
Branch & Bound

CMPUT 261: Introduction to Artificial Intelligence

P&M §3.7-3.8

or, How I Learned to Stop Worrying and Love Depth First Search

Logistics

Assignment #1 was released last week
• Available on eClass
• Due: Thursday, February 1 at 11:59pm

Recap: Heuristics

Definition:
A heuristic function is admissible if is always less than or equal to the
actual cost of the cheapest path from to any goal node.

• i.e., is a lower bound on for any goal node

h(n)
n

h(n) cost(⟨n, …, g⟩) g

Definition:
A heuristic function is a function that returns a non-negative
estimate of the cost of the cheapest path from node to some
goal node.

• E.g., Euclidean distance instead of travelled distance

h(n)
n

Recap: A* Search
• A* search uses both path cost information and heuristic

information to select paths from the frontier

• Let

• estimates the total cost to the nearest goal node
starting from

• A* removes paths from the frontier with smallest

f(p) = cost(p) + h(p)

f(p)
p

f(p)

start actual

cost(p)
n estimated goal

h(n)

f(p)

Recap: A* Search Algorithm
Input: a graph; a set of start nodes; a function

while is not empty:
 select -minimizing path from frontier
 remove from
 if :
 return
 for each neighbour of :
 add to frontier
end while

goal

frontier := {⟨s⟩ ∣ s is a start node}
frontier

f ⟨n0, …, nk⟩
⟨n0, …, nk⟩ frontier

goal(nk)
⟨n0, …, nk⟩

n nk
⟨n0, …, nk, n⟩

i.e.,  
for all other paths

f(⟨n0, …, nk⟩) ≤ f(p)
p ∈ frontier

Recap: A* is Optimal
Theorem:
If there is a solution of finite cost, A* using heuristic function always returns an
optimal solution (in finite time), if

1. The branching factor is finite, and
2. All arc costs are greater than some , and
3. is an admissible heuristic.

h

ϵ > 0
h

Proof:

1. No suboptimal solution will be removed from the frontier whenever the frontier
contains a prefix of the optimal solution

2. The optimal solution is guaranteed to be removed from the frontier eventually

"Recap": A* Analysis
For a search graph with finite maximum branch factor and
finite maximum path length ...

1. What is the worst-case space complexity of A*?
[A:] [B:] [C:] [D: it depends]

2. What is the worst-case time complexity of A*?
[A:] [B:] [C:] [D: it depends]

b
m

O(m) O(mb) O(bm)

O(m) O(mb) O(bm)

Question: If A* has the same space and time complexity as least cost first
search, then what is its advantage?

Summary of Last Lecture

• Domain knowledge can help speed up graph search

• Domain knowledge can be expressed by a heuristic function,
which estimates the cost of a path to the goal from a node

• Admissible heuristics can be built from relaxations of the original
problem

• Simple uses of heuristics do not guarantee improved performance

• A* algorithm for use of admissible heuristics with guarantees

Lecture Outline
1. Recap & Logistics

2. Constructing Admissible Heuristics

3. Optimal Heuristic Usage

4. Branch & Bound

5. Cycle Pruning

6. Exploiting Search Direction

After this lecture, you should be able to:
• Construct an admissible heuristic for an arbitrary search problem
• Define heuristic consistency, identify whether a heuristic is consistent
• Implement cycle pruning
• Explain when cycle pruning is and is not space- and time-efficient
• Implement branch & bound and IDA* and demonstrate their operation
• Derive the space and time complexity for branch & bound and IDA*
• Predict whether forward, backward, or bidirectional search are more efficient for a search problem

Constructing
Admissible Heuristics

• Search problems try to find a cost-minimizing path, subject to
constraints encoded in the search graph

• How to construct an easier problem? Drop some constraints.

• This is called a relaxation of the original problem

• The cost of the optimal solution to the relaxation will always be an
admissible heuristic for the original problem (Why?)

• Neat trick: If you have two admissible heuristics and , then
 is admissible too! (Why?)

h1 h2
h3(n) = max{h1(n), h2(n)}

Domain for Delivery Robot

lab4

stairs

lab1 lab2

lab3

r101 r103 r105 r107 r109 r111

r113

r115

r117

r119r121r123r125r127r129r131

c�D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 1.3, Page 2

Consistent Heuristic

• That is, a heuristic never decides that things are "harder than it thought" along a given path
• Question: is consistent on the graph below?
• Question: is admissible on the graph below?

h
h

Definition:
A heuristic is consistent if, for every pair of nodes ,

.
h n, n′ ∈ N

h(n′) ≤ cost(n, n′) + h(n)

a b c z
3 2 5

2 1 5 0

Heuristic Usage of A*

I.e., there is no way to use a given consistent heuristic that is guaranteed to
find an optimal solution faster than A*, "up to tie-breaking"

Theorem:
Any path that is surely removed by A* using a consistent heuristic will also be
removed from the frontier by any other optimal graph search algorithm using .

h
h

Definition:
Let be an optimal solution.
A path is surely removed by A* if .

p*
p f(p) < f(p*)

Space Complexity of A*
• A* makes use of heuristic information to improve time complexity

• Focuses on parts of the search graph that are likely to contain solution

• Explores paths in order of -value
• Frontier might need to contain all paths of the same cost as the solution at

some point

• Using heuristic to change the order that depth-first-search puts paths go into the
frontier doesn't reliably improve its time complexity

• In general, DFS with heuristic-ordering will expand more paths than A* with
same heuristic

• Can we use a heuristic in some other way to improve DFS's time
complexity without giving up its good space complexity?

