
Calculus Refresher

CMPUT 261: Introduction to Artificial Intelligence 
 

GBC §4.1, 4.3



Logistics

• Assignment #2 due today at 11:59pm 

• Submit via eClass 

• Late submissions open until Thursday night 

• Midterm next week



Lecture Outline
1. Recap 

2. Gradient-based Optimization & Gradients 

3. Numerical Issues

After this lecture, you should be able to: 
• Apply the chain rule of calculus to functions of one or multiple arguments 
• Explain the advantages and disadvantages of the method of differences 
• Describe the numerical problems with softmax and how to solve them 
• Explain why log probabilities are more numerically stable than probabilities



Loss Minimization
In supervised learning, we choose a hypothesis to minimize a loss function 

Example:  Predict the temperature  

• Dataset: temperatures  from a random sample of days 

• Hypothesis class: Always predict the same value  

• Loss function:  

 

y(i)

μ

L(μ) =
1
n

n

∑
i=1

(y(i) − μ)2



Optimization
Optimization: finding a value of  that minimizes  

  

• Temperature example: Find  that makes  small 

Gradient descent: Iteratively move from current estimate in the direction that 
makes  smaller 

• For discrete domains, this is just hill climbing:  
Iteratively choose the neighbour that has minimum  

• For continuous domains, neighbourhood is less well-defined

x f(x)

x* = arg min
x

f(x)

μ L(μ)

f(x)

f(x)



Derivatives

• The derivative  

of a function  is the slope of  
at point  

• When ,  increases with 
small enough increases in x 

• When ,  decreases 
with small enough increases in x

f′ (x) =
d
dx
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Multiple Inputs
Example: 
Predict the temperature based on pressure and humidity 

• Dataset: 
  

• Hypothesis class: Linear regression:  

• Loss function:  

 

(x(1)
1 , x(1)

2 , y(1)), …, (x(m)
1 , x(m)

2 , y(m)) = {(x(i), y(i)) ∣ 1 ≤ i ≤ m}
h(x; w) = w0 + w1x1 + w2x2

L(w) =
1
n

n

∑
i=1

(y(i) − h(x(i); w))2



Partial Derivatives

Partial derivatives: How much does  change when we only change one 
of its inputs ? 

• Can think of this as the derivative of a conditional function
: 

.

f(x)
xi

g(xi) = f(x1, …, xi, …, xn)

∂
∂xi

f(x) =
d

dxi
g(xi)



Gradient

• The gradient of a function  is just a vector that contains all of its 
partial derivatives: 

 

f(x)

∇f(x) =

∂
∂x1

f(x)

⋮
∂

∂xn
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Gradient Descent

• The gradient of a function tells how to change every element of a vector to 
increase the function 

• If the partial derivative of  is positive, increase  

• Gradient descent:  
Iteratively choose new values of x in the (opposite) direction of the gradient: 

 . 

• This only works for sufficiently small changes (why?) 

• Question: How much should we change ?

xi xi

xnew = xold − η∇f(xold)

xold learning rate



Where Do Gradients Come From?

1. Analytic expressions / direct derivation 

2. Method of differences 

3. The Chain Rule (of Calculus)

Question: How do we compute the gradients we need for gradient descent?



Analytic Expressions: 
1D Derivatives
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Analytic Expressions: 
Multiple Arguments

To analytically find the gradient of a multi-input function, find the 
partial derivative for each of the inputs (and then collect in a vector). 
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Analytic Expressions: 
Multiple Arguments

To analytically find the gradient of a multi-input function, find the 
partial derivative for each of the inputs (and then collect in a vector). 

 

 

L(w) =
1
n

n

∑
i=1

w2
1 x(i)2

1 + 2w1w2x(i)
1 x(i)

2 − 2w1x(i)
1 y + w2

2 x(i)2
2 − 2w2x(i)

2 y + y2

∂
∂w1

L(w1, w2) =
1
n

n

∑
i=1

2w1x(i)2
1 + 2w2x(i)

1 x(i)
2 − 2x(i)

1 y

∂
∂w2

L(w1, w2) =
1
n

n

∑
i=1

2w2x(i)2
2 − 2w1x(i)

1 x(i)
2 + 2x(i)

2 y



Analytic Expressions: 
Multiple Arguments

To analytically find the gradient of a multi-input function, find the 
partial derivative for each of the inputs (and then collect in a vector). 
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Method of Differences

  

(for "sufficiently" tiny ) 

Question: Why would we ever do this? 

