Belief Networks

CMPUT 261: Introduction to Artificial Intelligence

P&M §8.3

Assignment #1

- Assignment #1 is due **TODAY**
- Submissions will be accepted until **11:59pm TONIGHT**

A Better Clock Scenario

- There are six **digital clocks on the shelf.**
 - Clock 1 is fast by 1 minute
 - Clock 2 is fast by 2 minutes
 - Clock 3 is **slow by 2 minutes**
 - Clock 4 is **slow by 1 minute**
 - Clocks 5 and 6 are exactly correct
- Alice rolls a fair die and chooses the clock lacksquarewith the die's number
- Bob chooses a clock in the same way lacksquarefrom a different shelf with the same timings
- Later on, they both look at their clocks \bullet

Random variables:

- A Minutes on Alice's clock
- B Minutes on Bob's clock
- T Actual minutes past the hour

A Better Clock Scenario (2)

When they look at the clocks,
any number of minutes past the hour is equally
i.e.,
$$Pr(T = m) = \frac{1}{60}$$
 for all $0 \le m \le 59$.

Questions:

- 1. Are A and T marginally independent? i.e., Pr(A = a | T = m) = Pr(A = a)?
- 2. Are A and B marginally independent? i.e., Pr(A = a | B = b) = Pr(A = a)?
- 3. Suppose that the time is known. Does learning B reveal anything new about A? i.e., Pr(A = a | B = b, T = m) = Pr(A = a | T = m)?

likely to be correct.

Random variables:

- A Minutes on Alice's clock B Minutes on Bob's clock T Actual minutes past the hour

Recap: Independence

Definition:

Random variables X and Y are marginally independent iff

 $P(X = x \mid Y$

for all values of $x \in dom(X)$ and $y \in dom(Y)$.

Definition:

Random variables X and Y are conditionally independent given Z iff

$$P(X = x | Y = y, Z = z) = P(X = X | Z = z)$$

for all values of $x \in dom(X)$, $y \in dom(Y)$, and $z \in dom(Z)$.

$$= y) = P(X = x)$$

Recap: Chain Rule

Definition: Chain rule (of probabilities) $= \prod_{i=1}^{n} P(\alpha_{i} \mid \alpha_{1}, ..., \alpha_{i-1})$

 $P(\alpha_1, \dots, \alpha_n) = P(\alpha_1) \times P(\alpha_2 \mid \alpha_1) \times \dots \times P(\alpha_n \mid \alpha_1, \dots, \alpha_{n-1})$

Recap: Chain Rule

Definition: Chain rule (of probabilities) $P(X_1 = x_1, \dots, X_n = x_n) = P(X_1 = x_1) \times P(X_2 = x_2)$ $= \prod_{i=1}^{n} P(X_i = x_i \mid X_1 = x_1)$

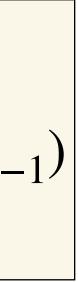
$$\sum_{i=1}^{2} |X_{1} = x_{1}| \times \dots \times P(X_{n} = x_{n} | X_{1} = x_{1}, \dots, X_{n-1} = x_{n}$$

$$\sum_{i=1}^{n} \dots, X_{i-1} = x_{i-1})$$

P(W,X,Y,Z)

P(W,X,Y)

$P(W, X, Y, Z) = P(W)P(X \mid W)P(Y \mid W, X)P(Z \mid W, X, Y)$



Recap: Exploiting Independence

- \bullet unnatural
- We can exploit **conditional independence**:
 - Conditional distributions are often more natural to write
 - Joint probabilities can be extracted from conditionally independent distributions by **multiplication**

Explicitly specifying an entire unstructured joint distribution is tedious and

Lecture Outline

- Recap & Logistics 1.
- Belief Networks as Factorings 2.
- 3. Querying Joint Probabilities
- Querying Independence 4.

After this lecture, you should be able to:

- Define a belief network \bullet
- Construct a belief network that corresponds to a given factoring \bullet
- Recover a factoring that is consistent with a given belief network
- Compute joint probabilities using a belief network
- Identify independence relationships encoded by a given belief network \bullet

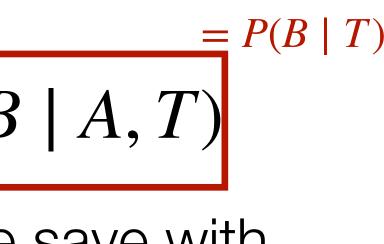
Factoring Joint Distributions

• We can **always** represent a joint distribution as a product of factors, even when there is **no** marginal or conditional independence (**why?**)

 $P(A, B, T) = P(T)P(A \mid T)P(B \mid A, T)$

- **Question:** How much space can we save with this factored representation?
- When we do have independence, we can **simplify** some of these factors:

 $P(A, B, T) = P(T)P(A \mid T)P(B \mid T)$



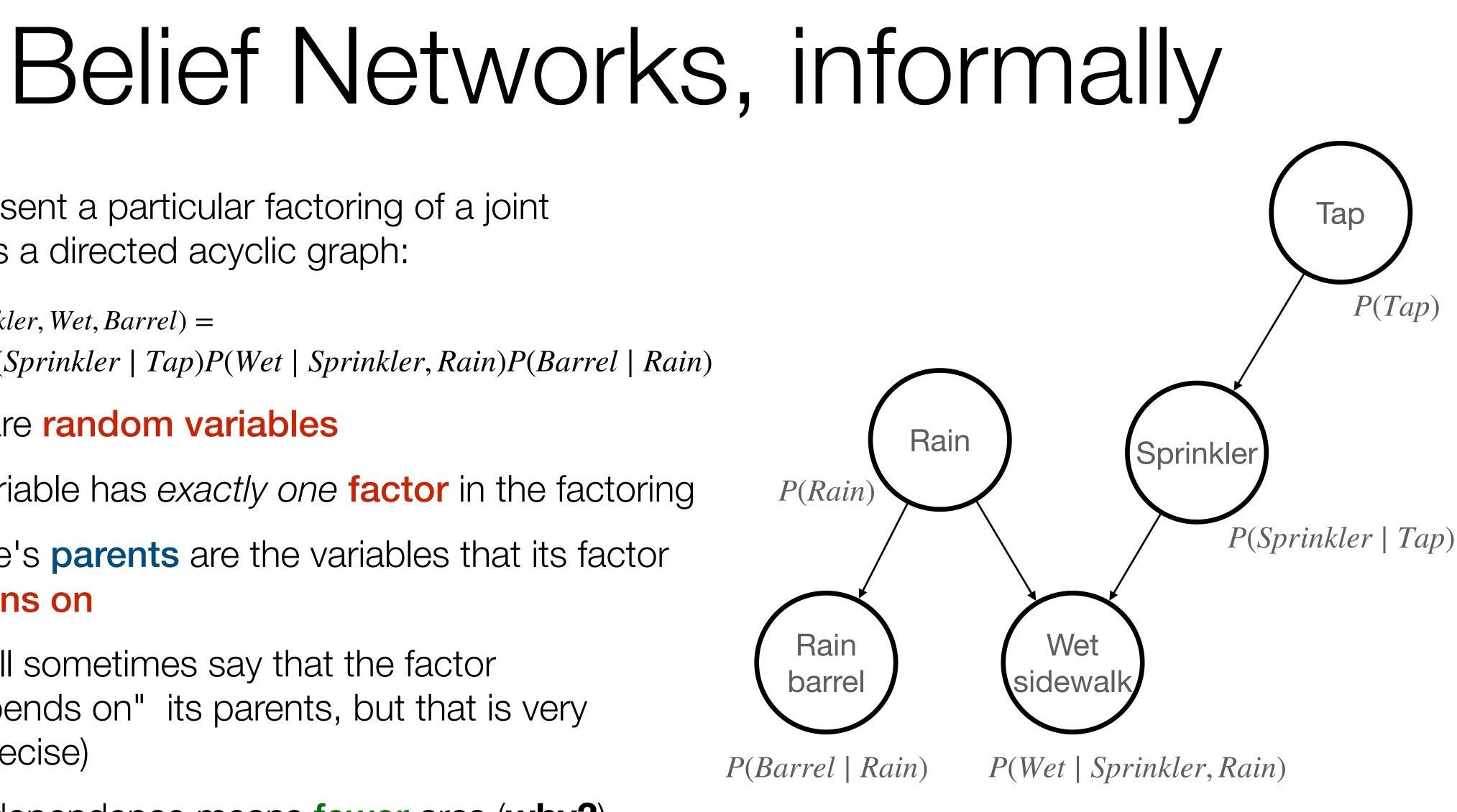
Random variables:

- A Minutes on Alice's clock
- B Minutes on Bob's clock
- T Actual minutes past the hour

We can represent a particular factoring of a joint distribution as a directed acyclic graph:

P(*Tap*, *Rain*, *Sprinkler*, *Wet*, *Barrel*) = *P*(*Tap*)*P*(*Rain*)*P*(*Sprinkler* | *Tap*)*P*(*Wet* | *Sprinkler*, *Rain*)*P*(*Barrel* | *Rain*)

- **Nodes** are **random variables**
- Every variable has *exactly one* **factor** in the factoring
- The node's **parents** are the variables that its factor conditions on
 - (We'll sometimes say that the factor \bullet "depends on" its parents, but that is very imprecise)
- More independence means fewer arcs (why?)



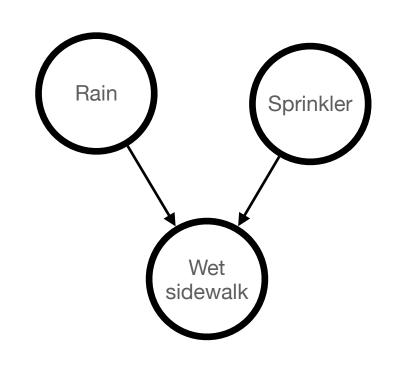
Belief Networks

Definition: A belief network (or Bayesian network) consists of:

- 1. A directed acyclic graph, with each node labelled by a random variable
- 2. A **domain** for each random variable
- 3. A conditional probability table for each variable given its parents

A table with one row for each combination of val of itself and its parents, and the corresponding conditional probability

	Wet	Sprinkler	Rain	P(W S,R)
	0	0	0	1.0
	1	0	0	0.0
ues	0	1	0	0.5
	1	1	0	0.5
	0	0	1	0.1
	1	0	1	0.9
	0	1	1	0.0
	1	1	1	1.0

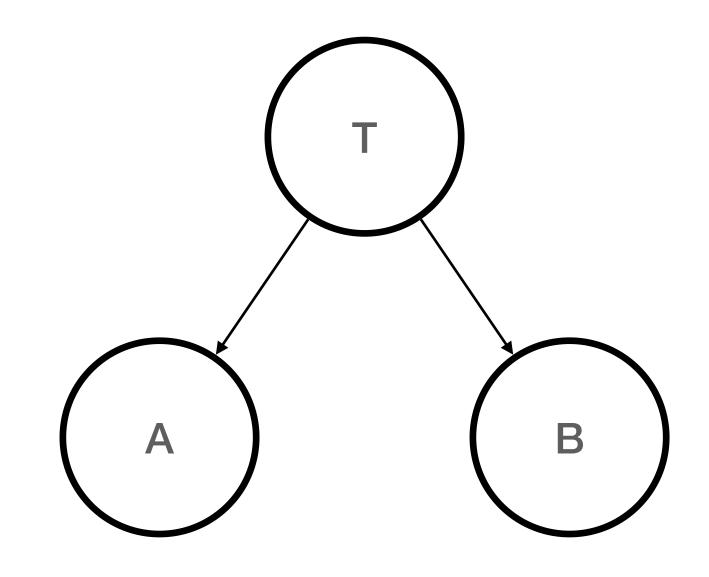


Why is the Graph Encoding Useful?

