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Lecture Outline

1. Midterm Review 

2. Recap & Logistics 

3. Unfolding Computations 

4. Recurrent Neural Networks 

5. Attention & Transformers

After this lecture, you should be able to: 
• demonstrate unfolding a recurrent 

expression 
• explain the problems with handling 

sequence input using dense or 
convolutional neural networks 

• explain the high-level idea behind 
neural networks and transformers 

• describe how self-attention combines 
inputs to generate its outputs 

• describe the architecture of a 
transformer layer 

• explain the high-level idea behind 
encoder-decoder architectures



Midterm Review: States

• Many people tracked only the on/off states of the switches 
• You need to track the position of SwitchBot as well 

• Many people tracked only the position of SwitchBot, plus maybe the on/off 
state of the switch at the current position 

• You need to track the states of all the switches
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2. (Search; 16 points)

A B C D E F G

SwitchBot is an agent that lives in the 1-dimensional world pictured above. There are 7

positions, labelled A through G. There is a switch associated with every position except G;
initially, three of the switches are set to “on”, and three are set to “o↵”. SwitchBot starts in

position C, as pictured.

In positions B,C,D,E, and F, SwitchBot can perform one of three actions: it can go left, which
moves it to the position to its left; it can go right, which moves it to the position to the right;

or it can FLIP, which will toggle the switch at the current position and then move SwitchBot

to the position on its right. In position A, only the right and FLIP actions are available; in

position G, only the left action is available.

SwitchBot’s goal is to get all of the switches into the “on” position using the fewest number

of actions.

(a) [3 points] How would you represent the states for this search problem?

(b) [2 points] How many states does this search problem have?

(c) [2 points] What are the successor states for the starting state?

(d) [2 points] Give an expression for the goal function for this search problem.
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Midterm Review: Admissible Heuristic

• Heuristic adds up cost to get from current position to position  for every position  
• But that's more actions than you need to take for any solution 
• Question: What will  return from a state where all the switches are in the on state 

and SwitchBot is in position G? 
• Question: Can an admissible heuristic ever dominate a non-admissible heuristic?

y y

h
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(e) [4 points] Let d(x, y) be the smallest number of actions required to move from position

x to position y. Let pos(s) be a function that accepts a state s and returns the position of

switchbot in state s. Recall that the indicator function 1[·] returns 1 when its argument

is true, and 0 otherwise.

Consider the following heuristic function:

h(s) =
X

positions y

1[switch at position y is o↵]d(pos(s), y).

Is the heuristic function h an admissible heuristic for this problem? Why or why not?

(f) [3 points] Either construct an admissible heuristic function h0
for this problem that

dominates h, or else explain why this is impossible.



Midterm Review: Factorings

• Many people spotted that these two belief networks represent different factorings of 
 

• Not every joint distribution can be factored according to the left network (e.g., any 
distribution where  is not conditionally independent of  given only ) 

• But any distribution over  can be factored according to the right network (why?)

P(A, B, C, D, E)

E A C
A, …, E
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3. (Uncertainty; 14 points)

(a) [3 points] What factorization of the joint distribution P (A,B,C,D,E) does the belief

network below represent?D

C

A

B

E

A B

D

C

E

A

B

D

C

E

(b) [3 points] Is the belief network below also consistent with the same joint distribution?

Why or why not? (Hint: What factoring does the belief network below represent?)

DCA B E

A B

D

C

E

A

B

D

C

E

(c) [3 points] Draw a belief network that represents the factoring

P (A,B,C,D,E) = P (A)P (B)P (C | A,B)P (D | C)P (E | C)

(d) [2 points] List the factors that would be constructed as the first step of variable elimi-

nation for the belief network from question (3c).

