
Branch & Bound

CMPUT 261: Introduction to Artificial Intelligence 
 

P&M §3.7-3.8

or, How I Learned to Stop Worrying and Love Depth First Search



Logistics

Assignment #1 was released last week 
• Available on eClass 
• Due: Thursday, February 1 at 11:59pm



Recap: Heuristics

Definition: 
A heuristic function is admissible if  is always less than or equal to the 
actual cost of the cheapest path from  to any goal node. 

• i.e.,  is a lower bound on  for any goal node 

h(n)
n

h(n) cost(⟨n, …, g⟩) g

Definition: 
A heuristic function is a function  that returns a non-negative 
estimate of the cost of the cheapest path from node  to some 
goal node. 

• E.g., Euclidean distance instead of travelled distance

h(n)
n



Recap: A* Search
• A* search uses both path cost information and heuristic 

information to select paths from the frontier 

• Let  

•  estimates the total cost to the nearest goal node 
starting from  

• A* removes paths from the frontier with smallest 

f(p) = cost(p) + h(p)

f(p)
p

f(p)

start actual

cost(p)
n estimated goal

h(n)

f(p)



Recap: A* Search Algorithm
Input: a graph; a set of start nodes; a  function 

 
while  is not empty: 
    select -minimizing path  from frontier 
    remove  from  
    if : 
        return  
    for each neighbour  of : 
        add  to frontier 
end while

goal

frontier := {⟨s⟩ ∣ s is a start node}
frontier

f ⟨n0, …, nk⟩
⟨n0, …, nk⟩ frontier

goal(nk)
⟨n0, …, nk⟩

n nk
⟨n0, …, nk, n⟩

i.e.,  
for all other paths 

f(⟨n0, …, nk⟩) ≤ f(p)
p ∈ frontier



Recap: A* is Optimal
Theorem: 
If there is a solution of finite cost, A* using heuristic function  always returns an 
optimal solution (in finite time), if 

1. The branching factor is finite, and 
2. All arc costs are greater than some , and 
3.  is an admissible heuristic.

h

ϵ > 0
h

Proof: 

1. No suboptimal solution will be removed from the frontier whenever the frontier 
contains a prefix of the optimal solution  

2. The optimal solution is guaranteed to be removed from the frontier eventually



"Recap": A* Analysis
For a search graph with finite maximum branch factor  and 
finite maximum path length ... 

1. What is the worst-case space complexity of A*? 
[A: ]  [B: ]  [C: ]  [D: it depends] 

2. What is the worst-case time complexity of A*? 
[A: ]  [B: ]  [C: ]  [D: it depends]

b
m

O(m) O(mb) O(bm)

O(m) O(mb) O(bm)

Question: If A* has the same space and time complexity as least cost first 
search, then what is its advantage?



Summary of Last Lecture

• Domain knowledge can help speed up graph search 

• Domain knowledge can be expressed by a heuristic function, 
which estimates the cost of a path to the goal from a node 

• Admissible heuristics can be built from relaxations of the original 
problem 

• Simple uses of heuristics do not guarantee improved performance 

• A* algorithm for use of admissible heuristics with guarantees



Lecture Outline
1. Recap & Logistics 

2. Constructing Admissible Heuristics 

3. Optimal Heuristic Usage 

4. Branch & Bound 

5. Cycle Pruning 

6. Exploiting Search Direction

After this lecture, you should be able to: 
• Construct an admissible heuristic for an arbitrary search problem  
• Define heuristic consistency, identify whether a heuristic is consistent 
• Implement cycle pruning 
• Explain when cycle pruning is and is not space- and time-efficient 
• Implement branch & bound and IDA* and demonstrate their operation 
• Derive the space and time complexity for branch & bound and IDA* 
• Predict whether forward, backward, or bidirectional search are more efficient for a search problem 



Constructing 
Admissible Heuristics

• Search problems try to find a cost-minimizing path, subject to 
constraints encoded in the search graph 

• How to construct an easier problem?  Drop some constraints. 

