
Monte Carlo
Prediction & Control

CMPUT 261: Introduction to Artificial Intelligence

S&B §5.0-5.5, 5.7

Lecture Outline
1. Recap & Logistics

2. Monte Carlo Prediction

3. Estimating Action Values

4. Monte Carlo Control

5. Importance Sampling

6. Off-Policy Monte Carlo Control

After this lecture, you should be able to:
• explain how Monte Carlo estimation for state values works
• trace an execution of first-visit Monte Carlo Prediction
• explain the difference between prediction and control
• define on-policy vs. off-policy learning
• define a behaviour policy
• define exploring starts
• explain what problem exploring starts solve
• define an epsilon-soft policy
• explain what problem epsilon-soft policies solve

Logistics

• Assignment #4 is due Dec 6 at 11:59pm

• Late submissions for 20% deduction until Dec 8 at 11:59pm

• SPOT (former USRI) surveys are now available:
https://p20.courseval.net/etw/ets/et.asp?nxappid=UA2&nxmid=start

https://p20.courseval.net/etw/ets/et.asp?nxappid=UA2&nxmid=start

4.1. Policy Evaluation (Prediction) 75

vk+1. There are several di↵erent kinds of expected updates, depending on whether a
state (as here) or a state–action pair is being updated, and depending on the precise way
the estimated values of the successor states are combined. All the updates done in DP
algorithms are called expected updates because they are based on an expectation over all
possible next states rather than on a sample next state. The nature of an update can
be expressed in an equation, as above, or in a backup diagram like those introduced in
Chapter 3. For example, the backup diagram corresponding to the expected update used
in iterative policy evaluation is shown on page 59.

To write a sequential computer program to implement iterative policy evaluation as
given by (4.5) you would have to use two arrays, one for the old values, vk(s), and one
for the new values, vk+1(s). With two arrays, the new values can be computed one by
one from the old values without the old values being changed. Of course it is easier to
use one array and update the values “in place,” that is, with each new value immediately
overwriting the old one. Then, depending on the order in which the states are updated,
sometimes new values are used instead of old ones on the right-hand side of (4.5). This
in-place algorithm also converges to v⇡; in fact, it usually converges faster than the
two-array version, as you might expect, because it uses new data as soon as they are
available. We think of the updates as being done in a sweep through the state space. For
the in-place algorithm, the order in which states have their values updated during the
sweep has a significant influence on the rate of convergence. We usually have the in-place
version in mind when we think of DP algorithms.

A complete in-place version of iterative policy evaluation is shown in pseudocode in
the box below. Note how it handles termination. Formally, iterative policy evaluation
converges only in the limit, but in practice it must be halted short of this. The pseudocode
tests the quantity maxs2S |vk+1(s)�vk(s)| after each sweep and stops when it is su�ciently
small.

Iterative Policy Evaluation, for estimating V ⇡ v⇡

Input ⇡, the policy to be evaluated
Algorithm parameter: a small threshold ✓ > 0 determining accuracy of estimation
Initialize V (s), for all s 2 S

+, arbitrarily except that V (terminal) = 0

Loop:
� 0
Loop for each s 2 S:

v V (s)
V (s)

P
a
⇡(a|s)

P
s0,r p(s0, r |s, a)

⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓

Recap: In-Place Iterative Policy Evaluation

• These are expected updates: Based on a weighted average (expectation)
of all possible next states

Recap: Policy Improvement Theorem

Theorem:
Let and be any pair of deterministic policies.

If ,

then .

If you are never worse off at any state by following for one step and then
following forever after, then following forever has a higher expected value
at every state.

π π′

qπ(s, π′ (s)) ≥ vπ(s) ∀s ∈ 𝒮

vπ′
(s) ≥ vπ(s) ∀s ∈ 𝒮

π′

π π′

Recap: Policy Iteration

80 Chapter 4: Dynamic Programming

s 2 S, illustrating policy improvement. Although in this case the new policy ⇡0 happens
to be optimal, in general only an improvement is guaranteed.

4.3 Policy Iteration

Once a policy, ⇡, has been improved using v⇡ to yield a better policy, ⇡0, we can then
compute v⇡0 and improve it again to yield an even better ⇡00. We can thus obtain a
sequence of monotonically improving policies and value functions:

⇡0

E�! v⇡0

I�! ⇡1

E�! v⇡1

I�! ⇡2

E�! · · · I�! ⇡⇤
E�! v⇤,

where
E�! denotes a policy evaluation and

I�! denotes a policy improvement . Each
policy is guaranteed to be a strict improvement over the previous one (unless it is already
optimal). Because a finite MDP has only a finite number of policies, this process must
converge to an optimal policy and optimal value function in a finite number of iterations.

This way of finding an optimal policy is called policy iteration. A complete algorithm is
given in the box below. Note that each policy evaluation, itself an iterative computation,
is started with the value function for the previous policy. This typically results in a great
increase in the speed of convergence of policy evaluation (presumably because the value
function changes little from one policy to the next).

Policy Iteration (using iterative policy evaluation) for estimating ⇡ ⇡ ⇡⇤

1. Initialization
V (s) 2 R and ⇡(s) 2 A(s) arbitrarily for all s 2 S

2. Policy Evaluation
Loop:

� 0
Loop for each s 2 S:

v V (s)
V (s)

P
s0,r p(s0, r |s, ⇡(s))

⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓ (a small positive number determining the accuracy of estimation)

3. Policy Improvement
policy-stable true
For each s 2 S:

old-action ⇡(s)
⇡(s) argmax

a

P
s0,r p(s0, r |s, a)

⇥
r + �V (s0)

⇤

If old-action 6= ⇡(s), then policy-stable false
If policy-stable, then stop and return V ⇡ v⇤ and ⇡ ⇡ ⇡⇤; else go to 2

80 Chapter 4: Dynamic Programming

s 2 S, illustrating policy improvement. Although in this case the new policy ⇡0 happens
to be optimal, in general only an improvement is guaranteed.