f

Branch & Bound
• The function provides a path-specific lower bound on solution cost

starting from

• Idea: Maintain a global upper bound on solution cost also
• Then prune any path whose lower bound exceeds the upper bound

• Question: Where does the upper bound come from?
• Cheapest solution found so far
• Before solutions found, specified on entry

f(p)
p

Branch & Bound Algorithm
Input: a graph; a set of start nodes; a function; heuristic ;

while is not empty:
 select the newest path from
 remove from
 if
 if :

 else:
 for each neighbour of :
 add to
end while 
return

goal h(n) bound0

frontier := {⟨s⟩ ∣ s is a start node}
bound := bound0
best := Ø

frontier
⟨n0, …, nk⟩ frontier

⟨n0, …, nk⟩ frontier
f(⟨n0, …, nk⟩) ≤ bound :

goal(nk)
bound := cost(⟨n0, …, nk⟩)
best := ⟨n0, …, nk⟩

n nk
⟨n0, …, nk, n⟩ frontier

best

Question: Why instead of here?cost f

Choosing bound0
• If is set to just above the optimal cost, branch & bound will explore no more paths

than A*

• Won't explore any paths that are more costly than the optimal solution, because

• Will eventually find the optimal solution path because

• But we don't (in general) know the cost of the optimal solution!

• One possibility: Initialize
• What problems could this have?

• Solution: iteratively increase (like with IDS)
• This algorithm is sometimes called IDA*
• Some lower-cost paths will be re-explored

bound0

p′

f(p′) > bound0

p* f(p*) < bound0

bound0 = ∞

bound0 Initialize

until solution found:

 Perform branch & bound using

 Increase

bound0

bound0

bound0

Iterative Deepening A* (IDA*)
1. What should we initialize to?

2. How much should we increase by at each step?
• One idea:

Iteratively increase bound to the lowest -value path that was pruned
• Guarantees at least one more path will be explored
• Can stop immediately after finding a solution (why?)
• Time complexity can be much worse than A*:

 instead of (why?)

• Need to increase by enough (else won't explore enough),
but not too much (else won't prune enough)

• Choosing next -limit is an active area of research
(see https://www.movingai.com/SAS/IDA/)

bound0

bound0

f

O(b2m) O(bm)
bound0

f
Initialize

until solution found:

 Perform branch & bound using

 Increase

bound0

bound0

bound0

https://www.movingai.com/SAS/IDA/

Heuristic
Depth First A* Branch &

Bound IDA*

Space
complexity O(mb) O(bm) O(mb) O(mb)

Time
Complexity O(bm) O(bm) O(bm) (depends on how

bound increases)

Heuristic
Usage Limited

Optimal
(up to tie-breaking,

for consistent h)

Optimal
(if bound low

enough)

Close to
Optimal

Optimal? No Yes
Yes

(if bound high
enough)

Yes

Cycle Pruning

• Even on finite graphs, depth-first search may not be
complete, because it can get trapped in a cycle.

• A search algorithm can prune any path that ends in a node
already on the path without missing an optimal solution
(Why?)

Questions:

1. Is depth-first search on
with cycle pruning
complete for finite
graphs?

2. What is the time
complexity for cycle
checking in depth-first
search?

3. What is the time
complexity for cycle
checking in breadth-
first search?

Cycle Pruning
Depth First Search

Input: a graph; a set of start nodes; a function

while is not empty:
 select the newest path from
 remove from
 if for all :
 if :
 return
 for each neighbour of :
 add to
end while

goal

frontier := {⟨s⟩ ∣ s is a start node}
frontier

⟨n0, …, nk⟩ frontier
⟨n0, …, nk⟩ frontier

nk ≠ nj 0 ≤ j < k
goal(nk)

⟨n0, …, nk⟩
n nk

⟨n0, …, nk, n⟩ frontier

Exploiting Search Direction
• When we care about finding the path to a known

goal node, we can search forward, but we can often
search backward

• Given a search graph , known goal node
, and set of start nodes , can construct a reverse

search problem :

1. Designate as the start node

2.

3. if
(i.e., if is a start node of the original problem)

G = (N, A)
g S

G = (N, Ar)
g

Ar = {⟨n2, n1⟩ ∣ ⟨n1, n2⟩ ∈ A}
goalr(n) = 1 n ∈ S

n

Questions:

1. When is this useful?
2. When is this infeasible?

Reverse Search
Definitions:

1. Forward branch factor: Maximum number of outgoing neighbours
Notation:

• Time complexity of forward search:

2. Reverse branch factor: Maximum number of incoming neighbours
Notation:

• Time complexity of reverse search:

When the reverse branch factor is smaller than the forward branch factor,
reverse search is more time-efficient.

b

O(bm)

r

O(rm)

Bidirectional Search
• Idea: Search backward from from goal and

forward from start simultaneously

• Time complexity is exponential in path
length, so exploring half the path length is an
exponential improvement

• Even though must explore half the path
length twice

• Main problems:
• Guaranteeing that the frontiers meet
• Checking that the frontiers have met

Questions:

What bidirectional
combinations of search
algorithm make sense?

• Breadth first +
Breadth first?

• Depth first +
Depth first?

• Breadth first +
Depth first?

Summary

• A* uses consistent heuristics optimally ("up to tie breaking")

• Branch & bound combines the optimality guarantee and heuristic
efficiency of A* with the space efficiency of depth-first search

• IDA* is an iterative-deepening version of branch & bound that doesn't
require that you get the initial bound "right"

• But its time complexity can be significantly worse

• Tweaking the direction of search can yield efficiency gains

