Optimality and

Dynamic Programming

CMPUT 261: Introduction to Artificial Intelligence

Lecture Outline

1. Recap \& Logistics
2. Policy Evaluation
3. Optimality
4. Policy Improvement

After this lecture, you should be able to:

- justify why one policy is weakly better than another
- trace an execution of iterative policy evaluation
- state the Policy Improvement Theorem and describe why it is important
- trace an execution of the Value Iteration algorithm

Assignment \#4

- Assignment \#4 will be released today
- Due Tuesday, December 6 at 11:59pm
- Reminder: TAs are available during office hours Mon/Tue/Wed to help

Recap: Value Functions

State-value function

$$
\begin{aligned}
v_{\pi}(s) & \doteq \mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s\right] \\
& =\mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t}=s\right]
\end{aligned}
$$

Action-value function

$$
\begin{aligned}
q_{\pi}(s, a) & \doteq \mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s, A_{t}=a\right] \\
& =\mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t}=s, A_{t}=a\right]
\end{aligned}
$$

Recap: Bellman Equations

Value functions satisfy a recursive consistency condition called the Bellman equation:

$$
\begin{aligned}
v_{\pi}(s) & \doteq \mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s\right] \\
& =\mathbb{E}_{\pi}\left[R_{t+1}+\gamma G_{t+1} \mid S_{t}=s\right] \\
& =\sum_{a} \pi(a \mid s) \sum_{s^{\prime}} \sum_{r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma \mathbb{E}_{\pi}\left[G_{t+1} \mid S_{t+1}=s^{\prime}\right]\right] \\
& =\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{\pi}\left(s^{\prime}\right)\right]
\end{aligned}
$$

- v_{π} is the unique solution to π 's (state-value) Bellman equation
- There is also a Bellman equation for π 's action-value function

Recap: GridWorld Example

Reward dynamics

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

State-value function v_{π} for
random policy
$\pi(a \mid s)=0.25$

GridWorld with Bounds Checking

What about a policy where we never try to go over an edge?

Reward dynamics

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

State-value function v_{π} for random policy $\pi(a \mid s)=0.25$

6.7	10.8	6.4	6.7	4.3
4.2	4.7	3.7	3.4	2.8
2.4	2.4	2.1	1.9	1.7
1.5	1.4	1.3	1.2	1.1
1.1	1.0	0.9	0.9	0.9

State-value function $v_{\pi^{B}}$ for bounded random policy π^{B}

Policy Evaluation

Question: How can we compute ν_{π} ?

1. We know that v_{π} is the unique solution to the Bellman equations, so we could just solve them (treating $v_{\pi}\left(s_{1}\right), \ldots, v_{\pi}\left(s_{|\mathcal{S}|}\right)$ as variables)

- but that is tedious and annoying and slow (it's a system of $|\mathcal{S}|$ linear equations in $|\mathcal{S}|$ unknowns)
- Also requires a complete model of the dynamics

2. Iterative policy evaluation

- Takes advantage of the recursive formulation

Iterative Policy Evaluation

- Iterative policy evaluation uses the Bellman equation as an update rule:

$$
\begin{aligned}
v_{k+1}(s) & \doteq \mathbb{E}_{\pi}\left[R_{t+1}+\gamma v_{k}\left(S_{t+1} \mid S_{t}=s\right]\right. \\
& =\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{k}\left(s^{\prime}\right)\right]
\end{aligned}
$$

- v_{π} is a fixed point of this update, by definition
- Furthermore, starting from an arbitrary v_{0}, the sequence $\left\{v_{k}\right\}$ will converge to v_{π} as $k \rightarrow \infty$

In-Place Iterative Policy Evaluation

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$
Input π, the policy to be evaluated
Algorithm parameter: a small threshold $\theta>0$ determining accuracy of estimation Initialize $V(s)$, for all $s \in \mathcal{S}^{+}$, arbitrarily except that $V($ terminal $)=0$

Loop:
$\Delta \leftarrow 0$
Loop for each $s \in \mathcal{S}$:

$$
\begin{aligned}
& v \leftarrow V(s) \\
& V(s) \leftarrow \sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma V\left(s^{\prime}\right)\right] \\
& \Delta \leftarrow \max (\Delta,|v-V(s)|)
\end{aligned}
$$

until $\Delta<\theta$

- The updates are in-place: we use new values for $V(s)$ immediately instead of waiting for the current sweep to complete (why?)
- These are expected updates: Based on a weighted average (expectation) of all possible next states (instead of what?)

Iterative Policy Evaluation

Reward dynamics

0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0

V at $k=0$

Iterative Policy Evaluation

$$
\begin{aligned}
V\left(s_{1,1}\right)= & \pi(\mathrm{n})\left[-1+\gamma V\left(s_{1,1}\right)\right]+\pi(\mathrm{w})\left[-1+\gamma V\left(s_{1,1}\right)\right]+ \\
& \pi(\mathrm{s})\left[0+\gamma V\left(s_{1,2}\right)\right]+\pi(\mathrm{e})\left[0+\gamma V\left(s_{2,1}\right)\right] \\
= & 0.25(-1)+0.25(-1)+0.25(0)+0.25(0)
\end{aligned}
$$

Reward dynamics

-0.5	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0

Iterative Policy Evaluation

$$
\begin{aligned}
V\left(s_{1,2}\right)= & \pi(\mathrm{n})\left[-1+\gamma \mathbf{V}\left(\mathbf{s}_{2, \mathbf{5}}\right)\right]+\pi(\mathrm{w})\left[-1+\gamma \mathbf{V}\left(\mathbf{s}_{2, \mathbf{5}}\right)\right]+ \\
& \pi(\mathrm{s})\left[0+\gamma \mathbf{V}\left(\mathbf{s}_{\mathbf{2 , 5}}\right)\right]+\pi(\mathrm{e})\left[0+\gamma \mathbf{V}\left(\mathbf{s}_{\mathbf{2 , 5}}\right)\right] \\
= & 0.25[10+0.9(\mathbf{0})]+0.25[10+0.9(\mathbf{0})]+ \\
& 0.25[10+0.9(\mathbf{0})]+0.25[10+0.9(\mathbf{0})]
\end{aligned}
$$

Reward dynamics

-0.5	10	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0

Iterative Policy Evaluation

$$
\begin{aligned}
V\left(s_{3,1}\right)= & \pi(\mathrm{n})\left[-1+\gamma V\left(s_{3,1}\right)\right]+\pi(\mathrm{w})\left[-1+\gamma \mathbf{V}\left(\mathbf{s}_{2,1}\right)\right]+ \\
& \pi(\mathrm{s})\left[0+\gamma V\left(s_{3,2}\right)\right]+\pi(\mathrm{e})\left[0+\gamma V\left(s_{4,1}\right)\right] \\
= & 0.25[-1+0.9(0)]+0.25[0+0.9(\mathbf{1 0})]+ \\
& 0.25[0+0.9(0)]+0.25[0+0.9(0)]
\end{aligned}
$$

Reward dynamics

Iterative Policy Evaluation in GridWorld

Reward dynamics

-0.5	10	2	5	0.6
-0.3	2.1	0.9	1.3	0.2
-0.3	0.4	0.3	0.4	-0.1
-0.3	0.0	0.0	0.1	-0.2
-0.5	-0.3	-0.3	-0.3	-0.6

V at $k=1$

Iterative Policy Evaluation in GridWorld

Reward dynamics

1.4	9.7	3.7	5.3	1.0
0.4	2.5	1.8	1.7	0.4
-0.2	0.6	0.6	0.5	-0.1
-0.5	0.0	0.0	0.0	-0.5
-1.0	-0.6	-0.5	-0.5	-1.0

V at $k=2$

Iterative Policy Evaluation in GridWorld

Reward dynamics

3.4	8.9	4.5	5.3	1.5
1.6	3.0	2.3	1.9	0.6
0.1	0.8	0.7	0.4	-0.4
-1.0	-0.4	-0.3	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

V at $k=10000$

Optimality

- Question: What is an optimal policy?
- A policy π is (weakly) better than a policy π^{\prime} if it is better for all $s \in \mathcal{S}$:

$$
\pi \geq \pi^{\prime} \Longleftrightarrow v_{\pi}(s) \geq v_{\pi^{\prime}}(s) \quad \forall s \in \mathcal{S}
$$

- An optimal policy π_{*} is weakly better than every other policy
- Question: Is an optimal policy guaranteed to exist for a given MDP?
- All optimal policies share the same state-value function: (why?)

$$
v_{*}(s) \doteq \max _{\pi} v_{\pi}(s)
$$

- Also the same action-value function:

$$
q_{*}(s, a) \doteq \max _{\pi} q_{\pi}(s, a)
$$

Bellman Optimality Equations

- v_{*} must satisfy the Bellman equation too
- In fact, it can be written in a special, policy-free way because we know that every state value is maximized by π_{*} :

$$
\begin{aligned}
v_{*}(s) & =\max _{a} q_{\pi_{*}}(s, a) \\
& =\max _{a} \mathbb{E}_{\pi_{*}}\left[G_{t} \mid S_{t}=s, A_{t}=a\right] \\
& =\max _{a} \mathbb{E}_{\pi_{*}}\left[R_{t+1}+\gamma G_{t+1} \mid S_{t}=s, A_{t}=a\right] \\
& =\max _{a} \mathbb{E}\left[R_{t+1}+\gamma v_{*}\left(S_{t+1}\right) \mid S_{t}=s, A_{t}=a\right] \\
& =\max _{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{*}\left(s^{\prime}\right)\right]
\end{aligned}
$$

Bellman Optimality Equations

$$
\begin{aligned}
v_{*}(s) & =\max _{a} \mathbb{E}\left[R_{t+1}+\gamma v_{*}\left(S_{t+1}\right) \mid S_{t}=s, A_{t}=a\right] \\
& =\max _{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{*}\left(s^{\prime}\right)\right] \\
q_{*}(s, a) & =\mathbb{E}\left[R_{t+1}+\gamma \max _{a^{\prime}} q_{*}\left(S_{t+1}, a^{\prime}\right) \mid S_{t}=s, A_{t}=a\right] \\
& =\sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma \max _{a^{\prime}} q_{*}\left(s^{\prime}, a^{\prime}\right)\right]
\end{aligned}
$$

Optimal GridWorld

Gridworld

22.0	24.4	22.0	19.4	17.5
19.8	22.0	19.8	17.8	16.0
17.8	19.8	17.8	16.0	14.4
16.0	17.8	16.0	14.4	13.0
14.4	16.0	14.4	13.0	11.7

v_{*}

π_{*}

Policy Improvement Theorem

Theorem:

Let π and π^{\prime} be any pair of deterministic policies.
If $q_{\pi}\left(s, \pi^{\prime}(s)\right) \geq v_{\pi}(s) \quad \forall s \in \mathcal{S}$,
then $v_{\pi^{\prime}}(s) \geq v_{\pi}(s) \quad \forall s \in \mathcal{S}$.

If you are never worse off at any state by following π^{\prime} for one step and then following π forever after, then following π^{\prime} forever has a higher expected value at every state.

Policy Improvement Theorem Proof

$$
\begin{aligned}
v_{\pi}(s) & \leq q_{\pi}\left(s, \pi^{\prime}(s)\right) \\
& =\mathbb{E}\left[R_{t+1}+\gamma v_{\pi}\left(S_{t+1}\right) \mid S_{t}=s, A_{t}=\pi^{\prime}(s)\right] \\
& =\mathbb{E}_{\pi^{\prime}}\left[R_{t+1}+\gamma v_{\pi}\left(S_{t+1}\right) \mid S_{t}=s\right] \\
& \leq \mathbb{E}_{\pi^{\prime}}\left[R_{t+1}+\gamma q_{\pi}\left(S_{t+1}, \pi^{\prime}\left(S_{t+1}\right)\right) \mid S_{t}=s\right] \\
& =\mathbb{E}_{\pi^{\prime}}\left[R_{t+1}+\gamma \mathbb{E}_{\pi^{\prime}}\left[R_{t+2}+\gamma v_{\pi}\left(S_{t+2}\right) \mid S_{t+1}, A_{t+1}=\pi^{\prime}\left(S_{t+1}\right)\right] \mid S_{t}=s\right] \\
& =\mathbb{E}_{\pi^{\prime}}\left[R_{t+1}+\gamma R_{t+2}+\gamma^{2} v_{\pi}\left(S_{t+2}\right) \mid S_{t}=s\right] \\
& \leq \mathbb{E}_{\pi^{\prime}}\left[R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\gamma^{3} v_{\pi}\left(S_{t+3}\right) \mid S_{t}=s\right] \\
& \vdots \\
& \leq \mathbb{E}_{\pi^{\prime}}\left[R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\gamma^{3} R_{t+4}+\cdots \mid S_{t}=s\right] \\
& =v_{\pi^{\prime}}(s) .
\end{aligned}
$$

Greedy Policy Improvement

Given any policy π, we can construct a new greedy policy π^{\prime} that is guaranteed to be at least as good:

$$
\begin{aligned}
\pi^{\prime}(s) & \doteq \arg \max _{a} q_{\pi}(s, a) \\
& =\arg \max _{a} \mathbb{E}\left[R_{t+1}+\gamma v_{\pi}\left(S_{T+1}\right) \mid S_{t}=s, A_{t}=a\right] \\
& =\arg \max _{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{\pi}\left(s^{\prime}\right)\right]
\end{aligned}
$$

- If this new policy is not better than the old policy, then $v_{\pi}(s)=v_{\pi^{\prime}}(s)$ for all $s \in \mathcal{S}$ (why?)
- Also means that the new (and old) policies are optimal (why?)

Policy Iteration

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_{*}$

1. Initialization
$V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$
2. Policy Evaluation

Loop:
$\Delta \leftarrow 0$
Loop for each $s \in \mathcal{S}$:

$$
\begin{aligned}
& v \leftarrow V(s) \\
& V(s) \leftarrow \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, \pi(s)\right)\left[r+\gamma V\left(s^{\prime}\right)\right] \\
& \Delta \leftarrow \max (\Delta,|v-V(s)|)
\end{aligned}
$$

This is a lot of iterations! Is it necessary to run to completion?

$$
\text { until } \Delta<\theta \text { (a small positive number determining the accuracy of estimation) }
$$

3. Policy Improvement
policy-stable \leftarrow true
For each $s \in \mathcal{S}$:
old-action $\leftarrow \pi(s)$
$\pi(s) \leftarrow \arg \max _{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma V\left(s^{\prime}\right)\right]$
If old-action $\neq \pi(s)$, then policy-stable \leftarrow false
If policy-stable, then stop and return $V \approx v_{*}$ and $\pi \approx \pi_{*}$; else go to 2

Value Iteration

Value iteration interleaves the estimation and improvement steps:

$$
\begin{aligned}
v_{k+1}(s) & \doteq \max _{a} \mathbb{E}\left[R_{t+1}+\gamma v_{k}\left(S_{t+1}\right) \mid S_{t}=s, A_{t}=a\right] \\
& =\max _{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{k}\left(s^{\prime}\right)\right]
\end{aligned}
$$

Value Iteration, for estimating $\pi \approx \pi_{*}$
Algorithm parameter: a small threshold $\theta>0$ determining accuracy of estimation Initialize $V(s)$, for all $s \in \mathcal{S}^{+}$, arbitrarily except that $V($ terminal $)=0$

Loop:

```
    \(\Delta \leftarrow 0\)
    Loop for each \(s \in \mathcal{S}\) :
        \(v \leftarrow V(s)\)
        \(V(s) \leftarrow \max _{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma V\left(s^{\prime}\right)\right]\)
        \(\Delta \leftarrow \max (\Delta,|v-V(s)|)\)
until \(\Delta<\theta\)
```

Output a deterministic policy, $\pi \approx \pi_{*}$, such that

$$
\pi(s)=\arg \max _{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma V\left(s^{\prime}\right)\right]
$$

Summary

- An optimal policy has higher state value than any other policy at every state
- A policy's state-value function can be computed by iterating an expected update based on the Bellman equation
- Given any policy π, we can compute a greedy improvement π^{\prime} by choosing highest expected value action based on v_{π}
- Policy iteration: Repeat:

Greedy improvement using v_{π}, then recompute v_{π}

- Value iteration: Repeat:

Recompute v_{π} by assuming greedy improvement at every update

