
Uninformed Search

CMPUT 261: Introduction to Artificial Intelligence 
 

P&M §3.5



Logistics

• Labs began this week!

• How'd they go?


• Assignment #1 released this week (Thursday)



Recap: Graph Search

• Many AI tasks can be represented as search problems

• A single generic graph search algorithm can then solve 

them all!


• A search problem consists of states, actions, start states, a 
successor function, a goal function, optionally a cost 
function


• Solution quality can be represented by labelling arcs of the 
search graph with costs



Recap: Generic Graph 
Search Algorithm

Problem Solving by Graph Searching

ends of 
paths on 
frontier

explored nodes

unexplored nodes

start
node
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Input: a graph; a set of start nodes; a  function


 
while  is not empty: 
    select a path  from  
    remove  from  
    if : 
        return  
    for each neighbour  of : 
        add  to  
end while

goal

frontier := {⟨s⟩ ∣ s is a start node}
frontier

⟨n0, …, nk⟩ frontier
⟨n0, …, nk⟩ frontier

goal(nk)
⟨n0, …, nk⟩

n nk
⟨n0, …, nk, n⟩ frontier



DeliveryBot with CostsState-Space Graph for the Delivery Robot
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Example Problem for Delivery Robot

The robot wants to get from outside room 103 to the inside of
room 123.
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Markov Assumption
• Informally:  

How the environment arrived at the current configuration "doesn't matter"


• Question: What does "doesn't matter" mean formally?


• Edge costs, available actions, neighbourhoods, all depend only on starting state 
(and maybe action)


• NOT on "sequence of edges that led to the current state"


• Mathematically, this means that each of these is a function of the state not the 
history


• E.g., defining costs as  instead of  guarantees 
that the representation satisfies the Markov assumption (with respect to costs)

cost(s, z) cost(⟨n0, n1, n2, s⟩, z)



Markov Assumption: GasBot
The Markov assumption is crucial to the graph search algorithm

cost(pump, gas):  
    5 if went through sensor

  10 otherwise

Getting to the pump: 
from the left goes through sensor

from the right does not

Question: Does this representation representation satisfy the Markov 
assumption? Why or why not?

S G
Left Beep

pump
Right



Markov Assumption: GasBot
The Markov assumption is crucial to the graph search algorithm

S

sensor

no

sensor

pump G

Left

Right

Drive

Drive

Beep

55

Questions 

1. Does this representation satisfy the Markov assumption?  Why or why not?

2. How else could we have fixed up the previous example?



Summary
• Many AI tasks can be represented as search problems


• A single generic graph search algorithm can then solve them all!


• A search problem consists of states, actions, start states, a successor 
function, a goal function, optionally a cost function


• Solution quality can be represented by labelling arcs of the search graph 
with costs


• The Markov assumption is critical for graph search to work



Lecture Outline
1. Logistics & Recap


2. Properties of Algorithms and Search Graphs


3. Depth First and Breadth First Search


4. Iterative Deepening Search


5. Least Cost First Search

After this lecture, you should be able to:

• Demonstrate the operation of depth-first, breadth-first, iterative-deepening, and 

least-cost-first search on a graph

• Implement depth-first, breadth-first, iterative deepening, and least-cost first search

• Derive the time and space requirements for instantiations of the  

generic graph search algorithm



Algorithm Properties
What properties of algorithms do we want to analyze?


1. A search algorithm is complete if it is guaranteed to find a solution within 
a finite amount of time whenever a solution exists.


2. The time complexity of a search algorithm is a measure of how much 
time the algorithm will take to run, in the worst case.


• In this section we measure by total number of paths added to the 
frontier.


3. The space complexity of a search algorithm is a measure of how much 
space the algorithm will use, in the worst case. 


• We measure by maximum number of paths in the frontier at one time.



Search Graph Properties
What properties of the search graph do algorithmic properties depend on?


• Forward branch factor: Maximum number of neighbours 
Notation: 


• Maximum path length:  (Could be infinite!)  
Notation: 


• Presence of cycles


• Length of the shortest path to a goal node

b

m



Depth First Search
Input: a graph; a set of start nodes; a  function


 
while  is not empty: 
    select the newest path  from  
    remove  from  
    if : 
        return  
    for each neighbour  of : 
        add  to  
end while

goal

frontier := {⟨s⟩ ∣ s is a start node}
frontier

⟨n0, …, nk⟩ frontier
⟨n0, …, nk⟩ frontier

goal(nk)
⟨n0, …, nk⟩

n nk
⟨n0, …, nk, n⟩ frontier

Question:


What data structure for the 
frontier implements this search 
strategy?