Encoding the distribution as a graph is useful for a number of reasons:

- Separates the independence structure (nodes, arcs) from the quantitative probabilities (conditional probability tables)
 - You can often reason about independence without reasoning about actual probability values
- Graph can be specified by reasoning **locally** about independence (i.e., what values fully • determine a variable's distribution)
- Complicated global independence relationships can then be inferred based on graph structure
- Algorithms that exploit independence can be defined based on the graph structure alone \bullet

$P(A, B, T) = P(T)P(A \mid T)P(B \mid T)$

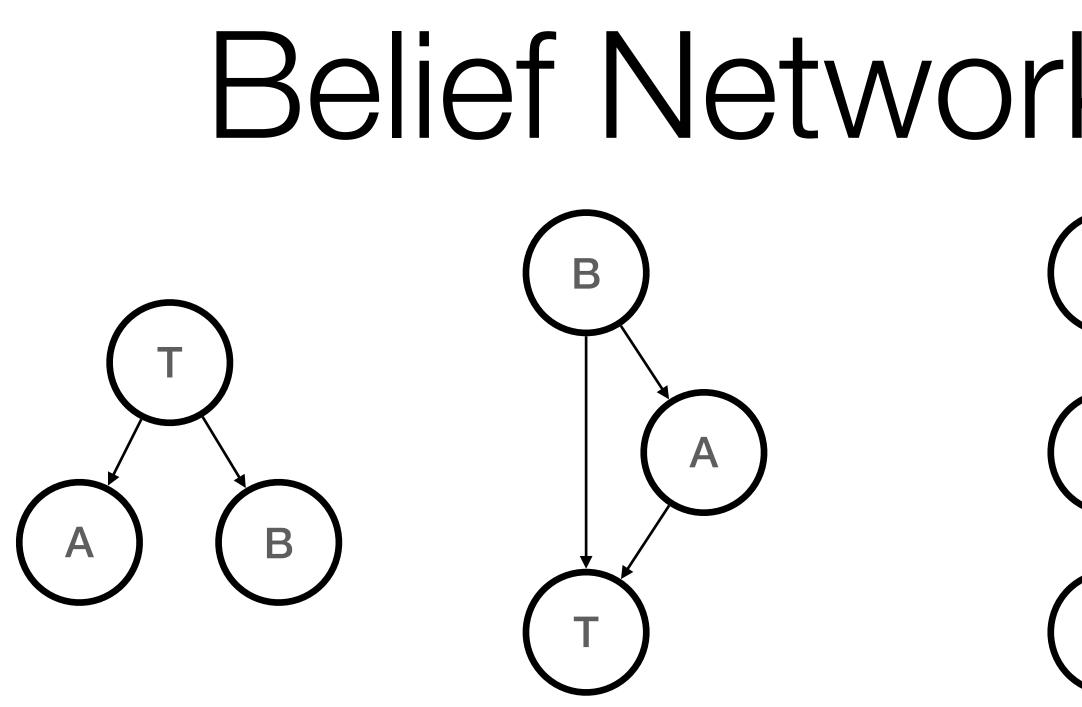


Clock Scenario

Random variables:

- A Minutes on Alice's clock
- B Minutes on Bob's clock

T - Actual minutes past the hour

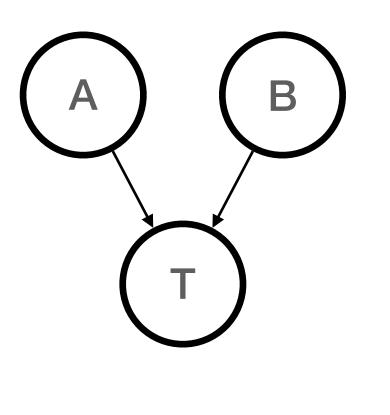


- A joint distribution can be factored in **multiple** different ways
 - Every variable ordering induces at least one correct factoring (Why?)

B

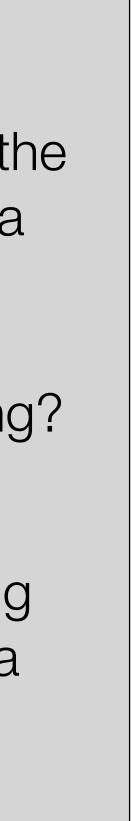
- A belief network represents a single factoring
- For a given joint distribution, some factorings are correct, some are incorrect

Belief Networks as Factorings



Questions:

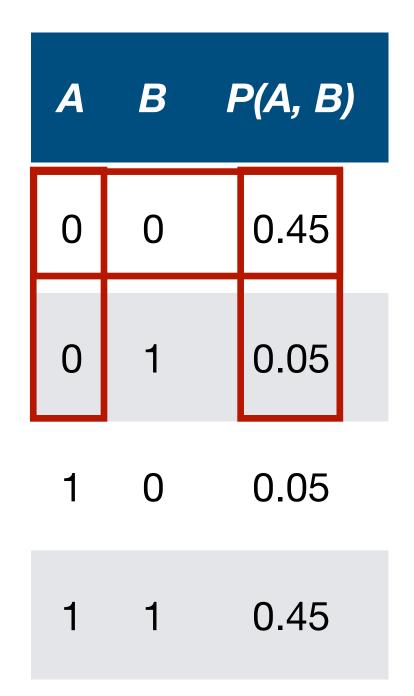
- Does applying the Chain Rule to a given variable ordering give a unique factoring?
- 2. Does a given variable ordering correspond to a unique Belief Network?



Correct and Incorrect Factorings

Definition:

gives the correct joint probability.



