Heuristic Search

CMPUT 261: Introduction to Artificial Intelligence

P&M §3.6

Logistics

- Labs began this week \bullet
 - Including a quick Python refresher
- **Assignment #1** released later today •
 - Download from (and submit on) eClass
 - Due: Thursday, February 1 at 11:59pm •

Lecture Outline

- Logistics & Recap
- Heuristics 2.
- 3. A* Search
- 4. Constructing admissible heuristics

After this lecture, you should be able to:

- Implement and demonstrate the operation of A^{*} search on a graph
- Identify whether a heuristic is admissible \bullet
- Construct an admissible heuristic for an arbitrary search problem
- Identify whether one heuristic dominates another
- Construct a dominating heuristic for a set of given heuristics
- Explain when a heuristic will allow more efficient exploration \bullet

Recap: Uninformed Search

Different search strategies have different properties and behaviour

- **Depth first search** is space-efficient but not always complete or time-efficient
- **Breadth first search** is complete and always finds the shortest path to a goal, but is not space-efficient
- **Iterative deepening search** can provide the benefits of both, at the expense of some time-efficiency
- All three strategies must potentially explore every path, and are not guaranteed to return an optimal solution
- Least cost first search is optimal (under some conditions), but still must potentially explore every path

Definition:

An algorithm is **optimal** if it is guaranteed to return an optimal (i.e., **minimal-cost**) solution **first**.

- \bullet **not** optimal
- \bullet arc costs)

Recap: Optimality

Depth-first search, breadth-first search, iterative deepening search are

Least-cost first search is optimal (if there is a positive lower bound on

Least Cost First Search

Input: a graph; a set of start nodes; a goal function frontier := $\{\langle s \rangle \mid s \text{ is a start node}\}$ $|\text{i.e., } cost(\langle n_0, \dots, n_k \rangle) \le cost(p)|$ for all other paths $p \in frontier$ while *frontier* is not empty: select the cheapest path $\langle n_0, \ldots, n_k \rangle$ from frontier **remove** $\langle n_0, ..., n_k \rangle$ from *frontier* if $goal(n_k)$: return $\langle n_0, \ldots, n_k \rangle$ **Question:** for each neighbour n of n_k : What data structure for the add $\langle n_0, \ldots, n_k, n \rangle$ to frontier frontier implements this search end while strategy?