Depth First Search
Depth-first search always removes one of the longest paths from the frontier.


Example: 
Frontier:  




What happens? 

1. Remove ; test  for goal


2. Add  to front of frontier (assume remove-from-front)


3. New frontier: 


4.  is selected only after all paths starting with  have been explored


Question: When is  selected?

[p1, p2, p3, p4]
successors(p1) = {n1, n2, n3}

p1 p1

{⟨p1, n1⟩, ⟨p1, n2⟩, ⟨p1, n3⟩}

[⟨p1, n1⟩, ⟨p1, n2⟩, ⟨p1, n3⟩, p2, p3, p4]

p2 p1

⟨p1, n3⟩



Depth First Search Analysis

For a search graph with maximum branch factor  and 
maximum path length ...


1. What is the worst-case time complexity of depth-first search?


• [A: ]  [B: ]  [C: ]  [D: it depends]


2. When is depth-first search complete?


3. What is the worst-case space complexity of depth-first search?


• [A: ]  [B: ]  [C: ]  [D: it depends]

b
m

O(m) O(mb) O(bm)

O(m) O(mb) O(bm)



When to Use 
Depth First Search

• When is depth-first search appropriate?

• Memory is restricted

• All solutions at same approximate depth (why?)

• Order in which neighbours are searched can be tuned to 

find solution quickly


• When is depth-first search inappropriate?

• Infinite paths exist

• When there are likely to be shallow solutions


• Especially if some other solutions are very deep



Breadth First Search

Question:


What data structure for the 
frontier implements this search 
strategy?

Input: a graph; a set of start nodes; a  function


 
while  is not empty: 
    select the oldest path  from  
    remove  from  
    if : 
        return  
    for each neighbour  of : 
        add  to  
end while

goal

frontier := {⟨s⟩ ∣ s is a start node}
frontier

⟨n0, …, nk⟩ frontier
⟨n0, …, nk⟩ frontier

goal(nk)
⟨n0, …, nk⟩

n nk
⟨n0, …, nk, n⟩ frontier



Breadth First Search
Breadth-first search always removes one of the shortest paths from the frontier.


Example: 
Frontier:  




What happens? 

1. Remove ; test  for goal


2. Add  to end of frontier (assume remove-from-front)


3. New frontier: 


4.  is selected next

[p1, p2, p3, p4]
successors(p1) = {n1, n2, n3}

p1 p1

{⟨p1, n1⟩, ⟨p1,n2⟩, ⟨p1,n3⟩}

[p2, p3, p4, ⟨p1, n1⟩, ⟨p1,n2⟩, ⟨p1,n3⟩]

p2



Breadth First Search Analysis

For a search graph with maximum branch factor  and 
maximum path length ...


1. What is the worst-case time complexity?


• [A: ]  [B: ]  [C: ]  [D: it depends]


2. When is breadth-first search complete?


3. What is the worst-case space complexity?


• [A: ]  [B: ]  [C: ]  [D: it depends]

b
m

O(m) O(mb) O(bm)

O(m) O(mb) O(bm)



When to Use

Breadth First Search

• When is breadth-first search appropriate?

• When there might be infinite paths 

• When there are likely to be shallow solutions, or

• When we want to guarantee a solution with fewest arcs


• When is breadth-first search inappropriate?

• Large branching factor

• All solutions located deep in the graph

• Memory is restricted



Comparing DFS vs. BFS

• Can we get the space benefits of depth-first search without giving up completeness?


• Run depth-first search to a maximum depth


• then try again with a larger maximum


• until either goal found or graph completely searched

Depth-first Breadth-first

Complete? Only for finite 
graphs Complete

Space  
complexity O(mb) O(bm)

Time 
complexity O(bm) O(bm)



Iterative Deepening Search

Input: a graph; a set of start nodes; a  function


for max_depth from 1 to : 
    Perform depth-first search to a maximum depth max_depth 
end for 

goal

∞



Iterative Deepening Search
Input: a graph; a set of start nodes; a  function


   for max_depth from 1 to : 
        more_nodes := False 

              
        while  is not empty: 
            select the newest path  from  
            remove  from  
            if : 
                return  
            if k < max_depth: 
                for each neighbour  of : 
                    add  to frontier 
            else if  has neighbours: 
                more_nodes := True 
        end-while 

        if more_nodes = False: 
            return None

goal

∞

frontier := {⟨s⟩ ∣ s is a start node}
frontier

⟨n0, …, nk⟩ frontier
⟨n0, …, nk⟩ frontier

goal(nk)
⟨n0, …, nk⟩

n nk
⟨n0, …, nk, n⟩

nk



Iterative Deepening Search 
Analysis

For a search graph with maximum branch factor  and 
maximum path length ...