(e) [3 points] List the new factor, and the operations used to create it, when the variable

elimination algorithm eliminates A from the list of factors in question (3d).
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P(A ∣ B, C, D, E)P(B ∣ C, D, E)P(C ∣ D, E)P(D ∣ E)P(E)P(A)P(B ∣ A)P(C ∣ A, B)P(D ∣ B, E)P(E ∣ C)



Logistics: Assignment #3

• Assignment 3 is due Thursday (Nov 17) at 11:59pm 

• Late submissions until the following Monday with 20% deduction 

• See eClass for corrections: 

• Minor typos in question 3 

• Install torch using 
pip3 install --user torch torchvision



Recap: 
Convolutional Neural Networks

• Convolutional networks: Specialized architecture for images 

• Number of parameters controlled by using convolutions 
and pooling operations instead of dense connections 

• Fewer parameters means more efficient to train

(Goodfellow 2016)

Edge Detection by Convolution

CHAPTER 9. CONVOLUTIONAL NETWORKS

Figure 9.6: Efficiency of edge detection. The image on the right was formed by taking
each pixel in the original image and subtracting the value of its neighboring pixel on the
left. This shows the strength of all of the vertically oriented edges in the input image,
which can be a useful operation for object detection. Both images are 280 pixels tall.
The input image is 320 pixels wide while the output image is 319 pixels wide. This
transformation can be described by a convolution kernel containing two elements, and
requires 319 ⇥ 280 ⇥ 3 = 267, 960 floating point operations (two multiplications and
one addition per output pixel) to compute using convolution. To describe the same
transformation with a matrix multiplication would take 320 ⇥ 280 ⇥ 319 ⇥ 280, or over
eight billion, entries in the matrix, making convolution four billion times more efficient for
representing this transformation. The straightforward matrix multiplication algorithm
performs over sixteen billion floating point operations, making convolution roughly 60,000
times more efficient computationally. Of course, most of the entries of the matrix would be
zero. If we stored only the nonzero entries of the matrix, then both matrix multiplication
and convolution would require the same number of floating point operations to compute.
The matrix would still need to contain 2 ⇥ 319 ⇥ 280 = 178, 640 entries. Convolution
is an extremely efficient way of describing transformations that apply the same linear
transformation of a small, local region across the entire input. (Photo credit: Paula
Goodfellow)
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Figure 9.6 (Images: Goodfellow 2016)(Goodfellow 2016)

2D Convolution

CHAPTER 9. CONVOLUTIONAL NETWORKS
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Figure 9.1: An example of 2-D convolution without kernel-flipping. In this case we restrict
the output to only positions where the kernel lies entirely within the image, called “valid”
convolution in some contexts. We draw boxes with arrows to indicate how the upper-left
element of the output tensor is formed by applying the kernel to the corresponding
upper-left region of the input tensor.
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Figure 9.1



Sequence Modelling
• For many tasks, especially involving language, we want to model the 

behaviour of sequences 

• Example: Translation 

• The cat is on the carpet  ⟹  Le chat est sur le tapis 

• Example: Sentiment analysis 

• This pie is great  ⟹  POSITIVE 

• This pie is okay, not great  ⟹  NEUTRAL 

• This pie is not okay  ⟹  NEGATIVE



Sequential Inputs

Question: How should we represent sequential input 
to a neural network? 

1. 1-hot vector for each word 
(Sequence must be a specific length?) 

2. 1-hot vector for last few words 
( -gram) 

3. Single vector indicating each word that is present 
(bag of words)

n

...
the

carpet
cat

the

carpet

carpet

the

cat

The cat is on the carpet



One-Hot Representations

One-hot representations of words have some problems: 

1. Wasteful: Each input vector must have a dimension equal to the size of 
the vocabulary (possible words) 

• If vocabulary has 30,000 words, then each vector has 29,999 zeros 

2. Poor generalization: Ideally, similar words would be treated similarly 

• Exploiting meaningful similarity between images was an important 
feature of convolutional neural networks

carpet

0
0
0
0
⋮
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
⋮
0
0
0
0



Semantic Embeddings

• The usual approach is to first learn a semantic 
embedding for one-hot vectors 

• Every word gets represented as a dense vector with 
smaller dimension than the vocabulary 
(typical size: 1,024) 

