Training Neural Networks

CMPUT 261: Introduction to Artificial Intelligence
GBC §6.5

Lecture Outline

1. Recap \& Logistics

2. Gradient Descent for Neural Networks
3. Automatic Differentiation
4. Back-Propagation

After this lecture, you should be able to:

- trace an execution of forward-mode automatic differentiation
- trace an execution of backward-mode automatic differentiation
- construct a finite numerical algorithm for a given computation
- explain why automatic differentiation is more efficient than the method of finite differences
- explain why automatic differentiation is more efficient than symbolic differentiation
- explain why backward mode automatic differentiation is more efficient for typical deep learning applications

Assignment \#2

- Assignment \#2 was due on Tuesday
- Late submission deadline TODAY at 11:59pm
- Submit via eClass
- Midterm is Thursday next week

Recap: Nonlinear Features

$$
y=f(\mathbf{x} ; \mathbf{w})=g\left(\mathbf{w}^{T} \mathbf{x}\right)=g\left(\sum_{i=1}^{n} w_{i} x_{i}\right)
$$

Generalized linear model: Activation function g of linear combination of inputs
Extension: Learn a generalized linear model on richer inputs

1. Define a feature mapping $\phi(\mathbf{x})$ that returns functions of the original inputs
2. Learn a linear model of the features instead of the inputs

$$
y=f(\mathbf{x} ; \mathbf{w})=g\left(\mathbf{w}^{T} \phi(\mathbf{x})\right)=g\left(\sum_{i=1}^{n} w_{i}[\phi(\mathbf{x})]_{i}\right)
$$

Recap:
 Feedforward Neural Network

$$
h_{1}\left(\mathbf{x} ; \mathbf{w}^{(1)}, b^{(1)}\right)=g\left(b^{(1)}+\sum_{i=1}^{n} w_{i}^{(1)} x_{i}\right)
$$

- A neural network is many units composed together

$$
y(\mathbf{x} ; \mathbf{w}, \mathbf{b})=g\left(b^{(y)}+\sum_{i=1}^{n} w_{i}^{(y)} h_{i}\left(\mathbf{x}_{i} ; \mathbf{w}^{(i)}, b^{(i)}\right)\right)
$$

- Feedforward neural network:

Units arranged into layers

- Each layer takes outputs of previous layer as its inputs

Recap: Chain Rule of Calculus

$$
\begin{gathered}
\frac{d z}{d x}=\frac{d z}{d y} \frac{d y}{d x} \\
\text { i.e, } \\
h(x)=f(g(x)) \Longrightarrow h^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
\end{gathered}
$$

If we know formulas for the derivatives of components of a function, then we can build up the derivative of their composition mechanically

Chain Rule of Calculus:
 Multiple Intermediate Arguments

What if $h(x)=f\left(g_{1}(x), g_{2}(x)\right)$?

$$
\begin{gathered}
\frac{d h}{d x}=\frac{\partial f}{\partial g_{1}} \frac{d g_{1}}{d x}+\frac{\partial f}{\partial g_{2}} \frac{d g_{2}}{d x} \\
\text { i.e., } h^{\prime}(x)=\left.g_{1}^{\prime}(x) \frac{\partial f\left(t_{1}, t_{2}\right)}{\partial t_{1}}\right|_{\substack{t_{1}=g_{1}(x) \\
t_{2}=g_{2}(x)}}+\left.g_{2}^{\prime}(x) \frac{\partial f\left(t_{1}, t_{2}\right)}{\partial t_{2}}\right|_{\substack{t_{1}=g_{1}(x) \\
t_{2}=g_{2}(x)}}
\end{gathered}
$$

Recap: Training Neural Networks

- Specify a loss L and a set of training examples:

$$
E=\left(\mathbf{x}^{(1)}, y^{(1)}\right), \ldots,\left(\mathbf{x}^{(n)}, y^{(n)}\right)
$$

- Training by gradient descent:
(e.g., squared error)

1. Compute loss on training data: $L(\mathbf{W}, \mathbf{b})=\sum_{i} \ell \underbrace{\left(f\left(\mathbf{x}^{(i)} ; \mathbf{W}, \mathbf{b}\right),\right.}_{\text {Prediction }} \underbrace{\left.y^{(i)}\right)}_{\text {Target }}$

$$
\text { 2. Compute gradient of loss: } \quad \nabla L(\mathbf{W}, \mathbf{b})
$$

3. Update parameters to make loss smaller:

$$
\left[\begin{array}{l}
\mathbf{W}^{\text {new }} \\
\mathbf{b}^{\text {new }}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{W}^{\text {old }} \\
\mathbf{b}^{\text {old }}
\end{array}\right]-\eta \nabla L\left(\mathbf{W}^{\text {old }}, \mathbf{b}^{\text {old }}\right)
$$

Three Representations

A function $f(x, y)$ can be represented in multiple ways:

1. As a formula:

$$
f(x, y)=(x y+\sin x+4)\left(3 y^{2}+6\right)
$$

2. As a computational graph:

3. As a finite numerical algorithm

$$
\begin{aligned}
s_{1} & =x \\
s_{2} & =y \\
s_{3} & =s_{1} \times s_{2} \\
s_{4} & =\sin \left(s_{1}\right) \\
s_{5} & =s_{3}+s_{4} \\
s_{6} & =s_{5}+4 \\
s_{7} & =\operatorname{sqr}\left(s_{2}\right) \\
s_{8} & =3 \times s_{7} \\
s_{9} & =s_{8}+6 \\
s_{10} & =s_{6} \times s_{9}
\end{aligned}
$$

Symbolic Differentiation

$$
\left.\begin{array}{rlrl}
z & =f(y) \\
y & =f(x) \\
x & =f(w) & z=f(f(f(w))) & \frac{\partial z}{\partial w}
\end{array}=\frac{\partial z}{\partial y} \frac{\partial y}{\partial x} \frac{\partial x}{\partial w}\right)
$$

$$
f(w)= \begin{cases}w & \text { if } w>0 \\ 0 & \text { otherwise } .\end{cases}
$$

- We can differentiate a nested formula by recursively applying the chain rule to derive a new formula for the gradient
- Problem: This can result in a lot of repeated subexpressions
- Question: What happens if the nested function is defined piecewise?