- In this joint distribution, the factoring P(A, B) = P(A)P(B) is not correct
- P(A = 0) = P(B = 0) = 0.5
- But

A factoring of a joint distribution is correct when every probability computed by the factoring

 $P(A = 0)P(B = 0) = 0.25 \neq P(A = 0, B = 0) = 0.45$

Correct and Incorrect Factorings in the Clock Scenario

Definition:

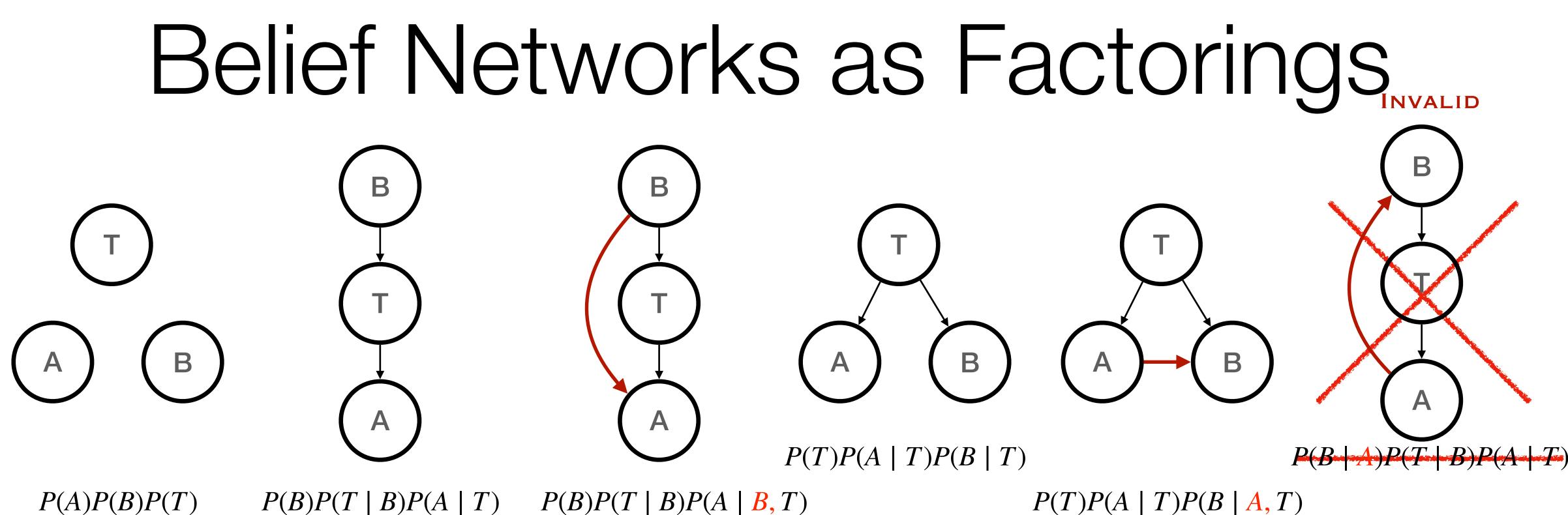
A **factoring** of a joint distribution is **correct** when every probability computed by the factoring gives the correct joint probability.

Which of the following are **correct** factorings of the joint distribution P(A, B, T) in the Clock Scenario?

- 1. P(A)P(B)P(T)
- 2. $P(A)P(B \mid A)P(T \mid A, B)$ Cha
- 3. $P(T)P(B \mid T)P(A \mid T)$ Cha

Which of the above are a good factoring for the Clock Scenario? Why?

Chain rule(A,B,T): $P(A)P(B \mid A)P(T \mid A, B)$ Chain rule(T,B,A): $P(T)P(B \mid T,A)P(A \mid T)$

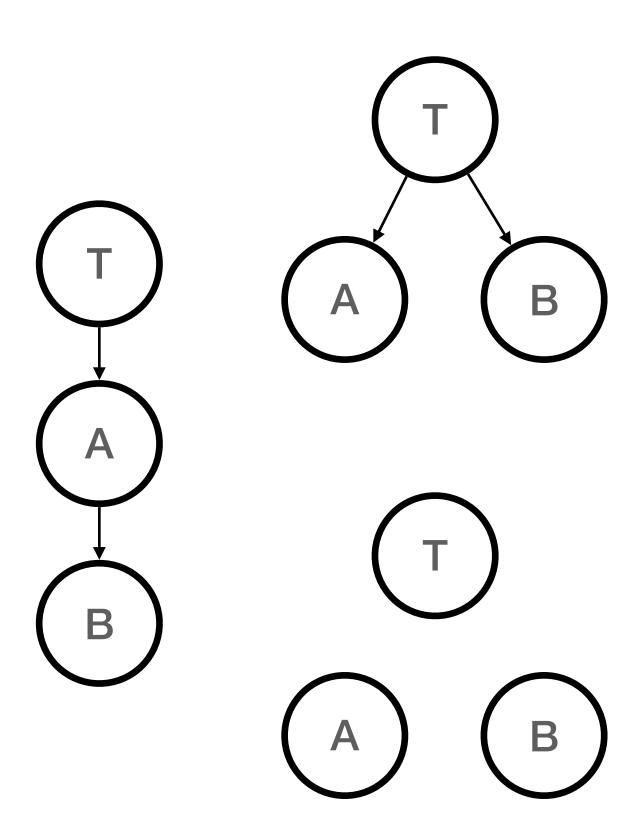


Question: What **factoring** is represented by each network?

Conditional independence guarantees are represented in belief networks by the absence of edges.

