Branch & Bound

or, How | Learned to Stop Worrying and Love Depth First Search

CMPUT 261: Introduction to Artificial Intelligence

| ogistics

Assignment #1 was released last week

e Available on eClass

 Due: Thursday, February 1 at 11:59pm

Recap: Heuristics

Definition:
A heuristic function is a function A(n) that returns a non-negative

estimate of the cost of the cheapest path from node n to some
goal node.

 E.g., Euclidean distance instead of travelled distance

Definition:
A heuristic function is admissible if 4(n) is always less than or equal to the
actual cost of the cheapest path from n to any goal node.

» i.e., h(n) is alower bound on cost({n, ..., g)) for any goal node g

Recap: A* Search

 A* search uses both path cost information and heuristic
iInformation to select paths from the frontier

» Let f(p) = cost(p) + h(p)

» f(p) estimates the total cost to the nearest goal node
starting from p

» A* removes paths from the frontier with smallest f(p)

actual estimated
start > N >

oal
costp) h(n)

Recap: A* Search Algorithm

Input: a graph; a set of start nodes; a goal function

frontier := {(s) | sis a start node} e, f(ng, ... m)) < f(p)
_ L for all other paths p € frontier
while frontier is not eM
select f~-minimizing path (n, ..., n,) from frontier
remove (1, ..., ;) from frontier
if goal(ny):
return (n, ..., n;)

for each neighbour n of n;:

add (n,, ..., ny, n) to frontier
end while

Recap: A" is Optimal

Theorem:

If there is a solution of finite cost, A* using heuristic function A always returns an
optimal solution (in finite time), If

1. The branching factor is finite, and
2. All arc costs are greater than some € > 0, and

3. his an admissible heuristic.

Proof:

1. No suboptimal solution will be removed from the frontier whenever the frontier
contains a prefix of the optimal solution

2. The optimal solution is guaranteed to be removed from the frontier eventually

"Recap™: A* Analysis

~or a search graph with finite maximum branch factor b and

finite maximum path length m...

1. What is the worst-case space complexity of A*?

A: O(m)] [B: O(mb)] [C: O(b™)] [D: it depends]

2. What is the worst-case time complexity of A*?

A: O(m)] [B: O(mb)] [C: O(b™)] [D: it depends]

Question: |

" A* has the same space and time complexity as least cost first

search, ther

what is its advantage?

Summary of Last Lecture

Domain knowledge can help speed up graph search

Domain knowledge can be expressed by a heuristic function,
which estimates the cost of a path to the goal from a node

Admissible heuristics can be bullt from relaxations of the original
problem

Simple uses of heuristics do not guarantee improved performance

A* algorithm for use of admissible heuristics with guarantees

| ecture Outline

1. Recap & Logistics

Optimal Heuristic Usage
Branch & Bound

Cycle Pruning

- T A

Exploiting Search Direction

Constructing Admissible Heuristics

After this lecture, you should be able to:

e (Construct an admissible heuristic for an arbitrary search problem

EXp
mp

mplement cycle pruning
ain when cycle pruning is and is not space- and 1

ement branch & bound and

Derive the space and time comp
Predict whether forward, backward, or bidirectional search are more efficient for a search problem

Define heuristic consistency, identify whether a heuristic is consistent

ime-efficient

DA* and demonstra

e their operation

exity for branch & bound and |IDA*

Constructing
AdMISSIDIe HeuristiCS

* Search problems try to find a cost-minimizing path, subject to
constraints encoded in the search graph

-
» How to construct an easier problem? Drop some constraints. e
* Thisis called a relaxation of the original problem W
* [he cost of the optimal solution to the relaxation will always be an g
admissible heuristic for the original problem (Why?) 4
.

» Neat trick: If you have two admissible heuristics /; and A,, then
hy(n) = max{h,;(n), h,(n)} is admissible too! (Why?)

Consistent Heuristic

Definition:
A heuristic & is consistent if, for every pair of nodes n,n’ € N,

h(n’) < cost(n,n’) + h(n).

* Thatis, a heuristic never decides that things are "harder than it thought” along a given path

* Question: is /1 consistent on the graph below?

* Question: is /7 admissible on the graph below?

—euristic Usage of A”

Definition:
Let p™ be an optimal solution.

A path p is surely removed by A* if f(p) < f(p™).

Theorem:
Any path that is surely removed by A* using a consistent heuristic A will also be

removed from the frontier by any other optimal graph search algorithm using A.

.e., there is no way to use a given consistent heuristic that is guaranteed to
find an optimal solution faster than A*, "up to tie-breaking”

Space Complexity of A*

* A* makes use of heuristic information to improve time complexity
* Focuses on parts of the search graph that are likely to contain solution

 Explores paths in order of f-value

* Frontier might need to contain all paths of the same cost as the solution at
some point

* Using heuristic to change the order that depth-first-search puts paths go into the
frontier doesn't reliably improve its time complexity

* |n general, DFS with heuristic-ordering will expand more paths than A* with
same heuristic

« Can we use a heuristic in some other way to improve DFS's time
complexity without giving up its good space complexity?