Automatic Differentiation: Forward Mode

- The forward mode converts a finite numerical algorithm for computing a function into an augmented finite numerical algorithm for computing the function's derivative
- For each step, a new step is constructed representing the derivative of the corresponding step in the original program:

$$
\begin{aligned}
& s_{1}=x \\
& s_{2}=y \\
& s_{3}=s_{1}+s_{2} \\
& s_{4}=s_{1} \times s_{2}
\end{aligned} \quad \Longrightarrow \quad \begin{aligned}
& s_{1}^{\prime}=1 \\
& s_{2}^{\prime}=0 \\
& s_{3}^{\prime}=s_{1}^{\prime}+s_{2}^{\prime} \\
& s_{4}^{\prime}=s_{1} \times s_{2}^{\prime}+s_{1}^{\prime} \times s_{2}
\end{aligned}
$$

- To compute the partial derivative $\frac{\partial s_{n}}{\partial s_{1}}$, set $s_{1}^{\prime}=1$ and $s_{2}^{\prime}=0$ and run augmented algorithm
- This takes roughly twice as long to run as the original algorithm (why?)

Forward Mode Example

Let's compute $\left.\frac{\partial f}{\partial y}\right|_{x=2, y=8}$ using forward mode:

$$
=2
$$

$$
=8
$$

$$
s_{1}^{\prime}=0
$$

$$
=16
$$

$$
s_{2}^{\prime}=1
$$

$$
\approx 0.034
$$

$$
=16.034
$$

$$
s_{5}^{\prime}=s_{3}^{\prime}+s_{4}^{\prime}=2
$$

$$
s_{6}^{\prime}=s_{5}^{\prime}=2
$$

$$
s_{7}^{\prime}=s_{2}^{\prime} \times 2 \times s_{2}=16
$$

$$
=192
$$

Question: What is the problem with this approach

$$
\begin{aligned}
s_{1} & =x \\
s_{2} & =y \\
s_{3} & =s_{1} \times s_{2} \\
s_{4} & =\sin \left(s_{1}\right) \\
s_{5} & =s_{3}+s_{4} \\
s_{6} & =s_{5}+4 \\
s_{7} & =\operatorname{sqr}\left(s_{2}\right) \\
s_{8} & =3 \times s_{7} \\
s_{9} & =s_{8}+6 \\
s_{10} & =s_{6} \times s_{9}
\end{aligned}
$$

$$
s_{3}^{\prime}=s_{1} \times s_{2}^{\prime}+s_{1}^{\prime} \times s_{2}=2
$$

$$
s_{4}^{\prime}=\cos \left(s_{1}\right) \times s_{1}^{\prime}=0
$$

$$
=20.034
$$

$$
=64
$$

$$
s_{8}^{\prime}=3 \times s_{7}^{\prime}=48
$$

$$
=198
$$

$=3966.732$
$s_{9}^{\prime}=s_{8}^{\prime}=48$ for neural networks?

Forward Mode Performance

- To compute the full gradient of a function of m inputs requires computing m partial derivatives
- In forward mode, this requires m forward passes
- For our toy examples, that means running the forward pass twice
- Neural networks can easily have thousands of parameters
- We don't want to run the network thousands of times for each gradient update!

Automatic Differentiation: Backward Mode

- Forward mode sweeps through the graph:
- For each s_{i}, computes $s_{i}^{\prime}=\frac{\partial s_{i}}{\partial s_{1}}$ for each s_{i}
- The numerator varies, and the denominator is fixed

Backward Mode Example

Let's compute $\left.\frac{\partial f}{\partial x}\right|_{x=2, y=8}$ and $\left.\frac{\partial f}{\partial y}\right|_{x=2, y=8}$ using backward mode:

Backward Mode Example (2)

Let's compute $\left.\frac{\partial f}{\partial x}\right|_{x=2, y=8}$ and $\left.\frac{\partial f}{\partial y}\right|_{x=2, y=8}$ using backward mode:

Back-Propagation

$$
L(\mathbf{W}, \mathbf{b})=\sum_{i} \ell\left(f\left(\mathbf{x}^{(i)} ; \mathbf{W}, \mathbf{b}\right), y^{(i)}\right)
$$

Back-propagation is simply automatic differentiation in backward mode, used to compute the gradient $\nabla_{\mathbf{W}, \mathbf{b}} L$ of the loss function with respect to its parameters \mathbf{W}, \mathbf{b} :

1. At each layer, compute the local gradients of the layer's computations
2. These local gradients will be used as inputs to the next layer's local gradient computations
3. At the end, we have a partial derivative for each of the parameters, which we can use to take a gradient step

Summary

- The loss function of a deep feedforward networks is simply a very nested function of the parameters of the model
- Automatic differentiation can compute these gradients more efficiently than symbolic differentiation or finite-differences numeric computations
- Symbolic differentiation is interleaved with numeric computation
- In forward mode, m sweeps are required for a function of m parameters
- In backward mode, only a single sweep is required
- Back-propagation is simply automatic differentiation applied to neural networks in backward mode