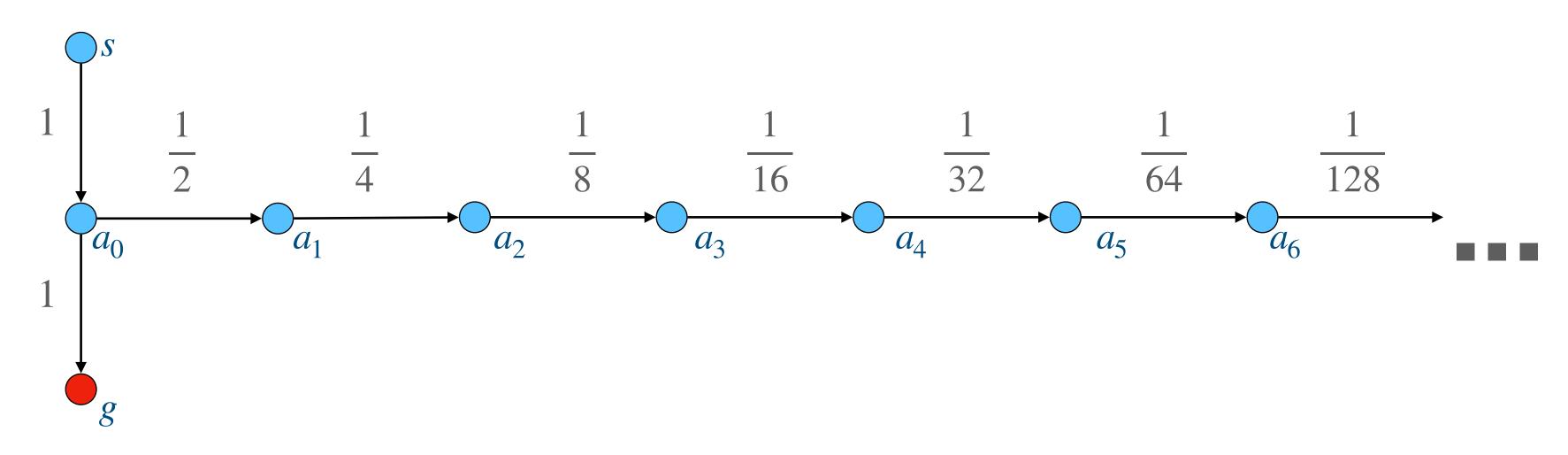
Least Cost First Search Analysis

- $cost(\langle n_1, n_2 \rangle) > \epsilon$ for every arc $\langle n_1, n_2 \rangle$:
 - 1. Suppose $\langle n_0, \ldots, n_k \rangle$ is the optimal solution
 - 2. Suppose that *p* is any non-optimal solution So, $cost(p) > cost(\langle n_0, ..., n_k \rangle)$
 - 3. For every $0 \le \ell \le k$, $cost(\langle n_0, ..., n_\ell \rangle) < cost(p)$
 - 4. So p will never be removed from the frontier before $\langle n_0, \ldots, n_k \rangle$
- What is the worst-case **space complexity** of Least Cost First Search? [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]
- When does Least Cost First Search have to explore every path of the graph?

Theorem: Least Cost First Search is complete and optimal if there is $\epsilon > 0$ with

$$_{k}\rangle)$$

- Consider the infinite search graph below
- Every cost is larger than 0
- But there's no single positive value that is smaller than all costs \bullet
- But then $c(\langle s, a_0, g \rangle) > c(\langle s, a_0, g \rangle)$
 - The solution $\langle s, a_0, g \rangle$ will **never be removed** from the frontier



Why $c(n_1, n_2) > \epsilon > 0$ instead of just $c(n_1, n_2) > 0$?

Can make arc costs arbitrarily small by following the right-hand path far enough

$$(a_1, \ldots, a_n)$$
 for **all** values of *n*

Recap: Search Strategies

Depth First	

	Depth First	Breadth First	Iterative Deepening	Least Cost First
Selection	Newest	Oldest	Newest, multiple	Cheapest
Data structure	Stack	Queue	Stack, counter	Priority queue
Complete?	Finite graphs only	Complete	Complete	Complete if $cost(p) > \varepsilon$
Space complexity	O(mb)	O(b ^m)	O(mb)	O(b ^m)
Time complexity	O(b ^m)	O(b ^m)	O(mb ^m) **	O(b ^m)
Optimal?	No	No	No	Optimal

- Domain-specific knowledge can help speed up search by identifying promising directions to explore
- which estimates the cost to get from a node to a goal node
- The search algorithms in this lecture take account of this heuristic knowledge when **selecting** a path from the frontier

Domain Knowledge

We will encode this knowledge in a function called a heuristic function

Heuristic Function

Definition:

estimate of the cost of the **cheapest** path from node *n* to **some** goal node.

- For paths: $h(\langle n_0, \ldots, n_k \rangle) = h(n_k)$
- Uses only readily-available information about a node (i.e., easy to compute)
- Problem-specific

A heuristic function is a function h(n) that returns a non-negative

Admissible Heuristic

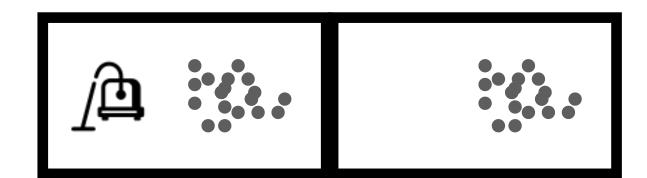
Definition:

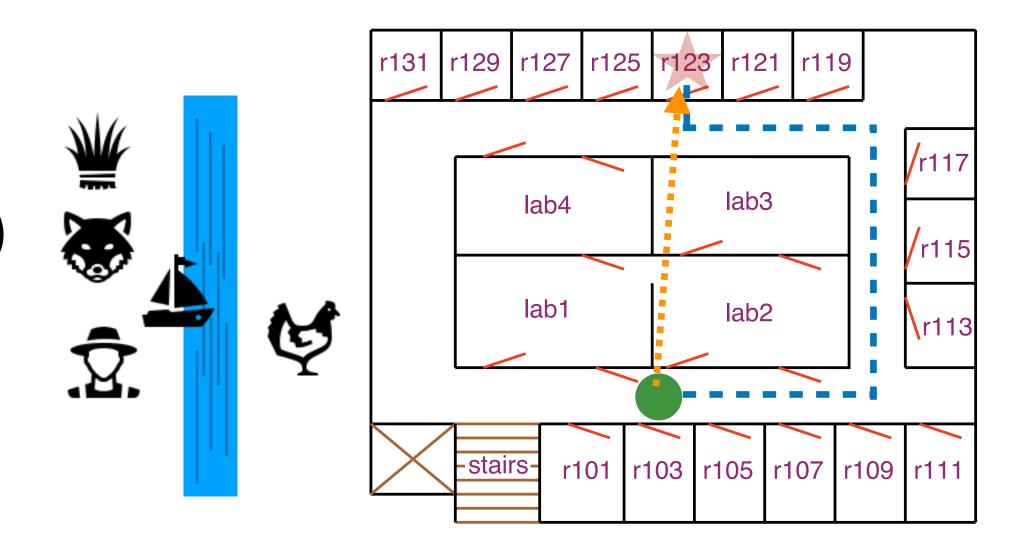
A heuristic function is **admissible** if h(n) is **always less than or equal** to the actual cost of the cheapest path from *n* to any goal node. • i.e., h(n) is a lower bound on $cost(\langle n, ..., g \rangle)$ for any goal node g

Example Heuristics

- Number of dirty rooms for VacuumBot (ignores the need to move between rooms)
- Euclidean distance for DeliveryBot (ignores that it can't go through walls)
- Manhattan distance for DeliveryBot (also ignores that it can't go through walls)
- Farmer problem?

Question: Which of these heuristics are **admissible**? Why?



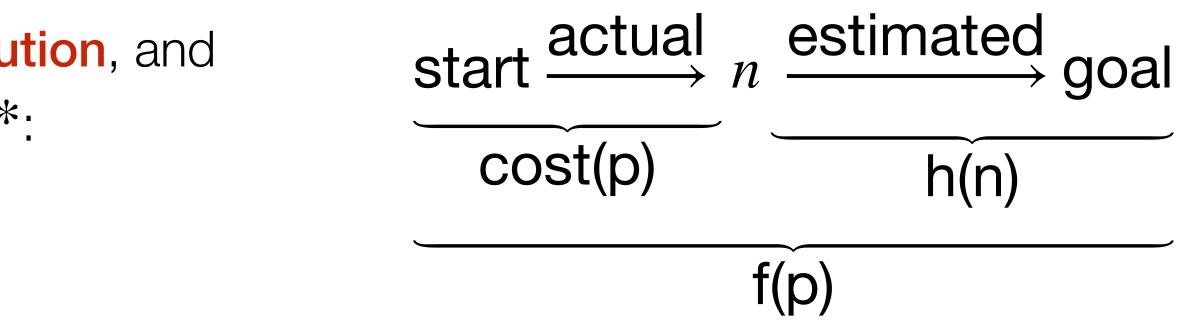


Simple Uses of Heuristics

- Heuristic depth first search: Add neighbours to the frontier in decreasing order of their heuristic values, then run depth first search as usual
 - Will explore most promising successors first, but
 - Still explores all paths through a successor before considering other successors
 - Not complete, not optimal
- Greedy best first search: Select path from the frontier with the lowest heuristic value
 - Not guaranteed to work any better than breadth first search (why?)

