Calculus Refresher

CMPUT 261: Introduction to Artificial Intelligence

Logistics

- Assignment \#2 due today at 11:59pm
- Submit via eClass
- Late submissions open until Thursday night
- Midterm next week

Lecture Outline

1. Recap
2. Gradient-based Optimization \& Gradients
3. Numerical Issues

After this lecture, you should be able to:

- Apply the chain rule of calculus to functions of one or multiple arguments
- Explain the advantages and disadvantages of the method of differences
- Describe the numerical problems with softmax and how to solve them
- Explain why log probabilities are more numerically stable than probabilities

Loss Minimization

In supervised learning, we choose a hypothesis to minimize a loss function Example: Predict the temperature

- Dataset: temperatures $y^{(i)}$ from a random sample of days
- Hypothesis class: Always predict the same value μ
- Loss function:

$$
L(\mu)=\frac{1}{n} \sum_{i=1}^{n}\left(y^{(i)}-\mu\right)^{2}
$$

Optimization

Optimization: finding a value of x that minimizes $f(x)$

$$
x^{*}=\arg \min _{x} f(x)
$$

- Temperature example: Find μ that makes $L(\mu)$ small

Gradient descent: Iteratively move from current estimate in the direction that makes $f(x)$ smaller

- For discrete domains, this is just hill climbing:

Iteratively choose the neighbour that has minimum $f(x)$

- For continuous domains, neighbourhood is less well-defined

Derivatives

$-\mathrm{L}(\mu) \quad-\mathrm{L}^{\prime}(\mu)$

- The derivative $f^{\prime}(x)=\frac{d}{d x} f(x)$ of a function $f(x)$ is the slope of f at point x
- When $f^{\prime}(x)>0, f$ increases with small enough increases in x
- When $f^{\prime}(x)<0, f$ decreases with small enough increases in x

Multiple Inputs

Example:

Predict the temperature based on pressure and humidity

- Dataset:

$$
\left(x_{1}^{(1)}, x_{2}^{(1)}, y^{(1)}\right), \ldots,\left(x_{1}^{(m)}, x_{2}^{(m)}, y^{(m)}\right)=\left\{\left(\mathbf{x}^{(i)}, y^{(i)}\right) \mid 1 \leq i \leq m\right\}
$$

- Hypothesis class: Linear regression: $h(\mathbf{x} ; \mathbf{w})=w_{0}+w_{1} x_{1}+w_{2} x_{2}$
- Loss function:

$$
L(\mathbf{w})=\frac{1}{n} \sum_{i=1}^{n}\left(y^{(i)}-h\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)\right)^{2}
$$

Partial Derivatives

Partial derivatives: How much does $f(\mathbf{x})$ change when we only change one of its inputs x_{i} ?

- Can think of this as the derivative of a conditional function $g\left(x_{i}\right)=f\left(x_{1}, \ldots, \mathbf{x}_{\mathbf{i}}, \ldots, x_{n}\right):$

$$
\frac{\partial}{\partial x_{i}} f(\mathbf{x})=\frac{d}{d x_{i}} g\left(x_{i}\right)
$$

Gradient

- The gradient of a function $f(\mathbf{x})$ is just a vector that contains all of its partial derivatives:

$$
\nabla f(\mathbf{x})=\left[\begin{array}{c}
\frac{\partial}{\partial x_{1}} f(\mathbf{x}) \\
\vdots \\
\frac{\partial}{\partial x_{n}} f(\mathbf{x})
\end{array}\right]
$$

Gradient Descent

- The gradient of a function tells how to change every element of a vector to increase the function
- If the partial derivative of x_{i} is positive, increase x_{i}
- Gradient descent:

Iteratively choose new values of x in the (opposite) direction of the gradient:

$$
\mathbf{x}^{\text {new }}=\mathbf{x}^{\text {old }}-\eta \underbrace{\nabla f\left(\mathbf{x}^{\text {old }}\right)} .
$$

- This only works for sufficiently small changes (why?)
- Question: How much should we change $\mathbf{x}^{\text {old }}$?

