk, z1, …, zℓ) = f1(x1, …, xj, y1, …, yk)f2(y1, …, yk, z1, …, zℓ)



Multiplication Example
 f3(A, B, C) = f1(A, B) × f2(B, C)

A B value

F F 0.1

F T 0.2

T F 0.3

T T 0.4

B C value

F F 1.0

F T 0

T F 0.5

T T 0.25

A B C value
F F F 0.1
F F T 0
F T F 0.1
F T T 0.05
T F F 0.3
T F T 0
T T F 0.2
T T T 0.1

f1 f2

f3



Summing Out
Summing out is an operation on a single factor 

• Constructs a new factor that returns the sum over all values of a random variable of the original 
factor 

Definition: 
For a factor , summing out a variable  yields a new factor 

  

such that for all values  in the domain of , 

. 

f1(X1, …, Xk) Xi

f2(X1, …, Xi−1, Xi+1, …, Xk) = ∑
Xi

f1

v1, …, vi−1, vi+1, …, vk X1, …Xi−1, Xi+1, …, Xk

f2(v1, …, vi−1, vi+1, …, vk) = ∑
vi∈dom(Xi)

f1(v1, …, vi−1, vi, vi+1, …, vk)



Summing Out Example
f2(B) = ∑

A

f1(A, B)

A B value

F F 0.1

F T 0.2

T F 0.3

T T 0.4

B value
F 0.4
T 0.6

f1

f2



Variable Elimination
• Given observations  and query variable , we want 

.     

• Basic idea of variable elimination: 

1. Condition on observations by conditioning 

2. Construct joint distribution factor by multiplication 

3. Remove unwanted variables (neither query nor observed) by summing out 

4. Normalize at the end 

• Doing these steps in order is correct but not efficient 

• Efficiency comes from interleaving the order of operations

Y1 = v1, …, Yk = vk Q

P(Q ∣ Y1 = v1, …, Yk = vk) =
P(Q, Y1 = v1, …, Yk = vk)

∑q∈dom(Q) P(Q = q, Y1 = v1, …, Yk = vk)



Sums of Products

The computationally intensive part of variable elimination is computing 
sums of products 

Example: multiply factors , ; sum out  

1.   

2.  

Total: 112 computations

f1(Q, A, B, C) f2(C, D, E) A, E

f3(Q, A, B, C, D, E) = f1(Q, A, B, C) × f2(C, D, E) : 26 multiplications

f4(Q, B, C, D) = ∑
A,E

f3(Q, A, B, C, D, E) : 3 × 16 additions

2. Construct joint distribution factor by multiplication 
3. Remove unwanted variables (neither query nor observed) by summing out

(*) For all numerical examples, 

we assume binary domains



Efficient Sums of Products
We can reduce the number of computations required by changing their order. 

  

1.    

2.    

3.    

Total: 28 computations

∑
A

∑
E

f1(Q, A, B, C) × f2(C, D, E)

= (∑
A

f1(Q, A, B, C)) × (∑
E

f2(C, D, E))
f3(C, D) = ΣE f2(C, D, E) : 22 additions

f4(Q, B, C) = ΣA f1(Q, A, B, C) : 23 additions

f5(Q, B, C, D) = f3(Q, B, C) × f4(B, C, D) : 24 multiplications







∑
A

∑
E

f1(Q, A, B, C) × f2(C, D, E)

= ∑
A

f1(Q, A, B, C)(∑
E

f2(C, D, E))
= (∑

E

f2(C, D, E))∑
A

f1(Q, A, B, C)



Variable Elimination Algorithm
Input: query variable ; set of variables ; observations ; factors  representing conditional probability tables 

 
for each  in  according to some elimination ordering: 
     
    if : 
        for each : 
             conditioned on observed value of  
             
    else: 
         product of factors in  
         sum  out of  
         

 := product of factors in  
 := sum  out of  

return   (i.e., normalize )

Q Vs O Ps

Fs := Ps
X Vs∖{Q}

Rs := {F ∈ Fs ∣ F involves X}
X ∈ O

F ∈ Rs
F′ := F X
Fs := (Fs∖{F}) ∪ {F′ }

T := Rs
N := X T
Fs := (Fs∖Rs) ∪ {N}

T Fs
N Q T

T/N T



Variable Elimination Example: 
Conditioning

Query:  
Variable ordering:  

