Belief Networks

CMPUT 261: Introduction to Artificial Intelligence
P\&M §8.3

Assignment \#1

- Assignment \#1 is due TODAY
- Submissions will be accepted until 11:59pm TONIGHT

A Better Clock Scenario

－There are six digital clocks on the shelf．
－Clock 1 is fast by 1 minute
－Clock 2 is fast by 2 minutes
－Clock 3 is slow by 2 minutes

Random variables：

A－Minutes on Alice＇s clock
B－Minutes on Bob＇s clock
T－Actual minutes past the hour
－Alice rolls a fair die and chooses the clock with the die＇s number
－Bob chooses a clock in the same way from a different shelf with the same timings
－Later on，they both look at their clocks

A Better Clock Scenario (2)

When they look at the clocks, any number of minutes past the hour is equally likely to be correct. i.e., $\operatorname{Pr}(T=m)=\frac{1}{60}$ for all $0 \leq m \leq 59$.

Questions:

1. Are A and T marginally independent?
i.e., $\operatorname{Pr}(A=a \mid T=m)=\operatorname{Pr}(A=a)$?

Random variables:

A - Minutes on Alice's clock
B - Minutes on Bob's clock
T - Actual minutes past the hour
2. Are A and B marginally independent?
i.e., $\operatorname{Pr}(A=a \mid B=b)=\operatorname{Pr}(A=a)$?
3. Suppose that the time is known. Does learning B reveal anything new about A ?
i.e., $\operatorname{Pr}(A=a \mid B=b, T=m)=\operatorname{Pr}(A=a \mid T=m)$?

Recap: Independence

Definition:

Random variables X and Y are marginally independent iff

$$
P(X=x \mid Y=y)=P(X=x)
$$

for all values of $x \in \operatorname{dom}(X)$ and $y \in \operatorname{dom}(Y)$.

Definition:

Random variables X and Y are conditionally independent given Z iff

$$
P(X=x \mid Y=y, Z=z)=P(X=X \mid Z=z)
$$

for all values of $x \in \operatorname{dom}(X), y \in \operatorname{dom}(Y)$, and $z \in \operatorname{dom}(Z)$.

Recap: Chain Rule

Definition: Chain rule (of probabilities)

$$
\begin{aligned}
P\left(\alpha_{1}, \ldots, \alpha_{n}\right) & =P\left(\alpha_{1}\right) \times P\left(\alpha_{2} \mid \alpha_{1}\right) \times \cdots \times P\left(\alpha_{n} \mid \alpha_{1}, \ldots, \alpha_{n-1}\right) \\
& =\prod_{i=1}^{n} P\left(\alpha_{i} \mid \alpha_{1}, \ldots, \alpha_{i-1}\right)
\end{aligned}
$$

Recap: Chain Rule

Definition: Chain rule (of probabilities)

$$
\begin{aligned}
P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right) & =P\left(X_{1}=x_{1}\right) \times P\left(X_{2}=x_{2} \mid X_{1}=x_{1}\right) \times \cdots \times P\left(X_{n}=x_{n} \mid X_{1}=x_{1}, \ldots, X_{n-1}=x_{n-1}\right) \\
& =\prod_{i=1}^{n} P\left(X_{i}=x_{i} \mid X_{1}=x_{1}, \ldots, X_{i-1}=x_{i-1}\right)
\end{aligned}
$$

$P(W, X, Y, Z)$

$P(W, X, Y)$

$P(W, X)$
$P(W, X, Y, Z)=P(W) P(X \mid W) P(Y \mid W, X) P(Z \mid W, X, Y)$

Recap:
 Exploiting Independence

- Explicitly specifying an entire unstructured joint distribution is tedious and unnatural
- We can exploit conditional independence:
- Conditional distributions are often more natural to write
- Joint probabilities can be extracted from conditionally independent distributions by multiplication