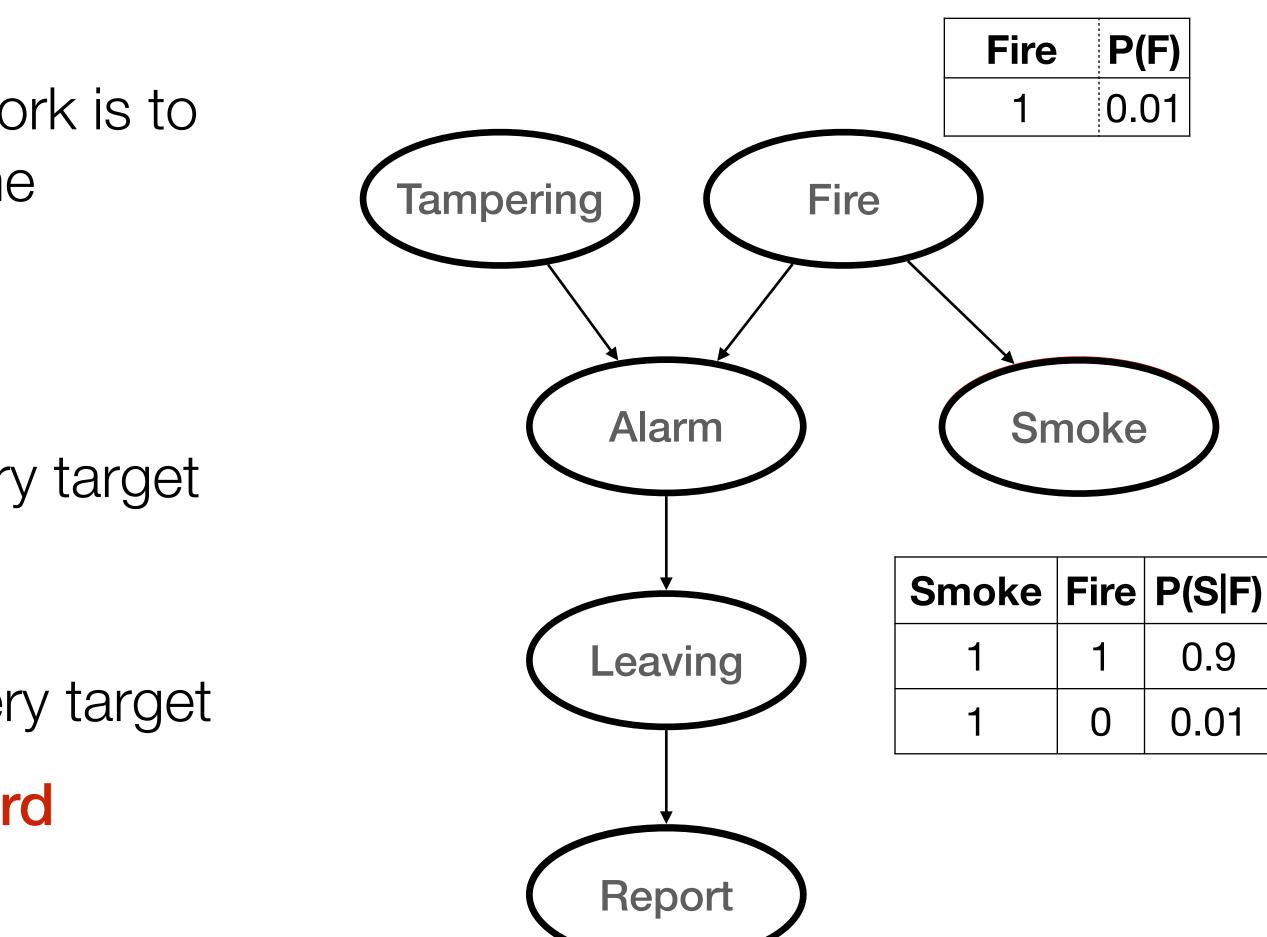
Variations on the Clock Scenario

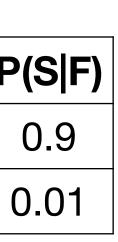
- A valid belief network is only "correct" or "incorrect" with respect to a given joint distribution
- A single network may be correct in one scenario and incorrect in another
- Shared Clock Scenario: Bob sets his clock to the time displayed by Alice's clock
- **Dice Clock Scenario:** Alice rolls a sixty-sided die and \bullet sets her clock's minutes to the number (minus 1) that comes up. Bob does the same thing.



Queries

- The most common task for a belief network is to query posterior probabilities given some observations
- Easy case: \bullet
 - Observations are the **parents** of query target
- More **common** cases:
 - Observations are the **children** of query target
 - Observations have **no straightforward** relationship to the target