Question: What are the drawbacks?

∂
∂wi

L(w) ≈ L(w + ϵei) − L(w)

ϵ

Vector of 0's with a 1 in -th position


e.g., 

i

e1 =

1
0
⋮
0



Chain Rule (of Calculus): 
1D Derivatives

 

i.e.,  

• If we know formulas for the derivatives of components of a function, then 
we can build up the derivative of their composition mechanically 

• Most prominent example: Back-propagation in neural networks

dz
dx

=
dz
dy

dy
dx

h(x) = f(g(x)) ⟹ h′ (x) = f′ (g(x))g′ (x)



Chain Rule (of Calculus): 
Multiple Intermediate Arguments

What if ? 

 

Question: Why do we add the partials via the two arguments?

h(x) = f(g1(x), g2(x))

dh
dx

=
∂f

∂g1

dg1
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+

∂f
∂g2

dg2

dx



Chain Rule (of Calculus): 
Multiple Arguments

For multiple outputs, things look more complicated, but it's the same idea: 

 

 

 

h(w1, w2) = f(g1(w1, w2), g2(w1, w2))
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Approximating Real Numbers
• Computers store real numbers as finite number of bits 

• Problem: There are an infinite number of real numbers in any interval 

• Real numbers are encoded as floating point numbers: 

• 1.001...011011 × 21001..0011 

        

• Single precision: 24 bits significand, 8 bits exponent 

• Double precision: 53 bits significand, 11 bits exponent 

• Deep learning typically uses single precision!

significand exponent



Underflow
• Positive numbers that are smaller than 1.00...01 × 2-1111...1111 will be rounded 

down to zero 

• Negative numbers that are bigger than -1.00...01 × 2-1111...1111 will be 
rounded up to zero 

• Sometimes that's okay!  (Almost every number gets rounded) 

• Often it's not (when?) 

• Denominators: causes divide-by-zero 

• log: returns -inf 

• log(negative): returns nan

1. 001…011010
significand

× 2
1001…0011

exponent



Overflow

• Numbers bigger than 1.111...1111 × 21111 will be rounded up to infinity 

• Numbers smaller than -1.111...1111 × 21111 will be rounded down to 
negative infinity 

• exp is used very frequently 

• Underflows for very negative inputs 

• Overflows for "large" inputs numbers 

• 89 counts as "large"

1. 001…011010
significand

× 2
1001…0011

exponent



Addition/Subtraction
• Adding a small number to a large number can have no effect (why?) 

Example: 
>>> A = np.array([0., 1e-8]) 
>>> A = np.array([0., 1e-8]).astype('float32') 
>>> A.argmax() 
1 
>>> (A + 1).argmax() 
0 

>>> A+1 
array([1., 1.], dtype=float32)

1. 001…011010
significand

× 2
1001…0011

exponent

1e-8 is not the 
smallest possible 

float32

1.0
…

00
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10
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1.0
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11
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…

⏟
∼6e−8

2−24 ≈ 5.9 × 10−8



Softmax

• Softmax is a very common function 

• Used to convert a vector of activations (i.e., numbers) into a probability 
distribution 

• Question: Why not normalize them directly without ? 

• But  overflows very quickly: 

• Solution:            where 

exp

exp

softmax(z) z = x − max
j

xj

softmax(x)i =
exp(xi)

∑n
j=1 exp(xj)



Log
• Dataset likelihoods shrink exponentially quickly in the number of datapoints 

• Example:  

• Likelihood of a sequence of 5 fair coin tosses =  

• Likelihood of a sequence of 100 fair coin tosses =  

• Solution: Use log-probabilities instead of probabilities 

  

• log-prob of 1000 fair coin tosses is 

2−5 = 1/32

2−100

log(p1p2p3…pn) = log p1 + … + log pn

1000 log 0.5 ≈ − 693



General Solution

• Question:  
What is the most general solution to numerical problems? 

• Standard libraries 
• Theano, Tensorflow both detect common unstable expressions 

• scipy, numpy have stable implementations of many common patterns 
(e.g., softmax, logsumexp, sigmoid)



Summary
• Gradients are just vectors of partial derivatives 

• Gradients point "uphill" 

• Chain Rule of Calculus lets us compute derivatives of 
function compositions using derivatives of simpler 
functions 

• Learning rate controls how fast we walk uphill 

• Deep learning is fraught with numerical issues: 

• Underflow, overflow, magnitude mismatches 

• Use standard implementations whenever possible