• Goal: Words with similar meanings will have small 
distance between embedded vectors; words with 
different meanings will have large distance between 
embedded vectors 

carpet
rug

mattress

turnip



(Pre-)Training Semantic Embeddings

• Embeddings require the training of a lot of parameters 

• Fortunately, this can be done with unlabeled data 

• Trick: "Pre-train" neural network for a task that we don't care about 
• But which can be evaluated using unlabeled data 
• Predicting words from  nearby words 
• Predicting "masked" words 

• Keep the weights that convert the one-hot layer into a dense 
embedding layer 

• Throw away the weights that convert the embedding layer into output

k

Question: How many parameters are required to convert a one-hot encoding for 
vocabulary of  words into a -dimensional embedding?V D



Processing  
Variable-Length Sequences

• Image inputs can be restricted to a standard size (20x20, 1024x768, etc.) 

• Sequence inputs (e.g., text) are variable-length  

• And often very long 

• Solution: Apply the same operations to each position in the sequence 

• Two such approaches: 

1. Recurrent neural networks:  
input is current token + fixed-dimension "state" from previous operation 

2. Transformers / self-attention: Size of state varies with size of 
sequence



Dynamical Systems
• A dynamical system is a system whose state at 

time  depends on its state at time : 

  

• An expression that depends on the same expression 
at an earlier time is recurrent. 

t + 1 t

s(t) = f(s(t−1); θ)

s



Unfolding Computations

• A recurrent expression can be converted to a non-recurrent 
expression by unfolding: 

 
s(3) = f(s(2); θ)

= f( f(s(1); θ); θ)

(Goodfellow 2016)

Classical Dynamical Systems

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

10.1 Unfolding Computational Graphs

A computational graph is a way to formalize the structure of a set of computations,
such as those involved in mapping inputs and parameters to outputs and loss.
Please refer to section 6.5.1 for a general introduction. In this section we explain
the idea of unfolding a recursive or recurrent computation into a computational
graph that has a repetitive structure, typically corresponding to a chain of events.
Unfolding this graph results in the sharing of parameters across a deep network
structure.

For example, consider the classical form of a dynamical system:

s
(t) = f(s(t�1); ✓), (10.1)

where s
(t) is called the state of the system.

Equation 10.1 is recurrent because the definition of s at time t refers back to
the same definition at time t � 1.

For a finite number of time steps ⌧ , the graph can be unfolded by applying
the definition ⌧ � 1 times. For example, if we unfold equation 10.1 for ⌧ = 3 time
steps, we obtain

s
(3) =f(s(2); ✓) (10.2)

=f(f(s(1); ✓); ✓) (10.3)

Unfolding the equation by repeatedly applying the definition in this way has
yielded an expression that does not involve recurrence. Such an expression can
now be represented by a traditional directed acyclic computational graph. The
unfolded computational graph of equation 10.1 and equation 10.3 is illustrated in
figure 10.1.
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s
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s
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ff ff ff

Figure 10.1: The classical dynamical system described by equation 10.1, illustrated as an
unfolded computational graph. Each node represents the state at some time t and the
function f maps the state at t to the state at t + 1. The same parameters (the same value
of ✓ used to parametrize f) are used for all time steps.

As another example, let us consider a dynamical system driven by an external
signal x

(t),
s

(t) = f(s(t�1), x(t); ✓), (10.4)
375

Figure 10.1

(Image: Goodfellow 2016)



External Signals

• Dynamical systems can also be driven by external signals: 

  

• These systems can also be represented by non-recurrent, unfolded 
computations: 
 
 

s(t) = f(s(t−1), x(t); θ)

(Goodfellow 2016)

Unfolding Computation 
Graphs

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

where we see that the state now contains information about the whole past sequence.
Recurrent neural networks can be built in many different ways. Much as

almost any function can be considered a feedforward neural network, essentially
any function involving recurrence can be considered a recurrent neural network.

Many recurrent neural networks use equation 10.5 or a similar equation to
define the values of their hidden units. To indicate that the state is the hidden
units of the network, we now rewrite equation 10.4 using the variable h to represent
the state:

h
(t) = f(h(t�1), x(t); ✓), (10.5)

illustrated in figure 10.2, typical RNNs will add extra architectural features such
as output layers that read information out of the state h to make predictions.