Lecture Outline

1. Recap \& Logistics
2. Belief Networks as Factorings
3. Querying Joint Probabilities
4. Querying Independence

After this lecture, you should be able to:

- Define a belief network
- Construct a belief network that corresponds to a given factoring
- Recover a factoring that is consistent with a given belief network
- Compute joint probabilities using a belief network
- Identify independence relationships encoded by a given belief network

Factoring Joint Distributions

- We can always represent a joint distribution as a product of factors, even when there is no marginal or conditional independence (why?)

$$
P(A, B, T)=P(T) P(A \mid T) P(B \mid A, T){ }^{\text {里 }}
$$

- Question: How much space can we save with this factored representation?
- When we do have independence, we can simplify some of these factors:

$$
P(A, B, T)=P(T) P(A \mid T) P(B \mid T)
$$

Random variables:

A - Minutes on Alice's clock
B - Minutes on Bob's clock
T - Actual minutes past the hour

Belief Networks, informally

We can represent a particular factoring of a joint distribution as a directed acyclic graph:
$P($ Tap, Rain, Sprinkler, Wet, Barrel $)=$
$P($ Tap $) P($ Rain $) P($ Sprinkler \mid Tap $) P($ Wet \mid Sprinkler, Rain $) P($ Barrel \mid Rain $)$

- Nodes are random variables
- Every variable has exactly one factor in the factoring
- The node's parents are the variables that its factor conditions on
- (We'll sometimes say that the factor "depends on" its parents, but that is very imprecise)

- More independence means fewer arcs (why?)

Belief Networks

Definition:

A belief network (or Bayesian network) consists of:

1. A directed acyclic graph, with each node labelled by a random variable
2. A domain for each random variable
3. A conditional probability table for each variable given its parents

A table with one row for each combination of values of itself and its parents,
and the corresponding conditional probability

Wet	Sprinkler Rain $\mathrm{P}(W \mid S, \mathrm{R})$		
0	0	0	1.0
1	0	0	0.0
0	1	0	0.5
1	1	0	0.5
0	0	1	0.1
1	0	1	0.9
0	1	1	0.0
1	1	1	1.0

Why is the Graph Encoding Useful?

Encoding the distribution as a graph is useful for a number of reasons:

- Separates the independence structure (nodes, arcs) from the quantitative probabilities (conditional probability tables)
- You can often reason about independence without reasoning about actual probability values
- Graph can be specified by reasoning locally about independence (i.e., what values fully determine a variable's distribution)
- Complicated global independence relationships can then be inferred based on graph structure
- Algorithms that exploit independence can be defined based on the graph structure alone

Clock Scenario

$$
P(A, B, T)=P(T) P(A \mid T) P(B \mid T)
$$

Random variables:
A - Minutes on Alice's clock
B - Minutes on Bob's clock
T - Actual minutes past the hour

Belief Networks as Factorings

Questions:

1. Does applying the Chain Rule to a given variable ordering give a unique factoring?
2. Does a given variable ordering correspond to a unique Belief Network?

Correct and Incorrect Factorings

Definition:

A factoring of a joint distribution is correct when every probability computed by the factoring gives the correct joint probability.

\boldsymbol{A}	\boldsymbol{B}	$\boldsymbol{P}(\mathbf{A}, \boldsymbol{B})$
0	0	0.45
0	1	0.05
1	0	0.05
1	1	0.45

- In this joint distribution, the factoring $P(A, B)=P(A) P(B)$ is not correct
- $P(A=0)=P(B=0)=0.5$
- But

$$
P(A=0) P(B=0)=0.25 \neq P(A=0, B=0)=0.45
$$

Correct and Incorrect Factorings in the Clock Scenario

Definition:

A factoring of a joint distribution is correct when every probability computed by the factoring gives the correct joint probability.

Which of the following are correct factorings of the joint distribution $P(A, B, T)$ in the Clock Scenario?