1. When is iterative deepening search complete?


2. What is the worst-case space complexity?


• [A: ]  [B: ]  [C: ]  [D: it depends]

b
m

O(m) O(mb) O(bm)



Time Complexity of

Iterated Deepening Search

Claim: Iterated deepening search has time complexity no worse than  
(i.e.,  times worse than breadth first search)

O(mbm)
m

• Breadth-first search requires  time, because in the worst case it 
visits every path once


• Iterative deepening search has worse time complexity, because it visits 
every path at least once, and many paths multiple times.


• But how much worse?

O(bm)

1. Paths of length 1 are visited  times; paths of length 2 are visited  
times; ... ; paths of length  are visited 1 time.


2. In other words, every path is visited  times or fewer


Note: This is a very loose bound.  See the text for a much tighter bound.

m m − 1
m

m



When to Use 
Iterative Deepening Search

• When is iterative deepening search appropriate?


• Memory is limited, and


• Both deep and shallow solutions may exist


• or we prefer shallow ones


• Search graph may contain infinite paths



Optimality

Question: Which of the three algorithms presented so far is optimal?  Why?

Definition: 
An algorithm is optimal if it is guaranteed to return an optimal  
(i.e., minimal-cost) solution first.



Least Cost First Search

• None of the algorithms described so far is guided by arc costs


• BFS and IDS are implicitly guided by path length, which can be the 
same for uniform-cost arcs


• They return a path to a goal node as soon as they happen to blunder 
across one, but it may not be the optimal one


• Least Cost First Search is a search strategy that is guided by arc costs 



Least Cost First Search
Input: a graph; a set of start nodes; a  function


 
while  is not empty: 
    select the cheapest path  from frontier 
    remove  from  
    if : 
        return  
    for each neighbour  of : 
        add  to frontier 
end while

goal

frontier := {⟨s⟩ ∣ s is a start node}
frontier

⟨n0, …, nk⟩
⟨n0, …, nk⟩ frontier

goal(nk)
⟨n0, …, nk⟩

n nk
⟨n0, …, nk, n⟩

Question:


What data structure for the 
frontier implements this search 
strategy?

i.e.,  
for all other paths 

cost(⟨n0, …, nk⟩) ≤ cost(p)
p ∈ frontier



Least Cost First Search Analysis
• Theorem: Least Cost First Search is complete and optimal if there is  with 

 for every arc :


1. Suppose  is the optimal solution


2. Suppose that  is any non-optimal solution 
So, 


3. For every , 


4. So  will never be removed from the frontier before 


• What is the worst-case space complexity of Least Cost First Search? 
[A: ]  [B: ]  [C: ]  [D: it depends]


• When does Least Cost First Search have to explore every path of the graph?

ϵ > 0
cost(⟨n1, n2⟩) > ϵ ⟨n1, n2⟩

⟨n0, …, nk⟩

p
cost(p) > cost (⟨n0, …, nk⟩)

0 ≤ ℓ ≤ k cost(⟨n0, …, nℓ⟩) < cost(p)

p ⟨n0, …, nk⟩

O(m) O(mb) O(bm)



Why 

instead of just ?

c(n1, n2) > ϵ > 0
c(n1, n2) > 0

...
1

1

1
2

1
4

1
8

1
16

1
32

1
64

1
128

• Consider the infinite search graph below

• Every cost is larger than 0

• But there's no single positive value that is smaller than all costs


• Can make arc costs arbitrarily small by following the right-hand path far enough


• But then  for all values of 


• The solution  will never be removed from the frontier 

c (⟨s, a0, g⟩) > c (⟨s, a0, a1, …, an⟩) n

⟨s, a0, g⟩
s

a0

g

a1 a2 a3 a4 a5 a6



Summary
Different search strategies have different properties and behaviour


• Depth first search is space-efficient but not always complete or time-efficient


• Breadth first search is complete and always finds the shortest path to a goal, 
but is not space-efficient


• Iterative deepening search can provide the benefits of both, at the expense 
of some time-efficiency


• All three strategies must potentially explore every path, and are not 
guaranteed to return an optimal solution


• Least cost first search is optimal (under some conditions), but still must 
potentially explore every path