When the recurrent network is trained to perform a task that requires predicting
the future from the past, the network typically learns to use h

(t) as a kind of lossy
summary of the task-relevant aspects of the past sequence of inputs up to t. This
summary is in general necessarily lossy, since it maps an arbitrary length sequence
(x(t), x(t�1), x(t�2), . . . , x(2), x(1)) to a fixed length vector h

(t). Depending on the
training criterion, this summary might selectively keep some aspects of the past
sequence with more precision than other aspects. For example, if the RNN is used
in statistical language modeling, typically to predict the next word given previous
words, it may not be necessary to store all of the information in the input sequence
up to time t, but rather only enough information to predict the rest of the sentence.
The most demanding situation is when we ask h

(t) to be rich enough to allow
one to approximately recover the input sequence, as in autoencoder frameworks
(chapter 14).
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Figure 10.2: A recurrent network with no outputs. This recurrent network just processes
information from the input x by incorporating it into the state h that is passed forward
through time. (Left)Circuit diagram. The black square indicates a delay of a single time
step. (Right)The same network seen as an unfolded computational graph, where each
node is now associated with one particular time instance.

Equation 10.5 can be drawn in two different ways. One way to draw the RNN
is with a diagram containing one node for every component that might exist in a
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(Image: Goodfellow 2016)



Recurrent Neural Networks
• Recurrent neural network: a specialized architecture for modelling 

sequential data 

• Input presented one element at a time 

• Parameter sharing by: 
• Treating the sequence as a system with state 
• Introducing hidden layers that represent state 
• Computing state transitions and output using same functions at each 

stage 
• The same computation is applied to each pair of state and input 

• But the state is different after each application

carpet

x(6) =



Recurrent Hidden Units: 
Sequence to Sequence

(Goodfellow 2016)

Recurrent Hidden Units

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

information flow forward in time (computing outputs and losses) and backward
in time (computing gradients) by explicitly showing the path along which this
information flows.

10.2 Recurrent Neural Networks

Armed with the graph unrolling and parameter sharing ideas of section 10.1, we
can design a wide variety of recurrent neural networks.
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Figure 10.3: The computational graph to compute the training loss of a recurrent network
that maps an input sequence of x values to a corresponding sequence of output o values.
A loss L measures how far each o is from the corresponding training target y. When using
softmax outputs, we assume o is the unnormalized log probabilities. The loss L internally
computes ŷ = softmax(o) and compares this to the target y. The RNN has input to hidden
connections parametrized by a weight matrix U , hidden-to-hidden recurrent connections
parametrized by a weight matrix W , and hidden-to-output connections parametrized by
a weight matrix V . Equation 10.8 defines forward propagation in this model. (Left)The
RNN and its loss drawn with recurrent connections. (Right)The same seen as an time-
unfolded computational graph, where each node is now associated with one particular
time instance.

Some examples of important design patterns for recurrent neural networks
include the following:

378

Figure 10.3

• Input values x connected to hidden state h 
by weights  

• Hidden state h mapped to output o by 
weights  

• Hidden state  connected to hidden 
state  by weights  

• Gradients computed by back propagation 
through time: from final loss all the way back 
to initial input. 

• All hidden states computed must be stored 
for computing gradients

U

V

h(t−1)

h(t) W

(Image: Goodfellow 2016)



Recurrent Hidden Units: 
Sequence to Single Output

• Update state as inputs are provided 

• Only compute a single output at the end 

•  still shared at every stage 

• Back propagation through time still 
requires evaluating every state in 
gradient computation

W, U

(Goodfellow 2016)

Sequence Input, Single Output

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

because it lacks hidden-to-hidden recurrent connections. For example, it cannot
simulate a universal Turing machine. Because this network lacks hidden-to-hidden
recurrence, it requires that the output units capture all of the information about
the past that the network will use to predict the future. Because the output units
are explicitly trained to match the training set targets, they are unlikely to capture
the necessary information about the past history of the input, unless the user
knows how to describe the full state of the system and provides it as part of the
training set targets. The advantage of eliminating hidden-to-hidden recurrence
is that, for any loss function based on comparing the prediction at time t to the
training target at time t, all the time steps are decoupled. Training can thus be
parallelized, with the gradient for each step t computed in isolation. There is no
need to compute the output for the previous time step first, because the training
set provides the ideal value of that output.
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Figure 10.5: Time-unfolded recurrent neural network with a single output at the end
of the sequence. Such a network can be used to summarize a sequence and produce a
fixed-size representation used as input for further processing. There might be a target
right at the end (as depicted here) or the gradient on the output o

(t) can be obtained by
back-propagating from further downstream modules.