4.3 Policy Iteration

Once a policy, ⇡, has been improved using v⇡ to yield a better policy, ⇡0, we can then
compute v⇡0 and improve it again to yield an even better ⇡00. We can thus obtain a
sequence of monotonically improving policies and value functions:

⇡0

E�! v⇡0

I�! ⇡1

E�! v⇡1

I�! ⇡2

E�! · · · I�! ⇡⇤
E�! v⇤,

where
E�! denotes a policy evaluation and

I�! denotes a policy improvement . Each
policy is guaranteed to be a strict improvement over the previous one (unless it is already
optimal). Because a finite MDP has only a finite number of policies, this process must
converge to an optimal policy and optimal value function in a finite number of iterations.

This way of finding an optimal policy is called policy iteration. A complete algorithm is
given in the box below. Note that each policy evaluation, itself an iterative computation,
is started with the value function for the previous policy. This typically results in a great
increase in the speed of convergence of policy evaluation (presumably because the value
function changes little from one policy to the next).

Policy Iteration (using iterative policy evaluation) for estimating ⇡ ⇡ ⇡⇤

1. Initialization
V (s) 2 R and ⇡(s) 2 A(s) arbitrarily for all s 2 S

2. Policy Evaluation
Loop:

� 0
Loop for each s 2 S:

v V (s)
V (s)

P
s0,r p(s0, r |s, ⇡(s))

⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓ (a small positive number determining the accuracy of estimation)

3. Policy Improvement
policy-stable true
For each s 2 S:

old-action ⇡(s)
⇡(s) argmax

a

P
s0,r p(s0, r |s, a)

⇥
r + �V (s0)

⇤

If old-action 6= ⇡(s), then policy-stable false
If policy-stable, then stop and return V ⇡ v⇤ and ⇡ ⇡ ⇡⇤; else go to 2

Recap: Value Iteration
Value iteration interleaves the estimation and improvement steps:

vk+1(s) ≐ max

a
𝔼 [Rt+1 + γvk(St+1) |St = s, At = a]

= max
a ∑

s′ ,r

p(s′ , r |s, a)[r + γvk(s′)]

4.4. Value Iteration 83

case is when policy evaluation is stopped after just one sweep (one update of each state).
This algorithm is called value iteration. It can be written as a particularly simple update
operation that combines the policy improvement and truncated policy evaluation steps:

vk+1(s)
.
= max

a

E[Rt+1 + �vk(St+1) | St =s, At =a]

= max
a

X

s0,r

p(s0, r |s, a)
h
r + �vk(s0)

i
, (4.10)

for all s 2 S. For arbitrary v0, the sequence {vk} can be shown to converge to v⇤ under
the same conditions that guarantee the existence of v⇤.

Another way of understanding value iteration is by reference to the Bellman optimality
equation (4.1). Note that value iteration is obtained simply by turning the Bellman
optimality equation into an update rule. Also note how the value iteration update is
identical to the policy evaluation update (4.5) except that it requires the maximum to be
taken over all actions. Another way of seeing this close relationship is to compare the
backup diagrams for these algorithms on page 59 (policy evaluation) and on the left of
Figure 3.4 (value iteration). These two are the natural backup operations for computing
v⇡ and v⇤.

Finally, let us consider how value iteration terminates. Like policy evaluation, value
iteration formally requires an infinite number of iterations to converge exactly to v⇤. In
practice, we stop once the value function changes by only a small amount in a sweep.
The box below shows a complete algorithm with this kind of termination condition.

Value Iteration, for estimating ⇡ ⇡ ⇡⇤

Algorithm parameter: a small threshold ✓ > 0 determining accuracy of estimation
Initialize V (s), for all s 2 S

+, arbitrarily except that V (terminal) = 0

Loop:
| � 0
| Loop for each s 2 S:
| v V (s)
| V (s) maxa

P
s0,r p(s0, r |s, a)

⇥
r + �V (s0)

⇤

| � max(�, |v � V (s)|)
until � < ✓

Output a deterministic policy, ⇡ ⇡ ⇡⇤, such that
⇡(s) = argmax

a

P
s0,r p(s0, r |s, a)

⇥
r + �V (s0)

⇤

Value iteration e↵ectively combines, in each of its sweeps, one sweep of policy evaluation
and one sweep of policy improvement. Faster convergence is often achieved by interposing
multiple policy evaluation sweeps between each policy improvement sweep. In general,
the entire class of truncated policy iteration algorithms can be thought of as sequences
of sweeps, some of which use policy evaluation updates and some of which use value
iteration updates. Because the max operation in (4.10) is the only di↵erence between

Example: Blackjack

• Player gets two cards, dealer gets 1

• Player can hit (get a new card) as many times as they like, or stick
(stop hitting)

• After the player is done, the dealer hits / sticks according to a fixed rule

• Whoever has the most points (sum of card values) wins

• But, if you have more than 21 points, you lose immediately ("bust")

Simulating Blackjack

• Given a policy for the player, it is very easy to simulate a game of Blackjack

• Question: Is it easy to compute the full dynamics?

• Question: Is it easy to run iterative policy evaluation?

Experience vs. Expectation
• In order to compute expected updates, we need to know the exact

probability of every possible transition

• Often we don't have access to the full probability distribution, but we do
have access to samples of experience

1. Actual experience: We want to learn based on interactions with a real
environment, without knowing its dynamics

2. Simulated experience: We can simulate the dynamics, but we don't
have an explicit representation of transition probabilities, or there are
too many states

Monte Carlo Estimation

• Instead of estimating expectations by a weighted sum over
all possibilities, estimate expectation by averaging over a sample drawn
from the distribution:

 𝔼[X] = ∑
x

f(x)x ≈
1
n

n

∑
i=1

xi where xi ∼ f

Monte Carlo Prediction

• Use a large sample of episodes generated by a policy to estimate the
state-values for each state

• We will consider only episodic tasks for now

• Question: What is the return for state in a given episode?

• We can estimate the expected return by averaging
the returns for that state in every episode containing a visit to

π
vπ(s) s

Gt St = s

vπ(s) = 𝔼[Gt ∣ St = s]
s

First-visit Monte Carlo Prediction

92 Chapter 5: Monte Carlo Methods

To handle the nonstationarity, we adapt the idea of general policy iteration (GPI)
developed in Chapter 4 for DP. Whereas there we computed value functions from knowledge
of the MDP, here we learn value functions from sample returns with the MDP. The value
functions and corresponding policies still interact to attain optimality in essentially the
same way (GPI). As in the DP chapter, first we consider the prediction problem (the
computation of v⇡ and q⇡ for a fixed arbitrary policy ⇡) then policy improvement, and,
finally, the control problem and its solution by GPI. Each of these ideas taken from DP
is extended to the Monte Carlo case in which only sample experience is available.

5.1 Monte Carlo Prediction

We begin by considering Monte Carlo methods for learning the state-value function for a
given policy. Recall that the value of a state is the expected return—expected cumulative
future discounted reward—starting from that state. An obvious way to estimate it from
experience, then, is simply to average the returns observed after visits to that state. As
more returns are observed, the average should converge to the expected value. This idea
underlies all Monte Carlo methods.

In particular, suppose we wish to estimate v⇡(s), the value of a state s under policy ⇡,
given a set of episodes obtained by following ⇡ and passing through s. Each occurrence
of state s in an episode is called a visit to s. Of course, s may be visited multiple times
in the same episode; let us call the first time it is visited in an episode the first visit
to s. The first-visit MC method estimates v⇡(s) as the average of the returns following
first visits to s, whereas the every-visit MC method averages the returns following all
visits to s. These two Monte Carlo (MC) methods are very similar but have slightly
di↵erent theoretical properties. First-visit MC has been most widely studied, dating back
to the 1940s, and is the one we focus on in this chapter. Every-visit MC extends more
naturally to function approximation and eligibility traces, as discussed in Chapters 9 and
12. First-visit MC is shown in procedural form in the box. Every-visit MC would be the
same except without the check for St having occurred earlier in the episode.

First-visit MC prediction, for estimating V ⇡ v⇡

Input: a policy ⇡ to be evaluated

Initialize:
V (s) 2 R, arbitrarily, for all s 2 S

Returns(s) an empty list, for all s 2 S

Loop forever (for each episode):
Generate an episode following ⇡: S0, A0, R1, S1, A1, R2, . . . , ST�1, AT�1, RT

G 0
Loop for each step of episode, t = T�1, T�2, . . . , 0:

G �G + Rt+1

Unless St appears in S0, S1, . . . , St�1:
Append G to Returns(St)
V (St) average(Returns(St))

Monte Carlo vs.
Dynamic Programming

• Iterative policy evaluation uses the estimates of the
next state's value to update the value of this state

• Only needs to compute a single transition to update
a state's estimate

• Monte Carlo estimate of each state's value is
independent from estimates of other states' values

• Needs the entire episode to compute an update

• Can focus on evaluating a subset of states if desired

5.1. Monte Carlo Prediction 95

at the terminal state, as shown to the right. Whereas the DP diagram (page 59)
shows all possible transitions, the Monte Carlo diagram shows only those sampled
on the one episode. Whereas the DP diagram includes only one-step transitions,
the Monte Carlo diagram goes all the way to the end of the episode. These
di↵erences in the diagrams accurately reflect the fundamental di↵erences between
the algorithms.

An important fact about Monte Carlo methods is that the estimates for each
state are independent. The estimate for one state does not build upon the estimate
of any other state, as is the case in DP. In other words, Monte Carlo methods do
not bootstrap as we defined it in the previous chapter.

In particular, note that the computational expense of estimating the value of
a single state is independent of the number of states. This can make Monte Carlo
methods particularly attractive when one requires the value of only one or a subset
of states. One can generate many sample episodes starting from the states of interest,
averaging returns from only these states, ignoring all others. This is a third advantage
Monte Carlo methods can have over DP methods (after the ability to learn from actual
experience and from simulated experience).

A bubble on a wire loop.

From Hersh and Griego (1969). Reproduced with

permission. c�1969 Scientific American, a divi-

sion of Nature America, Inc. All rights reserved.

Example 5.2: Soap Bubble Suppose a wire
frame forming a closed loop is dunked in soapy
water to form a soap surface or bubble conform-
ing at its edges to the wire frame. If the geom-
etry of the wire frame is irregular but known,
how can you compute the shape of the surface?
The shape has the property that the total force
on each point exerted by neighboring points is
zero (or else the shape would change). This
means that the surface’s height at any point is
the average of its heights at points in a small
circle around that point. In addition, the sur-
face must meet at its boundaries with the wire
frame. The usual approach to problems of this
kind is to put a grid over the area covered by
the surface and solve for its height at the grid points by an iterative computation. Grid
points at the boundary are forced to the wire frame, and all others are adjusted toward
the average of the heights of their four nearest neighbors. This process then iterates, much
like DP’s iterative policy evaluation, and ultimately converges to a close approximation
to the desired surface.

This is similar to the kind of problem for which Monte Carlo methods were originally
designed. Instead of the iterative computation described above, imagine standing on the
surface and taking a random walk, stepping randomly from grid point to neighboring
grid point, with equal probability, until you reach the boundary. It turns out that the
expected value of the height at the boundary is a close approximation to the height of
the desired surface at the starting point (in fact, it is exactly the value computed by the
iterative method described above). Thus, one can closely approximate the height of the

3.5. Policies and Value Functions 59

These kinds of methods are presented in Chapter 5. Of course, if there are very many
states, then it may not be practical to keep separate averages for each state individually.
Instead, the agent would have to maintain v⇡ and q⇡ as parameterized functions (with
fewer parameters than states) and adjust the parameters to better match the observed
returns. This can also produce accurate estimates, although much depends on the nature
of the parameterized function approximator. These possibilities are discussed in Part II
of the book.

A fundamental property of value functions used throughout reinforcement learning and
dynamic programming is that they satisfy recursive relationships similar to that which
we have already established for the return (3.9). For any policy ⇡ and any state s, the
following consistency condition holds between the value of s and the value of its possible
successor states:

v⇡(s)
.
= E⇡[Gt | St =s]

= E⇡[Rt+1 + �Gt+1 | St =s] (by (3.9))

=
X

a

⇡(a|s)
X

s0

X

r

p(s0, r |s, a)
h
r + �E⇡[Gt+1|St+1 =s0]

i

=
X

a

⇡(a|s)
X

s0,r

p(s0, r |s, a)
h
r + �v⇡(s0)

i
, for all s 2 S, (3.14)

where it is implicit that the actions, a, are taken from the set A(s), that the next states,
s0, are taken from the set S (or from S

+ in the case of an episodic problem), and that
the rewards, r, are taken from the set R. Note also how in the last equation we have
merged the two sums, one over all the values of s0 and the other over all the values of r,
into one sum over all the possible values of both. We use this kind of merged sum often
to simplify formulas. Note how the final expression can be read easily as an expected
value. It is really a sum over all values of the three variables, a, s0, and r. For each triple,
we compute its probability, ⇡(a|s)p(s0, r |s, a), weight the quantity in brackets by that
probability, then sum over all possibilities to get an expected value.

⇡

s

s0

⇡

rp

a

Backup diagram for v⇡

Equation (3.14) is the Bellman equation for v⇡. It expresses
a relationship between the value of a state and the values of
its successor states. Think of looking ahead from a state to its
possible successor states, as suggested by the diagram to the
right. Each open circle represents a state and each solid circle
represents a state–action pair. Starting from state s, the root
node at the top, the agent could take any of some set of actions—
three are shown in the diagram—based on its policy ⇡. From
each of these, the environment could respond with one of several next states, s0 (two are
shown in the figure), along with a reward, r, depending on its dynamics given by the
function p. The Bellman equation (3.14) averages over all the possibilities, weighting each
by its probability of occurring. It states that the value of the start state must equal the
(discounted) value of the expected next state, plus the reward expected along the way.

The value function v⇡ is the unique solution to its Bellman equation. We show in
subsequent chapters how this Bellman equation forms the basis of a number of ways to

Control vs. Prediction

• Prediction: estimate the value of states and/or actions given some
fixed policy

• Control: estimate an optimal policy

π

Estimating Action Values
• When we know the dynamics , an estimate of state values is

sufficient to determine a good policy:

• Choose the action that gives the best combination of reward and
next-state value:

• If we don't know the dynamics, state values are not enough

• To estimate a good policy, we need an explicit estimate of
action values

p(s′ , r ∣ s, a)

̂a* = arg max
a∈𝒜 ∑

s′ ,r

p(s′ , r ∣ s, a)[r + γ ̂v(s′)]

Exploring Starts
• We can just run first-visit Monte Carlo and approximate the returns to each

state-action pair

• Question: What do we do about state-action pairs that are never visited?

• If the current policy never selects an action from a state , then
Monte Carlo can't estimate its value

• Exploring starts assumption:

• Every episode starts at a random state-action pair

• Every pair has a positive probability of being selected for a start

π a s

S0, A0

Monte Carlo Control
Monte Carlo control can be used for policy iteration:

5.3. Monte Carlo Control 97

to consider only policies that are stochastic with a nonzero probability of selecting all
actions in each state. We discuss two important variants of this approach in later sections.
For now, we retain the assumption of exploring starts and complete the presentation of a
full Monte Carlo control method.

Exercise 5.3 What is the backup diagram for Monte Carlo estimation of q⇡? ⇤

5.3 Monte Carlo Control

We are now ready to consider how Monte Carlo estimation can be used in control, that
is, to approximate optimal policies. The overall idea is to proceed according to the same
pattern as in the DP chapter, that is, according to the idea of generalized policy iteration

evaluation

improvement

⇡ Q
⇡ � greedy(Q)

Q � q⇡

(GPI). In GPI one maintains both an approximate policy and
an approximate value function. The value function is repeatedly
altered to more closely approximate the value function for the
current policy, and the policy is repeatedly improved with respect
to the current value function, as suggested by the diagram to
the right. These two kinds of changes work against each other to
some extent, as each creates a moving target for the other, but
together they cause both policy and value function to approach
optimality.

To begin, let us consider a Monte Carlo version of classical policy iteration. In
this method, we perform alternating complete steps of policy evaluation and policy
improvement, beginning with an arbitrary policy ⇡0 and ending with the optimal policy
and optimal action-value function:

⇡0

E�! q⇡0

I�! ⇡1

E�! q⇡1

I�! ⇡2

E�! · · · I�! ⇡⇤
E�! q⇤,

where
E�! denotes a complete policy evaluation and

I�! denotes a complete policy
improvement. Policy evaluation is done exactly as described in the preceding section.
Many episodes are experienced, with the approximate action-value function approaching
the true function asymptotically. For the moment, let us assume that we do indeed
observe an infinite number of episodes and that, in addition, the episodes are generated
with exploring starts. Under these assumptions, the Monte Carlo methods will compute
each q⇡k

exactly, for arbitrary ⇡k.
Policy improvement is done by making the policy greedy with respect to the current

value function. In this case we have an action-value function, and therefore no model is
needed to construct the greedy policy. For any action-value function q, the corresponding
greedy policy is the one that, for each s 2 S, deterministically chooses an action with
maximal action-value:

⇡(s)
.
= arg max

a

q(s, a). (5.1)

Policy improvement then can be done by constructing each ⇡k+1 as the greedy policy
with respect to q⇡k

. The policy improvement theorem (Section 4.2) then applies to ⇡k

5.3. Monte Carlo Control 97

to consider only policies that are stochastic with a nonzero probability of selecting all
actions in each state. We discuss two important variants of this approach in later sections.
For now, we retain the assumption of exploring starts and complete the presentation of a
full Monte Carlo control method.

Exercise 5.3 What is the backup diagram for Monte Carlo estimation of q⇡? ⇤

5.3 Monte Carlo Control

We are now ready to consider how Monte Carlo estimation can be used in control, that
is, to approximate optimal policies. The overall idea is to proceed according to the same
pattern as in the DP chapter, that is, according to the idea of generalized policy iteration

evaluation

improvement

⇡ Q
⇡ � greedy(Q)

Q � q⇡

(GPI). In GPI one maintains both an approximate policy and
an approximate value function. The value function is repeatedly
altered to more closely approximate the value function for the
current policy, and the policy is repeatedly improved with respect
to the current value function, as suggested by the diagram to
the right. These two kinds of changes work against each other to
some extent, as each creates a moving target for the other, but
together they cause both policy and value function to approach
optimality.

To begin, let us consider a Monte Carlo version of classical policy iteration. In
this method, we perform alternating complete steps of policy evaluation and policy
improvement, beginning with an arbitrary policy ⇡0 and ending with the optimal policy
and optimal action-value function:

⇡0

E�! q⇡0

I�! ⇡1

E�! q⇡1

I�! ⇡2

E�! · · · I�! ⇡⇤
E�! q⇤,

where
E�! denotes a complete policy evaluation and

I�! denotes a complete policy
improvement. Policy evaluation is done exactly as described in the preceding section.
Many episodes are experienced, with the approximate action-value function approaching
the true function asymptotically. For the moment, let us assume that we do indeed
observe an infinite number of episodes and that, in addition, the episodes are generated
with exploring starts. Under these assumptions, the Monte Carlo methods will compute
each q⇡k

exactly, for arbitrary ⇡k.
Policy improvement is done by making the policy greedy with respect to the current

value function. In this case we have an action-value function, and therefore no model is
needed to construct the greedy policy. For any action-value function q, the corresponding
greedy policy is the one that, for each s 2 S, deterministically chooses an action with
maximal action-value:

⇡(s)
.
= arg max

a

q(s, a). (5.1)

Policy improvement then can be done by constructing each ⇡k+1 as the greedy policy
with respect to q⇡k

. The policy improvement theorem (Section 4.2) then applies to ⇡k

Monte Carlo Control with Exploring Starts

Question: What unlikely assumptions does this rely upon?

5.3. Monte Carlo Control 99

Monte Carlo ES (Exploring Starts), for estimating ⇡ ⇡ ⇡⇤

Initialize:
⇡(s) 2 A(s) (arbitrarily), for all s 2 S

Q(s, a) 2 R (arbitrarily), for all s 2 S, a 2 A(s)
Returns(s, a) empty list, for all s 2 S, a 2 A(s)

Loop forever (for each episode):
Choose S0 2 S, A0 2 A(S0) randomly such that all pairs have probability > 0
Generate an episode from S0, A0, following ⇡: S0, A0, R1, . . . , ST�1, AT�1, RT

G 0
Loop for each step of episode, t = T�1, T�2, . . . , 0:

G �G + Rt+1

Unless the pair St, At appears in S0, A0, S1, A1 . . . , St�1, At�1:
Append G to Returns(St, At)
Q(St, At) average(Returns(St, At))
⇡(St) argmax

a
Q(St, a)

Exercise 5.4 The pseudocode for Monte Carlo ES is ine�cient because, for each state–
action pair, it maintains a list of all returns and repeatedly calculates their mean. It would
be more e�cient to use techniques similar to those explained in Section 2.4 to maintain
just the mean and a count (for each state–action pair) and update them incrementally.
Describe how the pseudocode would be altered to achieve this. ⇤

In Monte Carlo ES, all the returns for each state–action pair are accumulated and
averaged, irrespective of what policy was in force when they were observed. It is easy
to see that Monte Carlo ES cannot converge to any suboptimal policy. If it did, then
the value function would eventually converge to the value function for that policy, and
that in turn would cause the policy to change. Stability is achieved only when both
the policy and the value function are optimal. Convergence to this optimal fixed point
seems inevitable as the changes to the action-value function decrease over time, but has
not yet been formally proved. In our opinion, this is one of the most fundamental open
theoretical questions in reinforcement learning (for a partial solution, see Tsitsiklis, 2002).

Example 5.3: Solving Blackjack It is straightforward to apply Monte Carlo ES to
blackjack. Because the episodes are all simulated games, it is easy to arrange for exploring
starts that include all possibilities. In this case one simply picks the dealer’s cards, the
player’s sum, and whether or not the player has a usable ace, all at random with equal
probability. As the initial policy we use the policy evaluated in the previous blackjack
example, that which sticks only on 20 or 21. The initial action-value function can be zero
for all state–action pairs. Figure 5.2 shows the optimal policy for blackjack found by
Monte Carlo ES. This policy is the same as the “basic” strategy of Thorp (1966) with the
sole exception of the leftmost notch in the policy for a usable ace, which is not present
in Thorp’s strategy. We are uncertain of the reason for this discrepancy, but confident
that what is shown here is indeed the optimal policy for the version of blackjack we have
described.

𝜀-Soft Policies
• The exploring starts assumption requires that we see every state-action pair

with positive probability

• Even if never chooses from state

• Another approach: Simply force to (sometimes) choose !

• An -soft policy is one for which

• Example: -greedy policy

π a s

π a

ϵ π(a ∣ s) ≥
ϵ

|𝒜(s) |
∀s, a

ϵ

π(a |s) =
ϵ

|𝒜 |
if a ∉ arg maxa Q(s, a),

(1 − ϵ) + ϵ
|𝒜 |

otherwise.

