Neural Networks

CMPUT 261: Introduction to Artificial Intelligence



1.

| ecture Outline

Recap & Logistics

2. Nonlinear models

3. Feedforward neural networks

After this lecture, you should be able to:

define an activation function

define a rectified linear activation and give an expression for its value
describe how the units in a feedforward neural network are connected
give an expression in matrix notation for a layer of a feedforward network
explain (high level) what the Universal Approximation Theorem guarantees
describe the basic procedure for training a neural network

identity the parameters of a feedforward neural network




| ogistics

* Assignment #2 due Tuesday, Oct 25 at 11:59pm

 Midterm is Thursday, Nov 3

* (Coverage:

—verything up to and including lecture 18 (Nov 1: Image

Data)



Recap: Supervised Learning

Supervised learning task:
oredict the values of target features Y based on input features X

Formally: Choose a hypothesis i : & — % from a hypothesis space £

We use the value of a loss function L applied to a set of training examples
1,1, .-, (x,,,y,)} to choose the hypothesis

 Regularization penalty biases optimization toward simpler functions:

Vo N

n
h = argmin L(h) = Z £ (h(x;),y;) + A penalty(h)
he .
J=1
e Simpler functions are more likely to generalize
Generalization performance is evaluated on the test set
Another way to reduce overfitting: Learn distribution over hypotheses (Bayesian)

* Many regularization approaches amount to a particular prior



(Generalized) Linear Models

e Supervised models we have considered so far have been linear:

/weights n
y/=f(X<V) =g(W'x) =g ( Z Wﬂ%)
Linear model iInputs \:1

* Linear classification / regression  _iiyation
o | function
e [ogistic regression
 Advantages: Efficient to fit (closed form sometimes!)

 Disadvantages: Can be really limited



Example: XOR

» The function f(x;,Xx,) = (x; XOR x,)
IS not linearly separable Original & space

* [hereis no way to draw a straight line
with all of the 1's on one side and all of
the O's on the other

L2

e This means that no linear model can
represent XOR exactly; there will always

be some errors 0

L1

 Question: \What else could we do?



Nonlinear Features

y=fx;w) =g(W'x)=¢ 2 WiX;
=1

One option: Learn a linear model on richer inputs

1. Define a feature mapping @(X) that returns functions of the original inputs

2. Learn a linear model of the features instead of the inputs

y=foxw) =gwipx) =g ) wlpx)],
=1



 Question:

Nonlinear Features for XOR

Original & space

What additional features would help?

» The product of x; and x, ; !

¢ ¢(x19x2) — [19x19x29 xlxz]_r
. w=1[-0.2,05,0.5,-21"

. fix;w) =w'p(x)> 0for (0,1) and (1,0) 1
fix;w) =w' ¢(x) < 0for(1,1) and (0,0) '




| earning Nonlinear Features

 Manually constructing good features iIs hard

* Manually constructed features are not transferrable between domains

* e.9., SIFT features were a revolution in computer vision, but are only for
computer vision

» Deep learning aims to learn ¢ automatically from the data



Neural Units

» Deep learning learns ¢ by composing little functions

e [hese function are called units

b n
h(x; w,b) = g(b+w'x) = g <b + Z Wl-Xi)
X1 \ =1
XZ{' offset
2 weights activation
function

e Question: How is this different from a linear model?



Feedforward Neural Network

* A neural network is many units composed together
* Feedforward neural network: Units arranged into layers

* Each layer takes outputs of previous layer as its inputs

_ 1 1 I
hy=g (wl(’l)xl + W1(,2)x2 + bl( )>

y=g <w1(2)h1 + wz(z)hz + b(2)>

_ (1) (1) (1)
hy=g <w2,1x1 + W, 5% + b, )



Example: XOR network

+1
Qv"@ -
+1

» Activation: g(z) = max{0,z} ("rectified linear unit")

o Offsets: ()
* Weights: Question:
¢ [+1, — 1] for hl’ [_1,+ 1] for h2 When dOeShl — 17

e |+1,+1]fory



Vlatrix Representation of Layers

* You can think of the outputs of
each layer as a vector h

* [he weights from all the outputs
of a previous layer to each of the
units of the layer can be collected

° 0 into a matrix W
. o e [he offset term for each unit can

be collected into a vector b:

h=g2g(Wx+Db)



Architecture

O 0
O O

Design decisions:

1. Depth: number of layers

2. Width: number of nodes in each layer

3. Fully connected?



Universal Approximation Theorem

Theorem:
A feedforward network with one hidden layer with a "squashing”
activation or rectified linear activation and a linear output layer can

approximate any function to within any given error bound, given
enough hidden units.

S0 a wide but shallow feedforward network can represent any
function we're trying to learn!

* Question: Why bother with multiple layers? (i.e., depth > 1)



Neural Network Parameters

A neural network Is just a supervised model

* |tis afunction that takes inputs X, and computes an output y based on
parameters @

e Question: What is @ in a feedforward neural network?



Training Neural Networks

« Specify a loss L and a set of training examples:

E =D, yWy . (x™, )
Loss function
* [raining by gradient descent: / (€.9., squared error)

1. Compute loss on training data: L(W, b) = Z A f(x(l) W.b), y(’))

Prediction Target

2. Compute gradient of loss: VL(W,b)

(Subsequent lecture)

3. Update parameters to make loss smaller:

new old
[\s;ew ] _ [‘l;\;ld] — 5 VL(WeH_pold



o Default choice: Rectified linear units (RelLU)

Hidden Unit Activations

g(z) = max{0,z}

e Other common types:

 tanh(z)
1
T 1+es

(sigmoid)

e Sigmoid suffers from vanishing gradients; ReLU does not



Summary

Generalized linear models are insufficiently expressive for many applications
Composing GLMs into a network is arbitrarily expressive

* A neural network with a single hidden layer can approximate any function

e But the network might need to be impractically large, prone to overfitting, or
inefficient to train

Neural networks are trained using variants of gradient descent

Architectural choices can make a network easier to train, less prone to
overfitting