1. $P(A) P(B) P(T)$
2. $P(A) P(B \mid A) P(T \mid A, B)$

Chain rule(A,B,T): $P(A) P(B \mid A) P(T \mid A, B)$
3. $P(T) P(B \mid T) P(A \mid T)$

Chain rule(T,B,A): $P(T) P(B \mid T, A) P(A \mid T)$
Which of the above are a good factoring for the Clock Scenario? Why?

Belief Networks as Factorings

Question: What factoring is represented by each network?

Conditional independence guarantees are represented in belief networks by the absence of edges.

Variations on the Clock Scenario

- A valid belief network is only "correct" or "incorrect" with respect to a given joint distribution
- A single network may be correct in one scenario and incorrect in another
- Shared Clock Scenario: Bob sets his clock to the time displayed by Alice's clock
- Dice Clock Scenario: Alice rolls a sixty-sided die and sets her clock's minutes to the number (minus 1) that

Queries

- The most common task for a belief network is to query posterior probabilities given some observations

- Easy case:

- Observations are the parents of query target
- More common cases:
- Observations are the children of query target
- Observations have no straightforward relationship to the target

Querying Joint Probabilities: Variable Ordering

To compute joint probability distribution, we need a variable ordering that is consistent with the graph
for i from 1 to n : select an unlabelled variable with no unlabelled parents label it as i

Question:
Is this guaranteed to
exist at every step?
Why?

Querying Joint Probabilities

- Multiply distributions to get joint distribution
- Example: Given variable ordering Tampering, Fire, Alarm, Smoke, Leaving

Questions:

- Why P(Fire) instead of P(Fire | Fanpring)?
- Why $P($ Smoke \mid Fire $)$ instead of $P($ Smoke \mid Famer , Fire, Htarm)?

$$
P(\text { Tampering })=P(\text { Tampering })
$$

$$
P(\text { Tampering }, \text { Fire })=P(\text { Fipe }) P(\text { Tampering })
$$

$P($ Tampering, Fire, Alarm $)=$
$P($ Alarm \mid Tampering, Fire $) P($ Fire $) P($ Tampering $)$
$P($ Tampering, Fire, Alarm, Smoke $)=$
$P($ Smoke \mid Fire $) P($ Alarm \mid Tampering, Fire $) P($ Fire $) P($ Tampering $)$
$P($ Tampering, Fire, Alarm, Smoke, Leaving $)=$
$P($ Leaving \mid Alarm $) P r($ Smoke \mid Fire $) P($ Alarm \mid Tampering, Fire $) P($ Fire $) P($ Tampering $)$

Independence in a Joint Distribution

Question: How can we answer questions about independence using the full joint distribution?

Examples using $P(A, B, T)$:

1. Is A independent of B ?

- $P(A=a \mid B=b)=P(A=a)$ for all $a \in \operatorname{dom}(A), b \in \operatorname{dom}(B)$?

2. Is T independent of A ?

- $P(T=t \mid A=a)=P(T=t)$ for all $a \in \operatorname{dom}(A), t \in \operatorname{dom}(T)$?

3. Is A independent of B given T ?

- $P(A=a \mid B=b, T=t)=P(A=a \mid T=t)$ for all $a \in \operatorname{dom}(A), b \in \operatorname{dom}(B), t \in \operatorname{dom}(T)$?

$$
\begin{aligned}
P(A, B) & =\sum_{t \in T} P(A, B, T=t) \\
P(A, T) & =\sum_{b \in B} P(A, B=b, T) \\
P(B, T) & =\sum_{a \in A} P(A=a, B, T) \\
P(A) & =\sum_{b \in B} P(A, B=b) \\
P(B) & =\sum_{a \in A} P(A=a, B) \\
P(T) & =\sum_{a \in A} P(A=a, T)
\end{aligned}
$$

$$
P(A \mid B, T)=\frac{P(A, B, T)}{P(B, T)}
$$

$$
P(A \mid B)=\frac{P(A, B)}{P(B)}
$$

$$
P(A \mid T)=\frac{P(A, T)}{P(T)}
$$

$$
P(T \mid A)=\frac{P(A, T)}{P(A)}
$$

Independence in a Belief Network

Definition:

A belief network represents a joint distribution that can be factored as

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

Theorem:

Every node is independent of its non-descendants, conditional only on its parents:

- Node u is a parent of v if a directed edge $u \rightarrow v$ exists
- Node v is a descendant of u if there exists a directed path from u to v
- Node v is a non-descendant of u if there does not exist a directed path from u to v

Querying Independence in a Belief Network

Belief Network Independence:
 Every node is independent of its non-descendants, conditional only on its parents

- We can use a correct belief network to efficiently answer questions about independence without knowing any numbers
- Examples using the belief network at right:

1. Is T independent of A ?
2. Is A independent of B given T ?

3. Is A independent of B?

Chain

- Question: Is Report independent of Alarm given Leaving?
- Intuitively: The only way learning Report tells us about Alarm is because it tells us about Leaving; but Leaving has already been observed
- Formally: Report is independent of its non-descendants given only its parents
- Leaving is Report's parent
- Alarm is a non-descendant of Report
- Question: Is Report independent of Alarm?
- Intuitively: Learning Report gives us information about Leaving, which gives us information about Alarm

- Formally: Report is independent of Alarm given Report's parents; but the question is about marginal independence

Common Ancestor

- Question: Is Alarm independent of Smoke given Fire?
- Intuitively: The only way learning Smoke tells us about Alarm is because it tells us about Fire; but Fire has already been observed
- Formally: Alarm is independent of its non-descendants given only its parents
- Fire is Alarm's parent
- Smoke is a non-descendant of Alarm
- Question: Is Alarm independent of Smoke?

- Intuitively: Learning Smoke gives us information about Fire, which gives us information about Alarm
- Formally: Alarm is independent of Smoke given only Alarm's parents; but the question is about marginal independence

Common Descendant ("collider")

- Question: Is Tampering independent of Fire given Alarm?
- Intuitively: If we know Alarm is ringing, then both Tampering and Fire are more likely. If we then learn that Fire is false, that makes it more likely that the Alarm is ringing because of Tampering.
- Formally: Tampering is independent of Fire given only Tampering's parents; but we are conditioning on one of Tampering's descendants
- Conditioning on a common descendant can make independent variables dependent through this explaining away effect
- Question: Is Tampering (marginally) independent of Fire?
- Intuitively: Learning Tampering doesn't tell us anything about whether a Fire is happening

- Formally: Tampering is independent of Fire given Tampering's parents
- Tampering has no parents, so we are always conditioning on them
- Fire is a non-descendant of Tampering

Correctness of a Belief Network

A belief network is a correct representation of a joint distribution when the factoring that it represents is a correct factoring of the joint distribution.
Equivalently: when the belief network answers "yes" to an independence question only if the joint distribution answers "yes" to the same question.

Questions:

1. Is A guaranteed to be marginally independent of B in the above belief networks?
2. Is A guaranteed to be independent of B given C in the above belief networks?

Causal Network?

- The arcs in belief networks do not, in general, represent causal relationships!
- $T \rightarrow A$ is a causal relationship if T causes the value of A
- E.g., B doesn't cause T, but this is nevertheless a correct encoding of the joint distribution
- However, reasoning about causal relationships is often a good way to construct a natural encoding as a belief network
- We can often reason about causal independence even when we don't know the full joint distribution

Summary

- A belief network represents a specific factoring of a joint distribution
- Graph structure encodes conditional independence relationships
- More than one belief network can correctly represent a joint distribution
- A given belief network may be correct for one underlying joint distribution and incorrect for another
- A good belief network is one that encodes as many true conditional independence relationships as possible
- It is possible to read the conditional independence guarantees made by a belief network directly from its graph structure
- Arcs in a belief network often represent causal relationships
- But they don't have to!