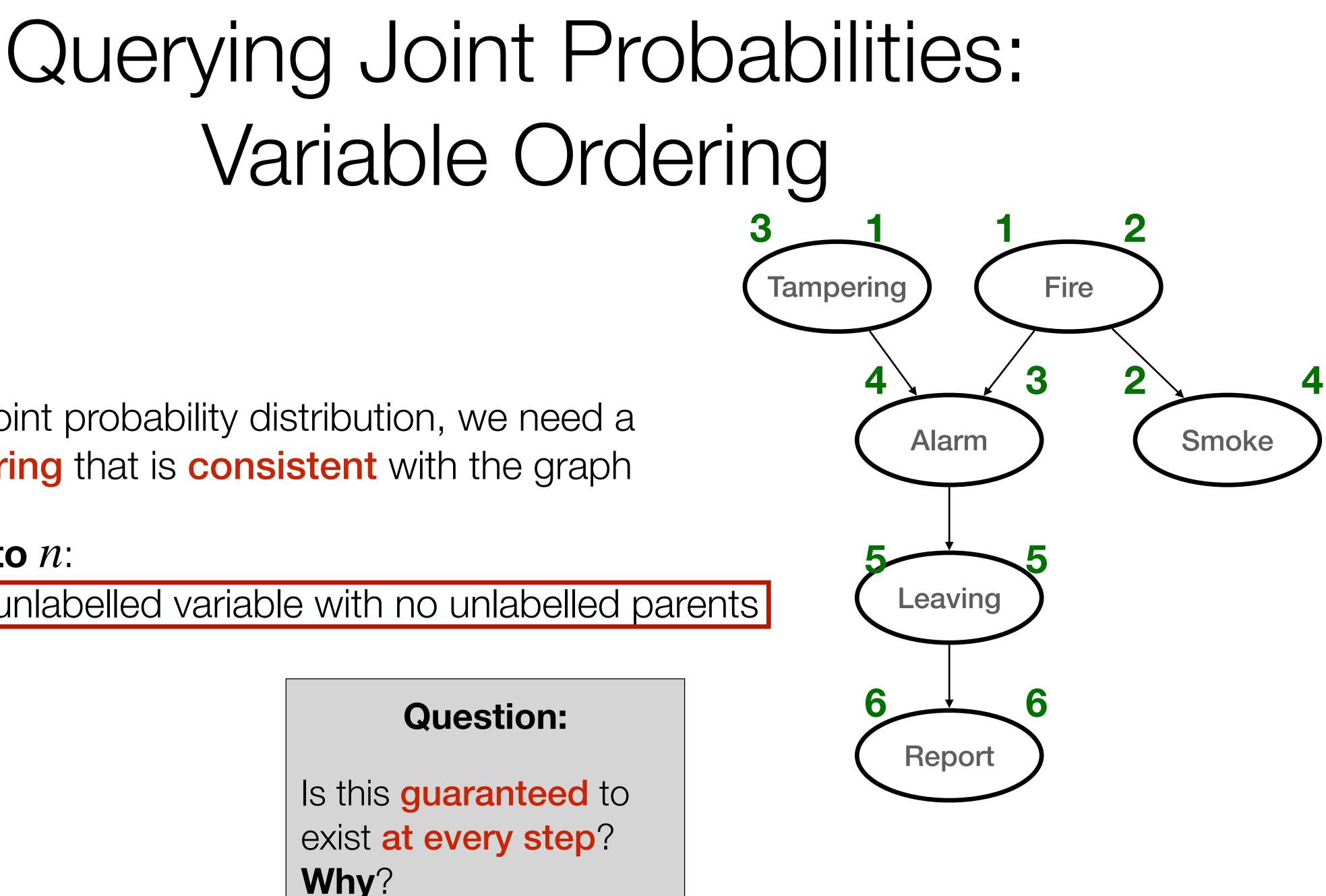




To compute joint probability distribution, we need a variable ordering that is consistent with the graph

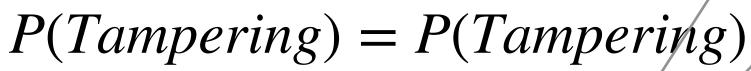
for *i* from 1 to *n*: **select** an unlabelled variable with no unlabelled parents label it as *i*

exist at every step? Why?



Querying Joint Probabilities

- Multiply distributions to get joint distribution
- **Example:** Given variable ordering Tampering, Fire, Alarm, Smoke, Leaving

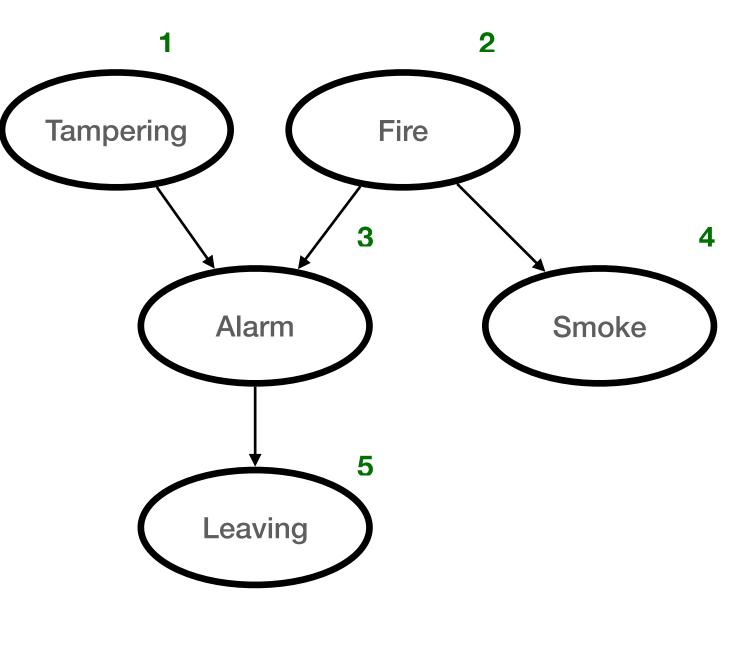


P(Tampering, Fire) = P(Fire)P(Tampering)

P(Tampering, Fire, Alarm) =P(Alarm | Tampering, Fire)P(Fire)P(Tampering)

P(Tampering, Fire, Alarm, Smoke) = P(Smoke | Fire)P(Alarm | Tampering, Fire)P(Fire)P(Tampering)

P(*Tampering*, *Fire*, *Alarm*, *Smoke*, *Leaving*) = P(Leaving | Alarm)Pr(Smoke | Fire)P(Alarm | Tampering, Fire)P(Fire)P(Tampering)



Questions:

Why P(Fire) instead of *P*(*Fire* | *Tampering*)?

Why *P*(*Smoke* | *Fire*) instead of

P(Smoke | Tampering, Fire, Alarm)?

Independence in a Joint Distribution

Question: How can we answer questions about independence using the full joint distribution?

Examples using P(A, B, T):

- 1. Is A independent of B?
- $P(A = a \mid B = b) = P(A = a)$ for all $a \in dom(A), b \in dom(B)$?

2. Is T independent of A?

- $P(T = t \mid A = a) = P(T = t)$ for all $a \in dom(A), t \in dom(T)$?
- 3. Is A independent of B given T?
- P(A = a | B = b, T = t) = P(A = a | T = t)for all $a \in dom(A), b \in dom(B), t \in dom(T)$?

$$P(A, B) = \sum_{t \in T} P(A, B, T)$$

$$P(A, T) = \sum_{b \in B} P(A, B = A)$$

$$P(B, T) = \sum_{a \in A} P(A = a, B)$$

$$P(A) = \sum_{b \in B} P(A, B = A)$$

$$P(B) = \sum_{a \in A} P(A = a, B)$$

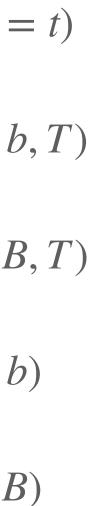
$$P(T) = \sum_{a \in A} P(A = a, T)$$

$$P(A \mid B, T) = \frac{P(A, B, T)}{P(B, T)}$$

$$P(A \mid B) = \frac{P(A, B)}{P(B)}$$

$$P(A \mid T) = \frac{P(A, T)}{P(T)}$$

$$P(T \mid A) = \frac{P(A, T)}{P(A)}$$



Independence in a Belief Network

Definition:

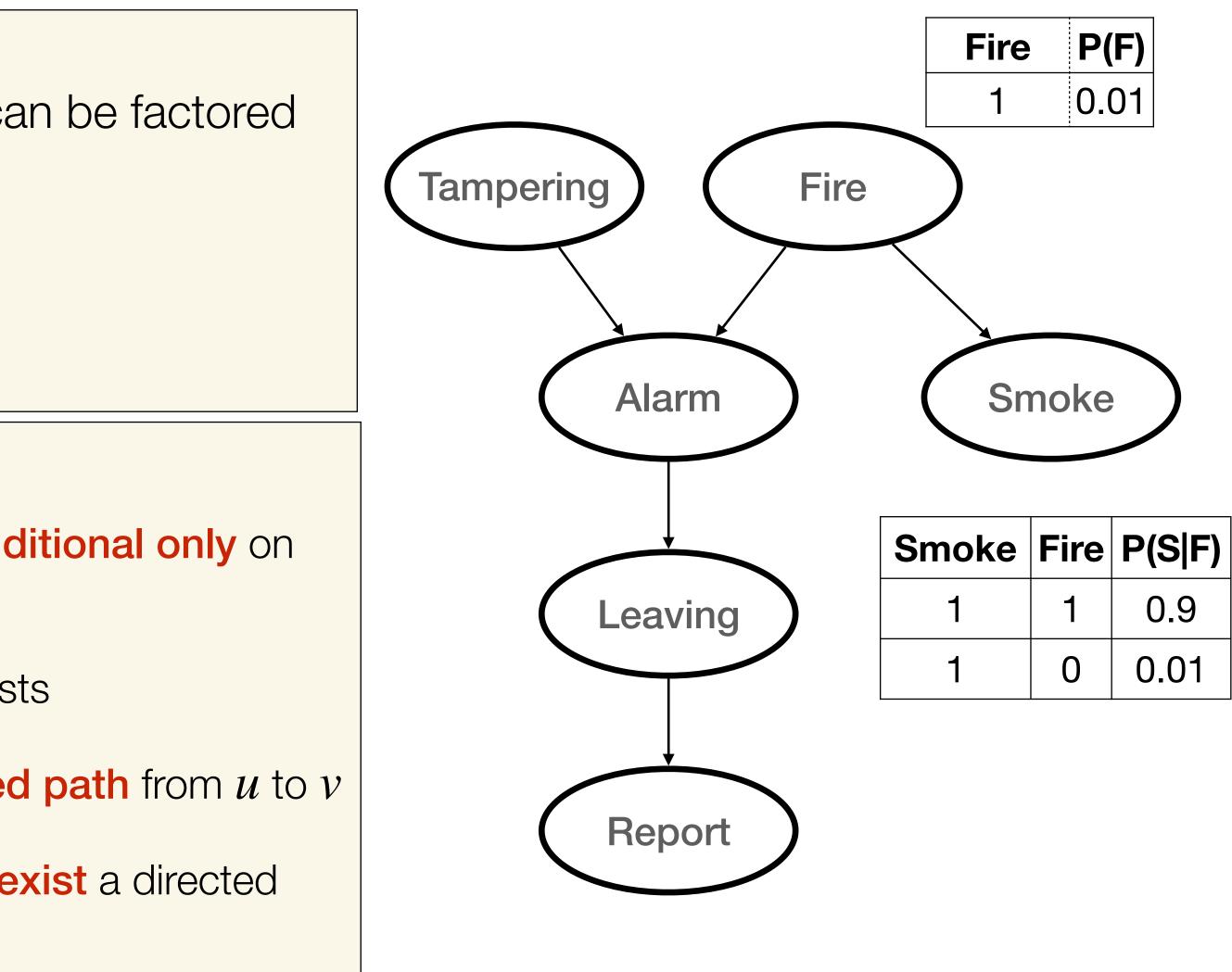
A belief network represents a joint distribution that can be factored as

$$P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i \mid parents(X_i))$$

Theorem:

Every node is **independent** of its **non-descendants**, **conditional only** on its **parents**:

- Node u is a **parent** of v if a directed edge $u \rightarrow v$ exists
- Node v is a **descendant** of u if there exists a **directed path** from u to v
- Node v is a non-descendant of u if there does not exist a directed path from u to v

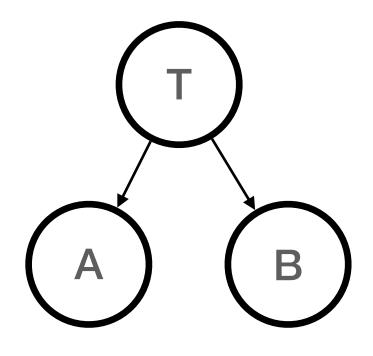


Querying Independence in a Belief Network

Belief Network Independence:

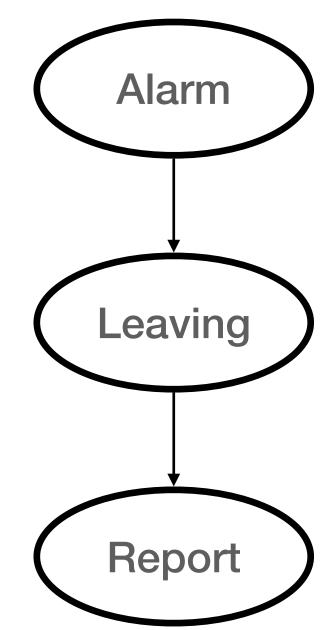
Every node is independent of its non-descendants, conditional only on its parents

- We can use a correct belief network to efficiently answer questions about independence without knowing any numbers
- Examples using the belief network at right:
 - 1. Is T independent of A?
 - 2. Is A independent of B given T?
 - 3. Is A independent of B?



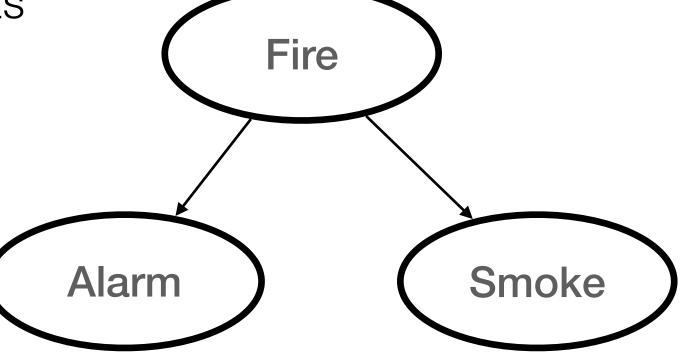
Chain

- **Question:** Is **Report** independent of **Alarm** given **Leaving**? lacksquare
 - Intuitively: The only way learning **Report** tells us about **Alarm** is because it \bullet tells us about Leaving; but Leaving has already been observed
 - *Formally:* **Report** is independent of its non-descendants given only its parents lacksquare
 - Leaving is Report's parent
 - Alarm is a non-descendant of **Report**
- **Question:** Is **Report** independent of **Alarm**?
 - Intuitively: Learning **Report** gives us information about **Leaving**, which gives \bullet us information about Alarm
 - Formally: Report is independent of Alarm given Report's parents; but the question is about **marginal** independence