Where Do Gradients Come From?

Question: How do we compute the gradients we need for gradient descent?

1. Analytic expressions / direct derivation
2. Method of differences
3. The Chain Rule (of Calculus)

Analytic Expressions: 1D Derivatives

$$
\begin{aligned}
& L(\mu)=\frac{1}{n} \sum_{i=1}^{n}(y(i)-\mu)^{2} \\
&=\frac{1}{n} \sum_{i=1}^{n}\left[y(i)^{2}-2 y(i) \mu+\mu^{2}\right] \\
& \frac{d}{d \mu} L(\mu)=\frac{1}{n} \sum_{i=1}^{n}[-2 y(i)+2 \mu]
\end{aligned}
$$

Analytic Expressions: Multiple Arguments

To analytically find the gradient of a multi-input function, find the partial derivative for each of the inputs (and then collect in a vector).

$$
\begin{aligned}
L(\mathbf{w}) & =\frac{1}{n} \sum_{i=1}^{n}\left(y^{(i)}-\mathbf{w}^{\top} \mathbf{x}^{(i)}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(y^{(i)}-w_{1} x_{1}^{(i)}-w_{2} x_{2}^{(i)}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n} w_{1}^{2} x_{1}^{(i) 2}+2 w_{1} w_{2} x_{1}^{(i)} x_{2}^{(i)}-2 w_{1} x_{1}^{(i)} y+w_{2}^{2} x_{2}^{(i) 2}-2 w_{2} x_{2}^{(i)} y+y^{2}
\end{aligned}
$$

Analytic Expressions: Multiple Arguments

To analytically find the gradient of a multi-input function, find the partial derivative for each of the inputs (and then collect in a vector).

$$
\begin{aligned}
& L(\mathbf{w})=\frac{1}{n} \sum_{i=1}^{n} w_{1}^{2} x_{1}^{(i) 2}+2 w_{1} w_{2} x_{1}^{(i)} x_{2}^{(i)}-2 w_{1} x_{1}^{(i)} y+w_{2}^{2} x_{2}^{(i) 2}-2 w_{2} x_{2}^{(i)} y+y^{2} \\
& \frac{\partial}{\partial w_{1}} L\left(w_{1}, w_{2}\right)=\frac{1}{n} \sum_{i=1}^{n} 2 w_{1} x_{1}^{(i) 2}+2 w_{2} x_{1}^{(i)} x_{2}^{(i)}-2 x_{1}^{(i)} y \\
& \frac{\partial}{\partial w_{2}} L\left(w_{1}, w_{2}\right)=\frac{1}{n} \sum_{i=1}^{n} 2 w_{2} x_{2}^{(i) 2}-2 w_{1} x_{1}^{(i)} x_{2}^{(i)}+2 x_{2}^{(i)} y
\end{aligned}
$$

Analytic Expressions: Multiple Arguments

To analytically find the gradient of a multi-input function, find the partial derivative for each of the inputs (and then collect in a vector).

$$
\nabla L\left(w_{1}, w_{2}\right)=\left[\begin{array}{l}
\frac{\partial L}{\partial w_{1}} \\
\frac{\partial L}{\partial w_{2}}
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{n} \sum_{i=1}^{n} 2 w_{1} x_{1}^{(i) 2}+2 w_{2} x_{1}^{(i)} x_{2}^{(i)}-2 x_{1}^{(i)} y \\
\frac{1}{n} \sum_{i=1}^{n} 2 w_{2} x_{2}^{(i) 2}-2 w_{1} x_{1}^{(i)} x_{2}^{(i)}+2 x_{2}^{(i)} y
\end{array}\right]
$$

Method of Differences

$$
\frac{\partial}{\partial_{W_{i}}} L(\mathbf{W}) \approx L\left(\mathbf{W}+\boldsymbol{C} \mathbf{e}_{\mathbf{i}}\right)-L(\mathbf{W}) \quad \text { e.g., } \mathbf{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

(for "sufficiently" tiny ϵ)
Question: Why would we ever do this?
Question: What are the drawbacks?