• This is called a relaxation of the original problem 

• The cost of the optimal solution to the relaxation will always be an 
admissible heuristic for the original problem (Why?) 

• Neat trick: If you have two admissible heuristics  and , then 
 is admissible too!  (Why?) 

h1 h2
h3(n) = max{h1(n), h2(n)}

Domain for Delivery Robot

lab4

stairs

lab1 lab2

lab3

r101 r103 r105 r107 r109 r111

r113

r115

r117

r119r121r123r125r127r129r131
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Consistent Heuristic

• That is, a heuristic never decides that things are "harder than it thought" along a given path 
• Question: is  consistent on the graph below? 
• Question: is  admissible on the graph below?

h
h

Definition: 
A heuristic  is consistent if, for every pair of nodes , 

.
h n, n′ ∈ N

h(n′ ) ≤ cost(n, n′ ) + h(n)

a b c z
3 2 5

2 1 5 0



Heuristic Usage of A*

I.e., there is no way to use a given consistent heuristic that is guaranteed to 
find an optimal solution faster than A*, "up to tie-breaking"

Theorem: 
Any path that is surely removed by A* using a consistent heuristic  will also be 
removed from the frontier by any other optimal graph search algorithm using .

h
h

Definition: 
Let  be an optimal solution.   
A path  is surely removed by A* if .

p*
p f(p) < f(p*)



Space Complexity of A*
• A* makes use of heuristic information to improve time complexity 

• Focuses on parts of the search graph that are likely to contain solution 

• Explores paths in order of -value 
• Frontier might need to contain all paths of the same cost as the solution at 

some point 

• Using heuristic to change the order that depth-first-search puts paths go into the 
frontier doesn't reliably improve its time complexity 

• In general, DFS with heuristic-ordering will expand more paths than A* with 
same heuristic 

• Can we use a heuristic in some other way to improve DFS's time 
complexity without giving up its good space complexity? 

f



Branch & Bound
• The  function provides a path-specific lower bound on solution cost 

starting from  

• Idea: Maintain a global upper bound on solution cost also 
• Then prune any path whose lower bound exceeds the upper bound 

• Question: Where does the upper bound come from? 
• Cheapest solution found so far 
• Before solutions found, specified on entry

f(p)
p



Branch & Bound Algorithm
Input: a graph; a set of start nodes; a  function; heuristic ;  

 
 

 
while  is not empty: 
    select the newest path  from  
    remove  from  
    if  
        if : 
             
             
        else: 
            for each neighbour  of : 
                add  to  
end while 
return 

goal h(n) bound0

frontier := {⟨s⟩ ∣ s is a start node}
bound := bound0
best := Ø

frontier
⟨n0, …, nk⟩ frontier

⟨n0, …, nk⟩ frontier
f(⟨n0, …, nk⟩) ≤ bound :

goal(nk)
bound := cost(⟨n0, …, nk⟩)
best := ⟨n0, …, nk⟩

n nk
⟨n0, …, nk, n⟩ frontier

best

Question: Why  instead of  here?cost f



Choosing bound0
• If  is set to just above the optimal cost, branch & bound will explore no more paths 

than A* 

• Won't explore any paths  that are more costly than the optimal solution, because 
 

• Will eventually find the optimal solution path  because  

• But we don't (in general) know the cost of the optimal solution! 

• One possibility: Initialize  
• What problems could this have? 

• Solution: iteratively increase  (like with IDS) 
• This algorithm is sometimes called IDA* 
• Some lower-cost paths will be re-explored

bound0

p′ 

f(p′ ) > bound0

p* f(p*) < bound0

bound0 = ∞

bound0 Initialize  

until solution found: 

    Perform branch & bound using  

    Increase 

bound0

bound0

bound0



Iterative Deepening A* (IDA*)
1. What should we initialize  to? 

2. How much should we increase  by at each step? 
• One idea:  

Iteratively increase bound to the lowest -value path that was pruned 
• Guarantees at least one more path will be explored 
• Can stop immediately after finding a solution (why?) 
• Time complexity can be much worse than A*: 

 instead of  (why?) 