Branch & Bound

 The f(p) function provides a path-specific lower bound on solution cost
starting from p

* Idea: Maintain a global upper bound on solution cost also

 [hen prune any path whose lower bound exceeds the upper bound

* Question: Where does the upper bound come from?

 Cheapest solution found so far

e Before solutions found, specified on entry

Branch & Bsound Algorithm

Input: a graph; a set of start nodes; a goal function; heuristic h(n); bound,

frontier .= {(s) | sis a start node}
bound := bound,,
best == @
while frontier is not empty:
select the newest path (n,, ..., n,) from frontier
remove (1, ..., 1) from frontier
if f((ng, ..., n)) < bound :
if goal(n,):
bound := cosi({n, ..., n)) Question: \Why cost instead of f here?
best := (ngy, ..., ;)
else:
for each neighbour n of n;.
add (n, ..., n,, n) to frontier
end while
return best

Choosing bound,,

f bound() IS set to just above the optimal cost, branch & bound will explore no more paths

than A*

« Won't explore any paths p’ that are more costly than the optimal solution, because

f(p’) > bound,

» Wil eventually find the optimal solution path p* because f(p*) < bound,,

But we don't (in general) know the cost of the optimal solution!

One possibility: Initialize bound, = oo

* What problems could this have?

Solution: iteratively increase bound, (like with IDS)

* This algorithm is sometimes called IDA*

 Some lower-cost paths will be re-explored

Initialize bound,,

until solution found:

Perform branch & bound using bound,,

Increase bound,,

terative Deepening A* (IDAY)

1. What should we initialize bound,y to?

2. How much should we increase bound,, by at each step?

 One idea:
teratively increase bound to the lowest f-value path that was pruned

* (Guarantees at least one more path will be explored

e (Can stop immediately after finding a solution (why?)

* [ime complexity can be much worse than A™:
O(b*™) instead of O(b™) (why?)

» Need to increase bound,, by enough (else won't explore enough),
but not too much (else won't prune enough)

 Choosing next f-limit is an active area of research
(see https:// www.movingai.com/SAS/IDA/)

Initialize bound,,

until solution found:

Perform branch & bound using bound,,

Increase bound,,

https://www.movingai.com/SAS/IDA/

Heuristic

Depth First

Branch &

Space
complexity

Time
Complexity

Heuristic
Usage

Optimal?

Limited

No

Optimal

(up to tie-breaking,

for consistent h)

Yes

Optimal
(if bound low
enough)

Yes
(if bound high
enough)

O(mb)

Close to
Optimal

Yes

Cycle Pruning

 Even on finite graphs, depth-first search may not be
complete, because it can get trapped In a cycle.

* A search algorithm can prune any path that ends in a node

already on the path without missing an optimal solution
(Why?)

Questions:

1. Is depth-first search on
with cycle pruning
complete for finite
graphs?

2. What Is the time
complexity for cycle
checking in depth-first
search?

3. What is the time

complexity for cycle
checking in breadth-
first search”

Cycle Pruning
Depth First Search

Input: a graph; a set of start nodes; a goal function

frontier := {{s) | sis a start node}
while frontier is not empty:

select the newest path (n, ..., n;) from frontier
remove (7, ..., n;) from frontier
if . # n;foral 0 < j < k:
if goal(n,):
return (n, ..., n;)

for each neighbour n of n:

add (n,, ..., n,, n) to frontier
end while

Exploiting Search Direction

* \When we care about finding the path to a known
goal node, we can search forward, but we can often
search backward

» Given a search graph G = (N, A), known goal node
g, and set of start nodes , can construct a reverse
search problem G = (N, A"):

1. Designate g as the start node Questions:
1. When is this useful?
r — A
2. A {<n2’ nl) ‘ <n1’n2> = } 2. When is this infeasible?

3. goal'(n)y=1ifnes
(.e., If m is a start node of the original problem)

Reverse Search

Definitions:

1. Forward branch factor: Maximum number of outgoing neighlbours
Notation: b

» Time complexity of forward search: O(b™)

2. Reverse branch factor: Maximum number of incoming neighlbours
Notation: r

« Time complexity of reverse search: O(r") f

When the reverse branch factor is smaller than the forward branch factor,
reverse search IS more time-efficient.

Bidirectional Search

* |ldea: Search backward from from goal and
forward from start simultaneously

 [Ime complexity is exponential in path
length, so exploring half the path length is an
exponential Improvement

e Even though must explore half the path
length twice

 Main problems:
 Guaranteeing that the frontiers meet

* Checking that the frontiers have met

Questions:

VWhat bidirectional
combinations of search
algorithm make sense?

e Breadt
Breadt

e Depth fi

Dept

N fi

h first +

h first?

St
St

I
f?

e Breadth first +
Depth first”?

Summary

A* uses consistent heuristics optimally ("up to tie breaking")

Branch & bound combines the optimality guarantee and heuristic
efficiency of A* with the space efficiency of depth-first search

IDA* Is an iterative-deepening version of branch & bound that doesn't
require that you get the initial bound "right”

e But its time complexity can be significantly worse

Tweaking the direction of search can yield efficiency gains