Chain Rule (of Calculus): 1D Derivatives

$$
\begin{gathered}
\frac{d z}{d x}=\frac{d z}{d y} \frac{d y}{d x} \\
\text { i.e., } h(x)=f(g(x)) \Longrightarrow h^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
\end{gathered}
$$

- If we know formulas for the derivatives of components of a function, then we can build up the derivative of their composition mechanically
- Most prominent example: Back-propagation in neural networks

Chain Rule (of Calculus): Multiple Intermediate Arguments

What if $h(x)=f\left(g_{1}(x), g_{2}(x)\right)$?

$$
\frac{d h}{d x}=\frac{\partial f}{\partial g_{1}} \frac{d g_{1}}{d x}+\frac{\partial f}{\partial g_{2}} \frac{d g_{2}}{d x}
$$

Question: Why do we add the partials via the two arguments?

Chain Rule (of Calculus): Multiple Arguments

For multiple outputs, things look more complicated, but it's the same idea:

$$
\begin{aligned}
& h\left(w_{1}, w_{2}\right)=f\left(g_{1}\left(w_{1}, w_{2}\right), g_{2}\left(w_{1}, w_{2}\right)\right) \\
& \nabla h\left(w_{1}, w_{2}\right)=\left[\nabla_{\mathbf{w}} g_{1}\left(w_{1}, w_{2}\right)\right. \\
&\left.\nabla_{\mathbf{w}} g_{2}\left(w_{1}, w_{2}\right)\right] \nabla_{g(\mathbf{w})} f\left(g_{1}\left(w_{1}, w_{2}\right), g_{2}\left(w_{1}, w_{2}\right)\right) \\
&=\left[\begin{array}{ll}
\frac{\partial g_{1}\left(w_{1}, w_{2}\right)}{\partial w_{1}} & \frac{\partial g_{2}\left(w_{1}, w_{2}\right)}{\partial w_{1}} \\
\frac{\partial g_{1}\left(w_{1}, w_{2}\right)}{\partial w_{2}} & \frac{\partial g_{2}\left(w_{1}, w_{2}\right)}{\partial w_{2}}
\end{array}\right]\left[\begin{array}{l}
\frac{\partial f\left(g_{1}\left(w_{1}, w_{2}\right), g_{2}\left(w_{1}, w_{2}\right)\right)}{\partial g_{1}\left(w_{1}\right)} \\
\frac{\partial f\left(g_{1}\left(w_{1}, w_{2}\right), g_{2}\left(w_{1}, w_{2}\right)\right)}{\partial g_{2}\left(w_{2}\right)}
\end{array}\right] \\
&=\left[\begin{array}{ll}
\frac{\partial f\left(g_{1}\left(w_{1}, w_{2}\right), g_{2}\left(w_{1}, w_{2}\right)\right)}{\partial g_{1}\left(w_{1}\right)} \frac{\partial g_{1}\left(w_{1}, w_{2}\right)}{\partial w_{1}}+\frac{\partial f\left(g_{1}\left(w_{1}, w_{2}\right), g_{2}\left(w_{1}, w_{2}\right)\right)}{\partial g_{2}\left(w_{2}\right)} \frac{\partial g_{2}\left(w_{1}, w_{2}\right)}{\partial w_{1}} \\
\frac{\partial f\left(g_{1}\left(w_{1}, w_{2}\right), g_{2}\left(w_{1}, w_{2}\right)\right)}{\partial g_{1}\left(w_{1}\right)} \frac{\partial g_{1}\left(w_{1}, w_{2}\right)}{\partial w_{2}}+\frac{\partial f\left(g_{1}\left(w_{1}, w_{2}\right), g_{2}\left(w_{1}, w_{2}\right)\right)}{\partial g_{2}\left(w_{2}\right)} \frac{\partial g_{2}\left(w_{1}, w_{2}\right)}{\partial w_{2}}
\end{array}\right]
\end{aligned}
$$