A* Search

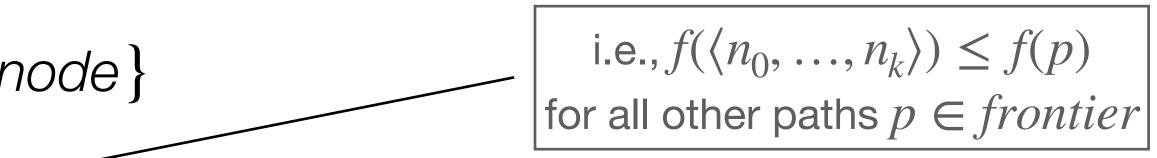
- A* search uses **both** path cost information and heuristic information to select paths from the frontier
- Let $f(p) = \operatorname{cost}(p) + h(p)$
 - f(p) estimates the total cost to the nearest goal node starting from p
- A* removes paths from the frontier with smallest f(p)
- When *h* is admissible, $p^* = \langle s, ..., n, ..., g \rangle$ is a solution, and $p' = \langle s, ..., n \rangle$ is a prefix of p^* :
 - $f(p') \le cost(p^*)$ (why?)



Input: a graph; a set of start nodes; a goal function

frontier := $\{\langle s \rangle \mid s \text{ is a start node}\}$ while *frontier* is not empty: select *f*-minimizing path $\langle n_0, \ldots, n_k \rangle$ from *frontier* **remove** $\langle n_0, ..., n_k \rangle$ from *frontier* if $goal(n_k)$: return $\langle n_0, \ldots, n_k \rangle$ for each neighbour n of n_k : add $\langle n_0, \ldots, n_k, n \rangle$ to frontier end while