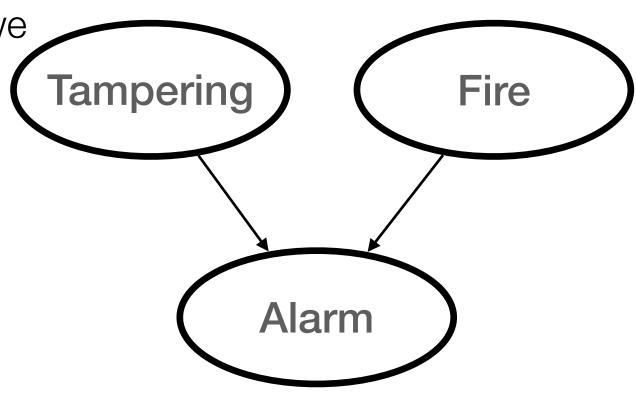
Common Ancestor

- Question: Is Alarm independent of Smoke given Fire?
 - Intuitively: The only way learning Smoke tells us about Alarm is because it tells us about **Fire**; but **Fire** has already been observed
 - Formally: Alarm is independent of its non-descendants given only its parents
 - Fire is Alarm's parent
 - Smoke is a non-descendant of Alarm lacksquare
- **Question:** Is **Alarm** independent of **Smoke**?
 - Intuitively: Learning Smoke gives us information about Fire, which gives us ulletinformation about **Alarm**
 - Formally: Alarm is independent of Smoke given only Alarm's parents; but the question is about **marginal independence**



Common Descendant ("collider")

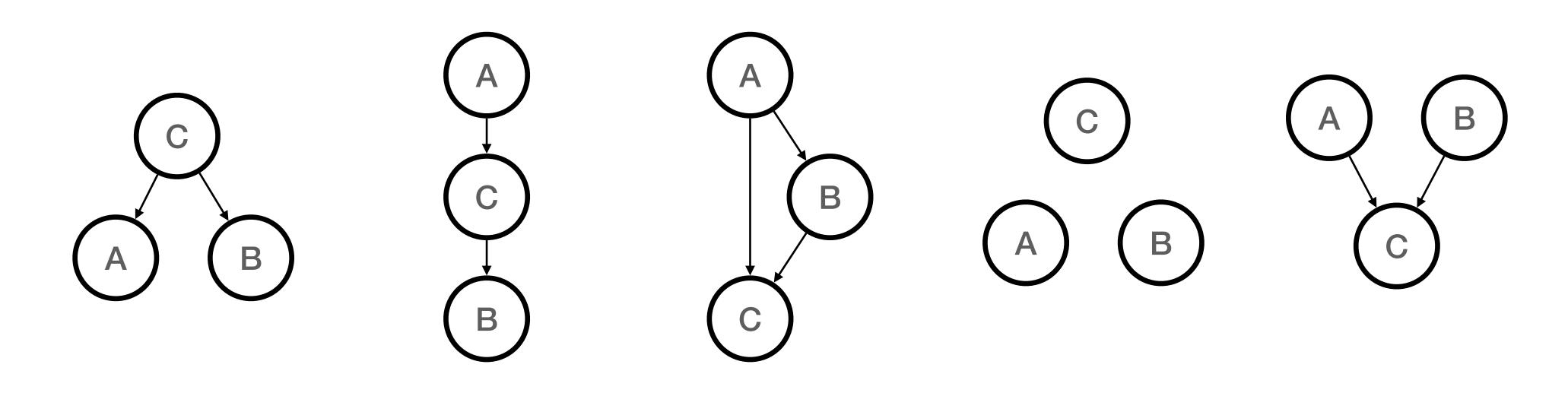
- **Question:** Is **Tampering** independent of **Fire** given **Alarm**?
 - Intuitively: If we know Alarm is ringing, then both Tampering and Fire are more likely. If we then learn that **Fire** is false, that makes it more likely that the **Alarm** is ringing because of Tampering.
 - Formally: Tampering is independent of Fire given only Tampering's parents; but we are conditioning on one of Tampering's **descendants**
 - Conditioning on a **common descendant** can make independent variables dependent through this **explaining away** effect
- **Question:** Is **Tampering** (marginally) independent of **Fire**?
 - Intuitively: Learning Tampering doesn't tell us anything about whether a Fire is happening
 - Formally: Tampering is independent of Fire given Tampering's parents
 - **Tampering** has no parents, so we are always conditioning on them
 - Fire is a non-descendant of Tampering



Correctness of a Belief Network

A belief network is a correct representation of a joint distribution when the factoring that it represents is a correct factoring of the joint distribution.

Equivalently: when the belief network answers "yes" to an independence question only if the joint distribution answers "yes" to the same question.



Questions:

1. Is A guaranteed to be marginally independent of B in the above belief networks? 2. Is A guaranteed to be independent of B given C in the above belief networks?

- The arcs in belief networks do not, in general, represent causal relationships! • $T \rightarrow A$ is a **causal** relationship if T causes the value of A

 - E.g., B doesn't cause T, but this is nevertheless a correct encoding of the joint distribution
- However, reasoning about causal relationships is often a good way to construct a **natural** encoding as a belief network
 - We can often reason about causal independence even when we don't know the full joint distribution

Causal Network?

Summary

- A belief network represents a specific **factoring** of a joint distribution
 - Graph structure encodes conditional independence relationships
 - More than one belief network can correctly represent a joint distribution
 - A given belief network may be correct for one underlying joint distribution and incorrect for another
- A **good** belief network is one that encodes as many **true** conditional independence relationships as possible
- It is possible to read the conditional independence guarantees made by a belief network directly from its graph structure
- Arcs in a belief network often represent causal relationships
 - But they don't have to!