Approximating Real Numbers

- Computers store real numbers as finite number of bits
- Problem: There are an infinite number of real numbers in any interval
- Real numbers are encoded as floating point numbers:
- $1.001 \ldots . .011011 \times 2 \underbrace{1001 . .0011}$
significand
exponent
- Single precision: 24 bits significand, 8 bits exponent
- Double precision: 53 bits significand, 11 bits exponent
- Deep learning typically uses single precision!

Underflow
 $1 . \underbrace{001 \ldots 011010}_{\text {significand }} \times 2 \underbrace{\frac{1001 \ldots 0011}{\text { exponent }}}$

- Positive numbers that are smaller than 1.00 ... $01 \times 2^{-1111 \ldots . .1111}$ will be rounded down to zero
- Negative numbers that are bigger than -1.00 ... $01 \times 2^{-1111 \ldots . .1111}$ will be rounded up to zero
- Sometimes that's okay! (Almost every number gets rounded)
- Often it's not (when?)
- Denominators: causes divide-by-zero
- log: returns -inf
- log(negative): returns nan

Overflow

$1 . \underbrace{001 \ldots 011010}_{\text {significand }} \times 2 \frac{1001 \ldots 0011}{\text { exponent }}^{\frac{100}{}}$

- Numbers bigger than $1.111 \ldots 1111 \times 2^{1111}$ will be rounded up to infinity
- Numbers smaller than $-1.111 \ldots 1111 \times 2^{1111}$ will be rounded down to negative infinity
- exp is used very frequently
- Underflows for very negative inputs
- Overflows for "large" inputs numbers
- 89 counts as "large"

Addition/Subtraction

- Adding a small number to a large number can have no effect (why?)

Example:

>>> A = np.array([0., le-8])
>>> A = np.array([0., le-8]).astype('float32')
>>> A.argmax()
1
>>> (A + l).argmax()
0

>>> A+1
$2^{-24} \approx 5.9 \times 10^{-8}$
$\operatorname{array}([1 ., ~ l],$. dtype=float32)

Softmax

$$
\operatorname{softmax}(\mathbf{x})_{i}=\frac{\exp \left(x_{i}\right)}{\sum_{j=1}^{n} \exp \left(x_{j}\right)}
$$

- Softmax is a very common function
- Used to convert a vector of activations (i.e., numbers) into a probability distribution
- Question: Why not normalize them directly without exp?
- But exp overflows very quickly:
- Solution: $\operatorname{softmax}(\mathbf{z}) \quad$ where $\mathbf{z}=\mathbf{x}-\max _{j} x_{j}$

Log

- Dataset likelihoods shrink exponentially quickly in the number of datapoints
- Example:
- Likelihood of a sequence of 5 fair coin tosses $=2^{-5}=1 / 32$
- Likelihood of a sequence of 100 fair coin tosses $=2^{-100}$
- Solution: Use log-probabilities instead of probabilities

$$
\log \left(p_{1} p_{2} p_{3} \ldots p_{n}\right)=\log p_{1}+\ldots+\log p_{n}
$$

- log-prob of 1000 fair coin tosses is $1000 \log 0.5 \approx-693$

General Solution

- Question:

What is the most general solution to numerical problems?

- Standard libraries
- Theano, Tensorflow both detect common unstable expressions
- scipy, numpy have stable implementations of many common patterns (e.g., softmax, logsumexp, sigmoid)

Summary

- Gradients are just vectors of partial derivatives
- Gradients point "uphill"
- Chain Rule of Calculus lets us compute derivatives of function compositions using derivatives of simpler functions
- Learning rate controls how fast we walk uphill
- Deep learning is fraught with numerical issues:
- Underflow, overflow, magnitude mismatches
- Use standard implementations whenever possible