 

Construct factors for each table: 
 

Condition on :   
 

Condition on :  

P(T |S = 1,R = 1)
S, R, F, A, L

P(T, F, A, S, L, R) = P(T)P(F)P(A ∣ T, F)P(S ∣ F)P(L ∣ A)P(R ∣ L)

{f0(T), f1(F), f2(T, A, F), f3(S, F), f4(L, A), f5(R, L)}

S f6 = ( f3)S=1
{f0(T), f1(F), f2(T, A, F), f6(F), f4(L, A), f5(R, L)}

R f7 = ( f5)R=1
{f0(T), f1(F), f2(T, A, F), f6(F), f4(L, A), f7(L)}
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Variable Elimination Example: 
Elimination

Query:  
Variable ordering:  

 

Sum out  from product of :   

 

Sum out  from product of :   

 

Sum out  from product of :  

P(T |S = 1,R = 1)
S, R, F, A, L

{f0(T), f1(F), f2(T, A, F), f6(F), f4(L, A), f7(L)}

F f1, f2, f6 f8 = ∑
F

( f1 × f2 × f6)

{f0(T), f8(T, A), f4(L, A), f7(L)}

A f8, f4 f9 = ∑
A

( f8 × f4)

f0(T), f9(T, L), f7(L)

L f9, f7 f10 = ∑
L

( f9 × f7)

{f0(T), f10(T)}
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Query:  
Variable ordering:  

 

Product of remaining factors:  
 

Normalize by division:  

P(T |S = 1,R = 1)
S, R, F, A, L

{f0(T), f10(T)}

f11 = f0 × f10
{f11(T)}

f12(T) =
f11(T)

∑T f11(T)

Variable Elimination Example:   
Normalization
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Optimizing Elimination Order
• Variable elimination exploits efficient sums of products on a factored joint distribution 

• The elimination order of the variables affects the efficiency of the algorithm 

• Finding an optimal elimination ordering is NP-hard 

• Heuristics (rules of thumb) for good orderings: 

• Observations first: Condition on all of the observed variables first 

• Min-factor: At every stage, select the variable that constructs the 
smallest new factor 

• Problem-specific heuristics



Min-Factor Example
Factors: 

  

• Which variable creates the largest new factor when it is eliminated? 
• : Remove , 

     Add  

• Which variable creates the smallest new factor when it is eliminated? 
• : Remove , add  

• (  would also work) 
• Number of rows is what matters, not number of arguments

{f1(Z, B), f2(B, C), f3(C), f4(D, C), f5(A, B, C), f6(E, C)}

C f2(B, C), f3(C), f4(D, C), f5(A, B, C), f6(E, C)
f7(A, B, D, E)

Z f1(Z, B) f7(B)
E

BZ

D C

A

E



Optimization: Pruning
• The structure of the graph can allow us to drop leaf nodes 

that are neither observed nor queried 

• Summing them out for free 

• We can repeat this process:
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Optimization: Preprocessing

Finally, if we know that we are always going to be observing and/or querying 
the same variables, we can preprocess our graph; e.g.: 

1. Precompute the joint distribution of all the variables we will observe 
and/or query 

2. Precompute conditional distributions for our exact queries



Summary
• Variable elimination is an algorithm for answering queries based on a 

belief network 

• Operates by using three operations on factors to reduce graph to a single posterior 
distribution 

1. Conditioning 
2. Multiplication 
3. Summing out 
4. (Once only): Normalization 

• Distributes operations more efficiently than taking full product and then summing out 

• Optimal order of operations is NP-hard to compute 

• Additional optimization techniques: heuristic ordering, pruning, precomputation



 RSVP now!

F E B  2 4 T H  1 : 0 0  P M  @  E T L C  E 5 - 0 1 3

There will be food, drinks, prizes !!

Are you ready to embark on a journey
into the exciting world of cybersecurity?
You are invited to CHADS’ annual
cybersecurity competition, Hack the
Computer Open the Box!

While this event is beginner friendly,
having some background knowledge
would be beneficial. :)

H A C K  T H E  C O M P U T E R  
O P E N  T H E  B O X

Cybersecurity, Hacking, and Digital Security Club

< Join our discord

Follow us on Instagram >

Upcoming event:


