Neural Networks for Sequence Data

CMPUT 261: Introduction to Artificial Intelligence
GBC §10.0-10.2
P§12.1-12.2, 12.4-12.5

Lecture Outline

After this lecture, you should be able to:

- demonstrate unfolding a recurrent expression

1. Midterm Review
2. Recap \& Logistics
3. Unfolding Computations
4. Recurrent Neural Networks
5. Attention \& Transformers

- explain the problems with handling sequence input using dense or convolutional neural networks
- explain the high-level idea behind neural networks and transformers
- describe how self-attention combines inputs to generate its outputs
- describe the architecture of a transformer layer
- explain the high-level idea behind encoder-decoder architectures

Midterm Review: States

(a) [3 points] How would you represent the states for this search problem?
(b) [2 points] How many states does this search problem have?

- Many people tracked only the on/off states of the switches
- You need to track the position of SwitchBot as well
- Many people tracked only the position of SwitchBot, plus maybe the on/off state of the switch at the current position
- You need to track the states of all the switches

Midterm Review: Admissible Heuristic

Consider the following heuristic function:

$$
h(s)=\sum_{\text {positions } y} 1[\text { switch at position } y \text { is off }] d(\operatorname{pos}(s), y) .
$$

Is the heuristic function h an admissible heuristic for this problem? Why or why not?

- Heuristic adds up cost to get from current position to position y for every position y
- But that's more actions than you need to take for any solution
- Question: What will h return from a state where all the switches are in the on state and SwitchBot is in position G?
- Question: Can an admissible heuristic ever dominate a non-admissible heuristic?

Midterm Review: Factorings

$P(A) P(B \mid A) P(C \mid A, B) P(D \mid B, E) P(E \mid C)$

$P(A \mid B, C, D, E) P(B \mid C, D, E) P(C \mid D, E) P(D \mid E) P(E)$

- Many people spotted that these two belief networks represent different factorings of $P(A, B, C, D, E)$
- Not every joint distribution can be factored according to the left network (e.g., any distribution where E is not conditionally independent of A given only C)
- But any distribution over A, \ldots, E can be factored according to the right network (why?)

Logistics: Assignment \#3

- Assignment 3 is due Thursday (Nov 17) at 11:59pm
- Late submissions until the following Monday with 20% deduction
- See eClass for corrections:
- Minor typos in question 3
- Install torch using
pip3 install --user torch torchvision

Recap:
 Convolutional Neural Networks

- Convolutional networks: Specialized architecture for images
- Number of parameters controlled by using convolutions and pooling operations instead of dense connections
- Fewer parameters means more efficient to train

Sequence Modelling

- For many tasks, especially involving language, we want to model the behaviour of sequences
- Example: Translation
- The cat is on the carpet \Rightarrow Le chat est sur le tapis
- Example: Sentiment analysis
- This pie is great \Rightarrow POSITIVE
- This pie is okay, not great \Rightarrow NEUTRAL
- This pie is not okay \Rightarrow NEGATIVE

Sequential Inputs

The cat is on the carpet
Question: How should we represent sequential input to a neural network?

1. 1-hot vector for each word (Sequence must be a specific length?)
2. 1-hot vector for last few words
(n-gram)
3. Single vector indicating each word that is present (bag of words)

O O O the 0	$\begin{aligned} & \mathrm{O} \\ & \text { cat } \\ & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{O} . . . \end{aligned}$	carpet 0 0 0 0
	0 0 0 the	

One-Hot Representations

One-hot representations of words have some problems:

1. Wasteful: Each input vector must have a dimension equal to the size of the vocabulary (possible words)

- If vocabulary has 30,000 words, then each vector has 29,999 zeros

2. Poor generalization: Ideally, similar words would be treated similarly

- Exploiting meaningful similarity between images was an important feature of convolutional neural networks

Semantic Embeddings

- The usual approach is to first learn a semantic embedding for one-hot vectors
- Every word gets represented as a dense vector with smaller dimension than the vocabulary (typical size: 1,024)
- Goal: Words with similar meanings will have small distance between embedded vectors; words with different meanings will have large distance between embedded vectors

(Pre-)Training Semantic Embeddings

Question: How many parameters are required to convert a one-hot encoding for vocabulary of V words into a D-dimensional embedding?

- Embeddings require the training of a lot of parameters
- Fortunately, this can be done with unlabeled data
- Trick: "Pre-train" neural network for a task that we don't care about
- But which can be evaluated using unlabeled data
- Predicting words from k nearby words
- Predicting "masked" words
- Keep the weights that convert the one-hot layer into a dense embedding layer
- Throw away the weights that convert the embedding layer into output

Processing Variable-Length Sequences

- Image inputs can be restricted to a standard size (20x20, 1024×768, etc.)
- Sequence inputs (e.g., text) are variable-length
- And often very long
- Solution: Apply the same operations to each position in the sequence
- Two such approaches:

1. Recurrent neural networks:
input is current token + fixed-dimension "state" from previous operation
2. Transformers / self-attention: Size of state varies with size of sequence

Dynamical Systems

- A dynamical system is a system whose state at time $t+1$ depends on its state at time t :

$$
\mathbf{s}^{(t)}=f\left(\mathbf{s}^{(t-1)} ; \theta\right)
$$

- An expression that depends on the same expression at an earlier time is recurrent.

Unfolding Computations

- A recurrent expression can be converted to a non-recurrent expression by unfolding:

$$
\begin{aligned}
\mathbf{s}^{(3)} & =f\left(\mathbf{s}^{(2)} ; \theta\right) \\
& =f\left(f\left(\mathbf{s}^{(1)} ; \theta\right) ; \theta\right)
\end{aligned}
$$

External Signals

- Dynamical systems can also be driven by external signals:

$$
\mathbf{s}^{(t)}=f\left(\mathbf{s}^{(t-1)}, \mathbf{x}^{(t)} ; \theta\right)
$$

- These systems can also be represented by non-recurrent, unfolded computations:

Recurrent Neural Networks

- Recurrent neural network: a specialized architecture for modelling sequential data
- Input presented one element at a time
- Parameter sharing by:

$$
\mathbf{x}^{(6)}=\begin{aligned}
& \text { carpet } \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

- Treating the sequence as a system with state
- Introducing hidden layers that represent state
- Computing state transitions and output using same functions at each stage
- The same computation is applied to each pair of state and input
- But the state is different after each application

Recurrent Hidden Units: Sequence to Sequence

- Input values \mathbf{x} connected to hidden state \mathbf{h} by weights \mathbf{U}
- Hidden state \mathbf{h} mapped to output o by weights \mathbf{V}
- Hidden state $\mathbf{h}^{(t-1)}$ connected to hidden state $\mathbf{h}^{(t)}$ by weights \mathbf{W}
- Gradients computed by back propagation through time: from final loss all the way back to initial input.
- All hidden states computed must be stored for computing gradients

Recurrent Hidden Units: Sequence to Single Output

- Update state as inputs are provided
- Only compute a single output at the end
- \mathbf{W}, \mathbf{U} still shared at every stage
- Back propagation through time still requires evaluating every state in gradient computation

Encoder/Decoder Architecture for Sequence to Sequence

Can combine approaches for sequence-to-sequence:

1. Accept entire input to construct a single "context" output \mathbf{C}
2. Construct new sequence using context \mathbf{C} as only input

Long-Range Dependence

The submarine, which was the subject of a well known song by the Beatles, was yellow.

- Information sometimes needs to be accumulated for a long part of the sequence
- But how long an individual piece of information should be accumulated is context-dependent
- Long-range dependence can be difficult for a recurrent network
- Often need to accumulate information in the state, and then forget it later

Self-Attention vs. RNN

- RNN: accept "previous" state and current input; output "next" state
- Final output is last state
- Self-attention: Accept ALL inputs
- Final output is ALL states

Self-Attention

- A self-attention unit computes three values for each input i :
- Query q_{i}, Key k_{i}, and Value v_{i}
- These values are computed in the same way for each input
- Each output is a weighted combination of the values of all inputs:

$$
y_{j}=\sum_{i} w_{i j} v_{i}
$$

- Weight for output j of value i is the dot-product of j 's query and i 's key

$$
w_{i j}=q_{j}^{\top} k_{i}
$$

Transformer Blocks

- A transformer layer is a selfattention unit followed by a dense feedforward network
- The same feedforward network gets applied to each output of the self-attention unit:

$$
y_{j}=\operatorname{mlp}\left(x_{j} ; \Omega\right) \quad \text { for } j=1, \ldots, N
$$

- In a typical transformer architecture, several transformer blocks will be strung together in parallel

Cross-Attention

- The transformers described so far will construct a context: an encoding of the sequence
- For some tasks (e.g., translation), this encoding must then be decoded
- Decoder looks almost identical to encoder, except that it attends to the context as well as the previous input
- This is accomplished using
 cross-attention

Example Encoder-Decoder

Summary

- Naïvely representing sequential inputs for a neural network requires infeasibly many input nodes (and hence parameters)
- Recurrent neural networks are a specialized architecture for sequential inputs
- State accumulates across input elements
- Each stage computed from previous stage using same parameters
- Transformers are another specialized architecture!
- Self-attention to combine inputs instead of accumulating state
- All states output (not just last in a sequence)
- Improved ability to attend to long-range dependence
- Admits of better parallel evaluation