• Need to increase  by enough (else won't explore enough), 
but not too much (else won't prune enough) 

• Choosing next -limit is an active area of research  
(see https://www.movingai.com/SAS/IDA/) 

bound0

bound0

f

O(b2m) O(bm)
bound0

f
Initialize  

until solution found: 

    Perform branch & bound using  

    Increase 

bound0

bound0

bound0

https://www.movingai.com/SAS/IDA/


Heuristic 
Depth First A*  Branch & 

Bound IDA*

Space  
complexity O(mb) O(bm) O(mb) O(mb)

Time 
Complexity O(bm) O(bm) O(bm) (depends on how 

bound increases)

Heuristic 
Usage Limited

Optimal 
(up to tie-breaking,


for consistent h)

Optimal 
(if bound low 

enough)

Close to 
Optimal

Optimal? No Yes
Yes


(if bound high 
enough)

Yes



Cycle Pruning

• Even on finite graphs, depth-first search may not be 
complete, because it can get trapped in a cycle. 

• A search algorithm can prune any path that ends in a node 
already on the path without missing an optimal solution 
(Why?)

Questions: 

1. Is depth-first search on 
with cycle pruning 
complete for finite 
graphs? 

2. What is the time 
complexity for cycle 
checking in depth-first 
search? 

3. What is the time 
complexity for cycle 
checking in breadth-
first search?



Cycle Pruning 
Depth First Search

Input: a graph; a set of start nodes; a  function 

 
while  is not empty: 
    select the newest path  from  
    remove  from  
    if  for all : 
        if : 
            return  
        for each neighbour  of : 
            add  to  
end while

goal

frontier := {⟨s⟩ ∣ s is a start node}
frontier

⟨n0, …, nk⟩ frontier
⟨n0, …, nk⟩ frontier

nk ≠ nj 0 ≤ j < k
goal(nk)

⟨n0, …, nk⟩
n nk

⟨n0, …, nk, n⟩ frontier



Exploiting Search Direction
• When we care about finding the path to a known 

goal node, we can search forward, but we can often 
search backward 

• Given a search graph , known goal node 
, and set of start nodes , can construct a reverse 

search problem : 

1. Designate  as the start node 

2.  

3.  if  
(i.e., if  is a start node of the original problem)

G = (N, A)
g S

G = (N, Ar)
g

Ar = {⟨n2, n1⟩ ∣ ⟨n1, n2⟩ ∈ A}
goalr(n) = 1 n ∈ S

n

Questions: 

1. When is this useful? 
2. When is this infeasible?



Reverse Search
Definitions: 

1. Forward branch factor: Maximum number of outgoing neighbours 
Notation:  

• Time complexity of forward search:  

2. Reverse branch factor: Maximum number of incoming neighbours 
Notation:  

• Time complexity of reverse search:  

When the reverse branch factor is smaller than the forward branch factor, 
reverse search is more time-efficient.

b

O(bm)

r

O(rm)



Bidirectional Search
• Idea: Search backward from from goal and 

forward from start simultaneously 

• Time complexity is exponential in path 
length, so exploring half the path length is an 
exponential improvement 

• Even though must explore half the path 
length twice 

• Main problems: 
• Guaranteeing that the frontiers meet 
• Checking that the frontiers have met

Questions: 

What bidirectional 
combinations of search 
algorithm make sense? 

• Breadth first + 
Breadth first? 

• Depth first +  
Depth first? 

• Breadth first +  
Depth first?



Summary

• A* uses consistent heuristics optimally ("up to tie breaking") 

• Branch & bound combines the optimality guarantee and heuristic 
efficiency of A* with the space efficiency of depth-first search 

• IDA* is an iterative-deepening version of branch & bound that doesn't 
require that you get the initial bound "right" 

• But its time complexity can be significantly worse 

• Tweaking the direction of search can yield efficiency gains 