5.4. Monte Carlo Control without Exploring Starts 101

that are closest to greedy.
The overall idea of on-policy Monte Carlo control is still that of GPI. As in Monte

Carlo ES, we use first-visit MC methods to estimate the action-value function for the
current policy. Without the assumption of exploring starts, however, we cannot simply
improve the policy by making it greedy with respect to the current value function, because
that would prevent further exploration of nongreedy actions. Fortunately, GPI does not
require that the policy be taken all the way to a greedy policy, only that it be moved
toward a greedy policy. In our on-policy method we will move it only to an "-greedy
policy. For any "-soft policy, ⇡, any "-greedy policy with respect to q⇡ is guaranteed to
be better than or equal to ⇡. The complete algorithm is given in the box below.

On-policy first-visit MC control (for "-soft policies), estimates ⇡ ⇡ ⇡⇤

Algorithm parameter: small " > 0

Initialize:
⇡ an arbitrary "-soft policy
Q(s, a) 2 R (arbitrarily), for all s 2 S, a 2 A(s)
Returns(s, a) empty list, for all s 2 S, a 2 A(s)

Repeat forever (for each episode):
Generate an episode following ⇡: S0, A0, R1, . . . , ST�1, AT�1, RT

G 0
Loop for each step of episode, t = T�1, T�2, . . . , 0:

G �G + Rt+1

Unless the pair St, At appears in S0, A0, S1, A1 . . . , St�1, At�1:
Append G to Returns(St, At)
Q(St, At) average(Returns(St, At))
A⇤ argmax

a
Q(St, a) (with ties broken arbitrarily)

For all a 2 A(St):

⇡(a|St)
⇢

1� " + "/|A(St)| if a = A⇤

"/|A(St)| if a 6= A⇤

That any "-greedy policy with respect to q⇡ is an improvement over any "-soft policy
⇡ is assured by the policy improvement theorem. Let ⇡0 be the "-greedy policy. The
conditions of the policy improvement theorem apply because for any s 2 S:

q⇡(s, ⇡0(s)) =
X

a

⇡0(a|s)q⇡(s, a)

=
"

|A(s)|
X

a

q⇡(s, a) + (1� ") max
a

q⇡(s, a) (5.2)

� "

|A(s)|
X

a

q⇡(s, a) + (1� ")
X

a

⇡(a|s)� "

|A(s)|

1� "
q⇡(s, a)

(the sum is a weighted average with nonnegative weights summing to 1, and as such it

Monte Carlo Control w/out Exploring Starts

Question:

Will this procedure
converge to the
optimal policy ?

Why or why not?

π*

5.4. Monte Carlo Control without Exploring Starts 101

that are closest to greedy.
The overall idea of on-policy Monte Carlo control is still that of GPI. As in Monte

Carlo ES, we use first-visit MC methods to estimate the action-value function for the
current policy. Without the assumption of exploring starts, however, we cannot simply
improve the policy by making it greedy with respect to the current value function, because
that would prevent further exploration of nongreedy actions. Fortunately, GPI does not
require that the policy be taken all the way to a greedy policy, only that it be moved
toward a greedy policy. In our on-policy method we will move it only to an "-greedy
policy. For any "-soft policy, ⇡, any "-greedy policy with respect to q⇡ is guaranteed to
be better than or equal to ⇡. The complete algorithm is given in the box below.

On-policy first-visit MC control (for "-soft policies), estimates ⇡ ⇡ ⇡⇤

Algorithm parameter: small " > 0

Initialize:
⇡ an arbitrary "-soft policy
Q(s, a) 2 R (arbitrarily), for all s 2 S, a 2 A(s)
Returns(s, a) empty list, for all s 2 S, a 2 A(s)

Repeat forever (for each episode):
Generate an episode following ⇡: S0, A0, R1, . . . , ST�1, AT�1, RT

G 0
Loop for each step of episode, t = T�1, T�2, . . . , 0:

G �G + Rt+1

Unless the pair St, At appears in S0, A0, S1, A1 . . . , St�1, At�1:
Append G to Returns(St, At)
Q(St, At) average(Returns(St, At))
A⇤ argmax

a
Q(St, a) (with ties broken arbitrarily)

For all a 2 A(St):

⇡(a|St)
⇢

1� " + "/|A(St)| if a = A⇤

"/|A(St)| if a 6= A⇤

That any "-greedy policy with respect to q⇡ is an improvement over any "-soft policy
⇡ is assured by the policy improvement theorem. Let ⇡0 be the "-greedy policy. The
conditions of the policy improvement theorem apply because for any s 2 S:

q⇡(s, ⇡0(s)) =
X

a

⇡0(a|s)q⇡(s, a)

=
"

|A(s)|
X

a

q⇡(s, a) + (1� ") max
a

q⇡(s, a) (5.2)

� "

|A(s)|
X

a

q⇡(s, a) + (1� ")
X

a

⇡(a|s)� "

|A(s)|

1� "
q⇡(s, a)

(the sum is a weighted average with nonnegative weights summing to 1, and as such it

Monte Carlo Control w/out Exploring Starts

Importance Sampling

• Monte Carlo sampling: use samples from the target distribution to
estimate expectations

• Importance sampling: Use samples from proposal distribution to
estimate expectations of target distribution by reweighting samples

𝔼[X] = ∑
x

f(x)x = ∑
x

g(x)
g(x)

f(x)x = ∑
x

g(x)
f(x)
g(x)

x ≈
1
n ∑

xi∼g

f(xi)
g(xi)

xi

Importance sampling

ratio

Off-Policy Prediction via
Importance Sampling

Definition:
Off-policy learning means using data generated by a behaviour policy to
learn about a distinct target policy. Proposal 

distributionTarget

distribution

Off-Policy Monte Carlo Prediction
• Generate episodes using behaviour policy

• Take weighted average of returns to state over all the episodes containing
a visit to to estimate

• Weighed by importance sampling ratio of trajectory starting from
 until the end of the episode:

b

s
s vπ(s)

St = s

ρt:T−1 ≐
Pr[At, St+1, …, ST |St, At:T−1 ∼ π]
Pr[At, St+1, …, ST |St, At:T−1 ∼ b]

Importance Sampling Ratios for Trajectories

• Probability of a trajectory from :

• Importance sampling ratio for a trajectory from :

At, St+1, At+1, …, ST St

Pr[At, St+1, …, ST |St, At:T−1 ∼ π] =
π(At |St)p(St+1 |St, At)π(At+1 |St+1)…p(ST |ST−1, AT−1)

At, St+1, At+1, …, ST St

ρt:T−1 ≐
∏T−1

k=t π(Ak |Sk)p(Sk+1 |Sk, Ak)

∏T−1
k=t b(Ak |Sk)p(Sk+1 |Sk, Ak)

=
∏T−1

k=t π(Ak |Sk)

∏T−1
k=t b(Ak |Sk)

= 1

Ordinary vs.Weighted
Importance Sampling

• Ordinary importance sampling:

• Weighted importance sampling:

V(s) ≐
1
n

n

∑
i=1

ρt(s,i):T(i)−1Gi,t

V(s) ≐
∑n

i=1 ρt(s,i):T(i)−1Gi,t

∑n
i=1 ρt(s,i):T(i)−1

Example: Ordinary vs. Weighted
 Importance Sampling for Blackjack

106 Chapter 5: Monte Carlo Methods

Example 5.4: O↵-policy Estimation of a Blackjack State Value We applied
both ordinary and weighted importance-sampling methods to estimate the value of a single
blackjack state (Example 5.1) from o↵-policy data. Recall that one of the advantages
of Monte Carlo methods is that they can be used to evaluate a single state without
forming estimates for any other states. In this example, we evaluated the state in which
the dealer is showing a deuce, the sum of the player’s cards is 13, and the player has
a usable ace (that is, the player holds an ace and a deuce, or equivalently three aces).
The data was generated by starting in this state then choosing to hit or stick at random
with equal probability (the behavior policy). The target policy was to stick only on
a sum of 20 or 21, as in Example 5.1. The value of this state under the target policy
is approximately �0.27726 (this was determined by separately generating one-hundred
million episodes using the target policy and averaging their returns). Both o↵-policy
methods closely approximated this value after 1000 o↵-policy episodes using the random
policy. To make sure they did this reliably, we performed 100 independent runs, each
starting from estimates of zero and learning for 10,000 episodes. Figure 5.3 shows the
resultant learning curves—the squared error of the estimates of each method as a function
of number of episodes, averaged over the 100 runs. The error approaches zero for both
algorithms, but the weighted importance-sampling method has much lower error at the
beginning, as is typical in practice.

Ordinary
importance
sampling

Weighted importance sampling

Episodes (log scale)
0 10 100 1000 10,000

Mean
square
error

(average over
100 runs)

0

5

Figure 5.3: Weighted importance sampling produces lower error estimates of the value of a
single blackjack state from o↵-policy episodes.

Example 5.5: Infinite Variance The estimates of ordinary importance sampling will
typically have infinite variance, and thus unsatisfactory convergence properties, whenever
the scaled returns have infinite variance—and this can easily happen in o↵-policy learning
when trajectories contain loops. A simple example is shown inset in Figure 5.4. There is
only one nonterminal state s and two actions, right and left. The right action causes a
deterministic transition to termination, whereas the left action transitions, with probability
0.9, back to s or, with probability 0.1, on to termination. The rewards are +1 on the
latter transition and otherwise zero. Consider the target policy that always selects left.
All episodes under this policy consist of some number (possibly zero) of transitions back

(Image: Sutton & Barto, 2018)

Off-Policy Monte Carlo Prediction110 Chapter 5: Monte Carlo Methods

O↵-policy MC prediction (policy evaluation) for estimating Q ⇡ q⇡

Input: an arbitrary target policy ⇡
Initialize, for all s 2 S, a 2 A(s):

Q(s, a) 2 R (arbitrarily)
C(s, a) 0

Loop forever (for each episode):
b any policy with coverage of ⇡
Generate an episode following b: S0, A0, R1, . . . , ST�1, AT�1, RT

G 0
W 1
Loop for each step of episode, t = T�1, T�2, . . . , 0, while W 6= 0:

G �G + Rt+1

C(St, At) C(St, At) + W
Q(St, At) Q(St, At) + W

C(St,At)
[G�Q(St, At)]

W W ⇡(At|St)

b(At|St)

5.7 O↵-policy Monte Carlo Control

We are now ready to present an example of the second class of learning control methods
we consider in this book: o↵-policy methods. Recall that the distinguishing feature of
on-policy methods is that they estimate the value of a policy while using it for control.
In o↵-policy methods these two functions are separated. The policy used to generate
behavior, called the behavior policy, may in fact be unrelated to the policy that is
evaluated and improved, called the target policy. An advantage of this separation is
that the target policy may be deterministic (e.g., greedy), while the behavior policy can
continue to sample all possible actions.

O↵-policy Monte Carlo control methods use one of the techniques presented in the
preceding two sections. They follow the behavior policy while learning about and
improving the target policy. These techniques require that the behavior policy has a
nonzero probability of selecting all actions that might be selected by the target policy
(coverage). To explore all possibilities, we require that the behavior policy be soft (i.e.,
that it select all actions in all states with nonzero probability).

The box on the next page shows an o↵-policy Monte Carlo control method, based on
GPI and weighted importance sampling, for estimating ⇡⇤ and q⇤. The target policy
⇡ ⇡ ⇡⇤ is the greedy policy with respect to Q, which is an estimate of q⇡. The behavior
policy b can be anything, but in order to assure convergence of ⇡ to the optimal policy, an
infinite number of returns must be obtained for each pair of state and action. This can be
assured by choosing b to be "-soft. The policy ⇡ converges to optimal at all encountered
states even though actions are selected according to a di↵erent soft policy b, which may
change between or even within episodes.