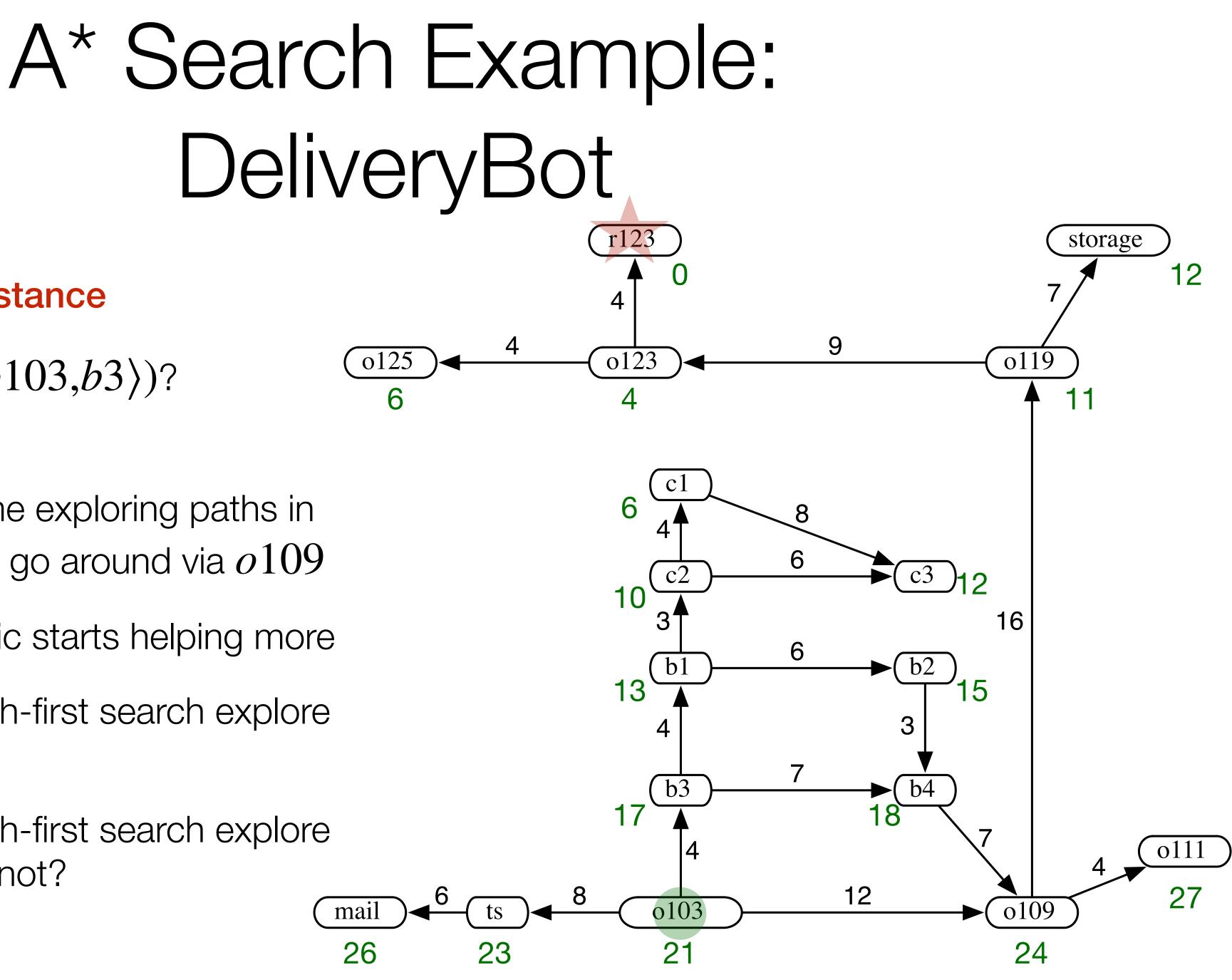
A* Search Algorithm



Question:

What data structure for the frontier implements this search strategy?

- Heuristic: Euclidean distance
- **Question:** What is $f(\langle o103, b3 \rangle)$? f((o103,o109))?
- A* will spend a bit of time exploring paths in the labs before trying to go around via o109
- At that point the heuristic starts helping more
- **Question:** Does breadth-first search explore paths in the lab too?
- **Question:** Does breadth-first search explore any paths that A* does not?



A* Optimality

Theorem:

If there is a solution of finite cost, A^{*} using heuristic function h always returns an **optimal** solution (in **finite time**), if

- The branching factor is **finite**, and
- 2. All arc costs are greater than some $\epsilon > 0$, and
- 3. h is an **admissible** heuristic.

Proof:

- No suboptimal solution will be removed from the frontier whenever the frontier contains a prefix of the optimal solution
- 2. The optimal solution is guaranteed to be removed from the frontier eventually

A* Optimality Proofs: A Lexicon

An admissible heuristic: h(n) $f(\langle n_0, \dots, n_k \rangle) = \operatorname{cost}(\langle n_0, \dots, n_k \rangle) + h(n_k)$ A start node: S A goal node: z (i.e., goal(z) = 1) The optimal solution: $p^* = \langle s, ..., a, b, ..., z \rangle$ A prefix of the optimal solution: $p' = \langle s, ..., a \rangle$ A suboptimal solution: $g = \langle s, q, ..., z \rangle$

A* Optimality

Proof part 1: Optimality (no g is removed before p^*)

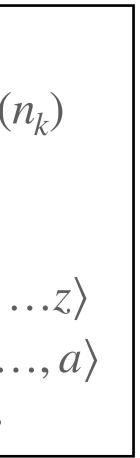
- 1. $f(g) = \operatorname{cost}(g)$ and $f(p^*) = \operatorname{cost}(p^*)$
 - (i) $f(\langle n_0, ..., n_k \rangle) = cost(\langle n_0, ..., n_k \rangle) + h(n_k)$, and h(z) = 0

2. f(p') < f(g)

- (i) $f(\langle s, ..., a \rangle) = cost(\langle s, ..., a \rangle) + h(a)$
- (iii) $h(a) \leq \operatorname{cost}(\langle a, b, \dots, z \rangle)$
- (iv) $f(p') \le f(p^*) < f(g)$

An admissible heuristic: h(n) $f(\langle n_0, \dots, n_k \rangle) = \operatorname{cost}(\langle n_0, \dots, n_k \rangle) + h(n_k)$ A start node: s A goal node: z (i.e., goal(z) = 1) The optimal solution: $p^* = \langle s, ..., a, b, ..., z \rangle$ A **prefix** of the optimal solution: $p' = \langle s, ..., a \rangle$ A suboptimal solution: $g = \langle s, q, ..., z \rangle$

(ii) $f(\langle s, ..., a, b, ..., z \rangle) = cost(\langle s, ..., a, b, ..., z \rangle) + h(z) = cost(\langle s, ..., a \rangle) + cost(a, b, ..., z \rangle)$