Models that have recurrent connections from their outputs leading back into
the model may be trained with teacher forcing. Teacher forcing is a procedure
that emerges from the maximum likelihood criterion, in which during training the
model receives the ground truth output y(t) as input at time t + 1. We can see
this by examining a sequence with two time steps. The conditional maximum
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Figure 10.5 (Image: Goodfellow 2016)



Encoder/Decoder Architecture for 
Sequence to Sequence

Can combine approaches for 
sequence-to-sequence: 

1. Accept entire input to construct a 
single "context" output  

2. Construct new sequence using 
context  as only input

C

C

(Goodfellow 2016)

Sequence to Sequence 
Architecture

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

10.4 Encoder-Decoder Sequence-to-Sequence Architec-
tures

We have seen in figure 10.5 how an RNN can map an input sequence to a fixed-size
vector. We have seen in figure 10.9 how an RNN can map a fixed-size vector to a
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Here we discuss how an RNN can be trained to map an input sequence to an
output sequence which is not necessarily of the same length. This comes up in
many applications, such as speech recognition, machine translation or question

396

Figure 10.12
(Image: Goodfellow 2016)



Long-Range Dependence

• Information sometimes needs to be accumulated 
for a long part of the sequence 

• But how long an individual piece of information 
should be accumulated is context-dependent 

• Long-range dependence can be difficult for a 
recurrent network 

• Often need to accumulate information in the 
state, and then forget it later

The submarine, which was the subject of a well known song by the Beatles, was yellow.

(Goodfellow 2016)
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Self-Attention vs. RNN

• RNN: accept "previous" state and 
current input; output "next" state 

• Final output is last state 

• Self-attention: Accept ALL inputs 
• Final output is ALL states

x1

xN

⋮
x2

self-attention

y1

yN

⋮
y2

x1 RNN

y1

x2

y2

RNN

⋮
yN−1

RNN yNxN



Self-Attention
• A self-attention unit computes three values 

for each input : 
• Query , Key , and Value  
• These values are computed in the same 

way for each input 

• Each output is a weighted combination of the 
values of all inputs:  

 

• Weight for output   of value  is the dot-product 
of 's query and 's key 

i
qi ki vi

yj = ∑
i

wijvi

j i
j i

wij = q⊤
j ki

(Image: Prince 2022)
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Transformer Blocks
• A transformer layer is a self-

attention unit followed by a dense 
feedforward network  

• The same feedforward network 
gets applied to each output of the 
self-attention unit: 

     for  

• In a typical transformer architecture, 
several transformer blocks will be 
strung together in parallel	

yj = mlp(xj; Ω) j = 1,…, N

self-
attention

mlp



Cross-Attention
• The transformers described so far will 

construct a context: an encoding of 
the sequence 

• For some tasks (e.g., translation), this 
encoding must then be decoded 

• Decoder looks almost identical to 
encoder, except that it attends to the 
context as well as the previous input 

• This is accomplished using  
cross-attention

(Image: Prince 2022)



Example Encoder-Decoder

(Image: Prince 2022)



Summary
• Naïvely representing sequential inputs for a neural network requires infeasibly 

many input nodes (and hence parameters) 

• Recurrent neural networks are a specialized architecture for sequential inputs 
• State accumulates across input elements 
• Each stage computed from previous stage using same parameters 

• Transformers are another specialized architecture! 
• Self-attention to combine inputs instead of accumulating state 
• All states output (not just last in a sequence) 
• Improved ability to attend to long-range dependence 
• Admits of better parallel evaluation 