5.7. O↵-policy Monte Carlo Control 111

O↵-policy MC control, for estimating ⇡ ⇡ ⇡⇤

Initialize, for all s 2 S, a 2 A(s):
Q(s, a) 2 R (arbitrarily)
C(s, a) 0
⇡(s) argmax

a
Q(s, a) (with ties broken consistently)

Loop forever (for each episode):
b any soft policy
Generate an episode using b: S0, A0, R1, . . . , ST�1, AT�1, RT

G 0
W 1
Loop for each step of episode, t = T�1, T�2, . . . , 0:

G �G + Rt+1

C(St, At) C(St, At) + W
Q(St, At) Q(St, At) + W

C(St,At)
[G�Q(St, At)]

⇡(St) argmax
a
Q(St, a) (with ties broken consistently)

If At 6= ⇡(St) then exit inner Loop (proceed to next episode)
W W 1

b(At|St)

A potential problem is that this method learns only from the tails of episodes, when
all of the remaining actions in the episode are greedy. If nongreedy actions are common,
then learning will be slow, particularly for states appearing in the early portions of
long episodes. Potentially, this could greatly slow learning. There has been insu�cient
experience with o↵-policy Monte Carlo methods to assess how serious this problem is. If
it is serious, the most important way to address it is probably by incorporating temporal-
di↵erence learning, the algorithmic idea developed in the next chapter. Alternatively, if �
is less than 1, then the idea developed in the next section may also help significantly.

Exercise 5.11 In the boxed algorithm for o↵-policy MC control, you may have been
expecting the W update to have involved the importance-sampling ratio ⇡(At|St)

b(At|St)
, but

instead it involves 1

b(At|St)
. Why is this nevertheless correct? ⇤

Exercise 5.12: Racetrack (programming) Consider driving a race car around a turn
like those shown in Figure 5.5. You want to go as fast as possible, but not so fast as
to run o↵ the track. In our simplified racetrack, the car is at one of a discrete set of
grid positions, the cells in the diagram. The velocity is also discrete, a number of grid
cells moved horizontally and vertically per time step. The actions are increments to the
velocity components. Each may be changed by +1, �1, or 0 in each step, for a total of
nine (3⇥ 3) actions. Both velocity components are restricted to be nonnegative and less
than 5, and they cannot both be zero except at the starting line. Each episode begins
in one of the randomly selected start states with both velocity components zero and
ends when the car crosses the finish line. The rewards are �1 for each step until the car
crosses the finish line. If the car hits the track boundary, it is moved back to a random
position on the starting line, both velocity components are reduced to zero, and the

Off-Policy Monte Carlo Control

Questions:

1. Will this procedure
converge to the
optimal policy ?

2. Why do we break
when ?

3. Why do the
weights not
involve ?

π*

At ≠ π(St)

W
π(At ∣ St)

Off-Policy Monte Carlo Control5.7. O↵-policy Monte Carlo Control 111

O↵-policy MC control, for estimating ⇡ ⇡ ⇡⇤

Initialize, for all s 2 S, a 2 A(s):
Q(s, a) 2 R (arbitrarily)
C(s, a) 0
⇡(s) argmax

a
Q(s, a) (with ties broken consistently)

Loop forever (for each episode):
b any soft policy
Generate an episode using b: S0, A0, R1, . . . , ST�1, AT�1, RT

G 0
W 1
Loop for each step of episode, t = T�1, T�2, . . . , 0:

G �G + Rt+1

C(St, At) C(St, At) + W
Q(St, At) Q(St, At) + W

C(St,At)
[G�Q(St, At)]

⇡(St) argmax
a
Q(St, a) (with ties broken consistently)

If At 6= ⇡(St) then exit inner Loop (proceed to next episode)
W W 1

b(At|St)

A potential problem is that this method learns only from the tails of episodes, when
all of the remaining actions in the episode are greedy. If nongreedy actions are common,
then learning will be slow, particularly for states appearing in the early portions of
long episodes. Potentially, this could greatly slow learning. There has been insu�cient
experience with o↵-policy Monte Carlo methods to assess how serious this problem is. If
it is serious, the most important way to address it is probably by incorporating temporal-
di↵erence learning, the algorithmic idea developed in the next chapter. Alternatively, if �
is less than 1, then the idea developed in the next section may also help significantly.

Exercise 5.11 In the boxed algorithm for o↵-policy MC control, you may have been
expecting the W update to have involved the importance-sampling ratio ⇡(At|St)

b(At|St)
, but

instead it involves 1

b(At|St)
. Why is this nevertheless correct? ⇤

Exercise 5.12: Racetrack (programming) Consider driving a race car around a turn
like those shown in Figure 5.5. You want to go as fast as possible, but not so fast as
to run o↵ the track. In our simplified racetrack, the car is at one of a discrete set of
grid positions, the cells in the diagram. The velocity is also discrete, a number of grid
cells moved horizontally and vertically per time step. The actions are increments to the
velocity components. Each may be changed by +1, �1, or 0 in each step, for a total of
nine (3⇥ 3) actions. Both velocity components are restricted to be nonnegative and less
than 5, and they cannot both be zero except at the starting line. Each episode begins
in one of the randomly selected start states with both velocity components zero and
ends when the car crosses the finish line. The rewards are �1 for each step until the car
crosses the finish line. If the car hits the track boundary, it is moved back to a random
position on the starting line, both velocity components are reduced to zero, and the

Qn =
∑n

i=1 WiGi

∑n
i=1 Wi

=
∑n

i=1 WiGi

C − W

Qn+1 =
∑n+1

i=1 WiGi

∑n+1
i=1 Wi

=
(C − W)Qn + WG

C

=
C
C

Qn −
W
C

Qn +
W
C

G = Qn +
W
C [G − Qn]

Summary
• Monte Carlo estimation estimates values by averaging returns over sample episodes

• Does not require access to full model of dynamics
• Does require access to an entire episode for each sample

• Estimating action values requires either exploring starts or a soft policy (e.g., -greedy)

• Off-policy learning is the estimation of value functions for a target policy based on
episodes generated by a different behaviour policy

• Importance sampling is one way to perform off-policy learning
• Weighted importance sampling has lower variance than ordinary importance

sampling

• Off-policy control is learning the optimal policy (target policy) using episodes from a
behaviour policy

ϵ