A* Completeness

Proof part 2: A* is **complete**

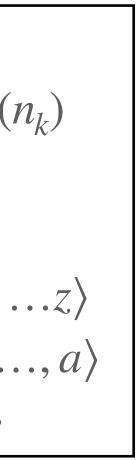
- Every path that is removed from the frontier is only replaced by more-costly paths (**why?**)
- Since individual arc costs are larger than ϵ , every path in the frontier will eventually have cost larger than k, for any finite k

• Every path with at least — arcs will have cost larger than k

 ϵ

- So every path in the frontier will eventually have cost larger than the cost of the optimal solution
- So the optimal solution will eventually be removed from the frontier
- Question: Why are we talking about costs and not f-values?

An admissible heuristic: h(n) $f(\langle n_0, \dots, n_k \rangle) = \operatorname{cost}(\langle n_0, \dots, n_k \rangle) + h(n_k)$ A start node: *s* A goal node: z (i.e., goal(z) = 1) The optimal solution: $p^* = \langle s, ..., a, b, ..., z \rangle$ A **prefix** of the optimal solution: $p' = \langle s, ..., a \rangle$ A suboptimal solution: $g = \langle s, q, ..., z \rangle$



Comparing Heuristics

- Suppose that we have two **admissible** heuristics, h_1 and h_2
- Suppose that for every node n, $h_2(n) \ge h_1(n)$

Question: Which heuristic is better for search (with A*)?

Dominating Heuristics

Definition:

A heuristic h_2 dominates a heuristic h_1 if

- 1. $\forall n : h_2(n) \ge h_1(n)$, and
- 2. $\exists n : h_2(n) > h_1(n)$.

Theorem:

If h_2 dominates h_1 , and both heuristics are admissible, then A^{*} using h_2 will never remove more paths from the frontier than A^{*} using h_1 .

• i.e., better heuristics remove weakly fewer paths

Question:

Which admissible heuristic dominates **all other** admissible heuristics?

For a search graph with *finite* maximum branch factor b and *finite* maximum path length *m...*

- What is the worst-case **space complexity** of A*? [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]
- 2. What is the worst-case time complexity of A*? [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]

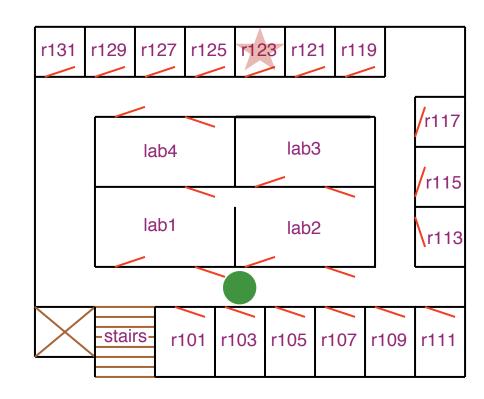
search, then what is its advantage?

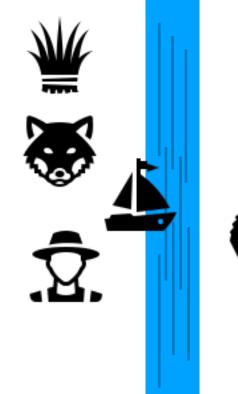
A* Analysis

Question: If A* has the same space and time complexity as least cost first

Constructing Admissible Heuristics

- Search problems try to find a cost-minimizing path, subject to constraints encoded in the search graph
- How to construct an easier problem? Drop some constraints.
 - This is called a **relaxation** of the original problem
- The cost of the optimal solution to the relaxation will always be an admissible heuristic for the original problem (Why?)
- Neat trick: If you have two admissible heuristics h_1 and h_2 , then $h_3(n) = \max\{h_1(n), h_2(n)\}$ is admissible too! (Why?)





Summary

- Domain knowledge can help speed up graph search
- Domain knowledge can be expressed by a heuristic function, which estimates the cost of a path to the goal from a node
- Admissible heuristics can be built from relaxations of the original problem
- Simple uses of heuristics do not guarantee improved performance
- A* algorithm for use of admissible heuristics with guarantees