Bayesian Inference

CMPUT 261: Introduction to Artificial Intelligence

P&M §10.4, §8.6

Logistics

- Assignment #2 due Tuesday, Oct 25 at 11:59pm
- Midterm is Thursday, Nov 3

• Coverage: Everything up to and including lecture 18 (Nov 1: Image Data)

Recap: Linear Models

- Linear regression is a simple model for predicting real quantities
 - Can be used for classification too, either based on **sign** of prediction or using **logistic regression**
- Gradient descent is a general, widely-used training procedure (with several variants)
 - Linear models can be optimized in closed form for certain losses
 - In practice often optimized with gradient descent

 \bullet and/or learning spurious regularities

Causes of overfitting:

- **Bias**: Systematic choice of suboptimal hypotheses
- Variance: Different training sets can yield very different hypotheses
- **Noise:** Unpredictability that is inherent in the process (e.g., coin flips cannot be perfectly predicted, even by the "true" model)
- **Avoiding overfitting:** \bullet
 - 1. **Pseudocounts:** Add **imaginary** observations
 - 2. Regularization: Penalize model complexity

Recap: Overfitting

Overfitting is when a learned model fails to **generalize** due to **overconfidence**

Lecture Outline

- Recap & Logistics
- Cross Validation 2.
- 3. Exact Bayesian Inference
- Monte Carlo Simulation 4.

After this lecture, you should be able to:

- derive the posterior probability of a model using Bayes' rule
- explain how to use the Beta and Bernoulli distributions for Bayesian learning
- demonstrate model averaging ${\color{black}\bullet}$
- estimate expectations from a finite sample
- apply Hoeffding's inequality to derive PAC bounds for number of samples, confidence level, and/or error
- implement rejection sampling, importance sampling, and forward sampling

Hyperparameters

- Previous methods for avoiding overfitting require us to choose some numbers: • How many **pseudocounts** to add?

 - What should **regularization parameter** λ be?
- These are hyperparameters: Parameters that specify the training process or **hypothesis space** rather than the hypothesis itself
- Ideally we would like to be able to choose hyperparameters from the data
- **Question:** Can we use the **test data** to see which of these work best?
- Idea: Use some of the training data as an estimate of the test data

Cross-Validation Procedure

Cross-validation can be used to estimate most hyperparameters:

For each of a set of candidate hyperparameters:

- **Randomly remove** some datapoints from the training set; these examples are the validation set
- 2. **Train** the model on the training set using some values of hyperparameters (pseudocounts, polynomial degree, regression parameter, etc.)
- 3. **Evaluate** the results on the validation set

validation set

Then, choose whichever hyperparameters had the best performance on the

k-Fold Cross-Validation

- We want our training set to be as large as possible, so we get better models
- We want our validation set to be as large as possible, so that it is an accurate estimation of test performance
- When one is larger, the other must be **smaller**
- \bullet validation and training

k-fold cross-validation lets us use every one of our examples for both

k-Fold Cross-Validation Procedure

- (folds)
- validation
- **Optimize** hyperparameters based on validation errors З.

- Extreme case: k = n is called leave-one-out cross-validation

Randomly partition training data into k approximately equal-sized sets

2. Train k times, each time using all the folds but one; remaining fold is used for

• Each example is used exactly once for validation and k - 1 times for training

Learning Point Estimates

- So far, we have considered how to find the best **single** model, e.g.,
 - learn a classification function
 - optimize the weights of a linear or logistic regression
- of a single model:
- We have been learning point estimates of our model

• The predictions might be a probability distribution, but they are coming out

 $P(Y \mid X)$ Probability of target Y given observation X

Learning Model Probabilities

Instead, we could learn a distribution over **models**: \bullet

• $Pr(\theta \mid D)$

- weight them differently depending upon their **posterior probability**
- **Question:** Why would we want to do that?

• $\Pr(X, Y \mid \theta)$ Probability of target Y and features X given model θ

Probability of model θ given dataset D

• This is called **Bayesian learning**: we never discard any model, we only

- $\Pr(X, Y(\theta))$ Probability of target Y and features X given model θ Probability of model θ given dataset D • $Pr(\theta \mid D)$
- We can do Bayesian learning over **finite** sets of models:
 - e.g., { rank by feature $\theta \mid \theta \in \{\text{height, weight, age}\}$
- We can do Bayesian learning over **parametric families** of models:
 - e.g., { regression with weights $w_0 = \theta_1$, $w_1 = \theta_2 \mid \theta \in \mathbb{R}^2$ }
- We can mix the two!

What is a Model?

• *θ* can encode choice of model family and parameters

•
$$Pr(X, Y \mid \theta)$$
 Probability
• $Pr(\theta \mid D)$ Probability

- We have an expression for the probability of a single example given a model: $Pr(X, Y \mid \theta)$
- **Question:** What is the expression for the probability of a dataset of observations $D = \{(X_1, Y_1), \dots, (X_m, Y_m)\}$ given a model?
 - Easiest approach: Assume that the dataset independent, identically distributed lacksquareobservations: $(X_i, Y_i) \sim P(X, Y \mid \theta)$

$$\Pr(D \mid \theta) = \Pr(X_1, Y_1)$$

 $= \prod \Pr(X_i, Y_i | \theta)$ i=1

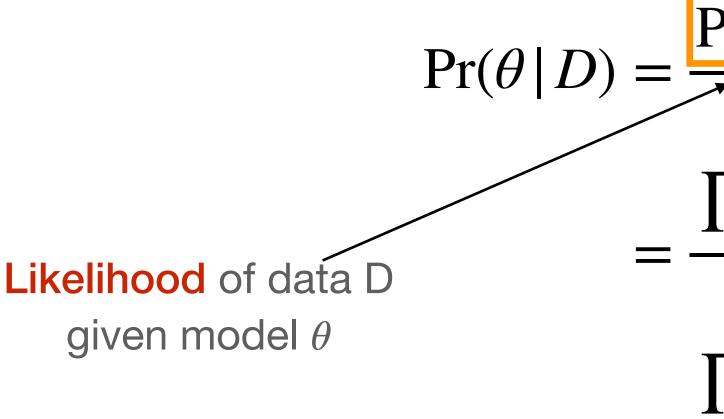
ne Dataset?

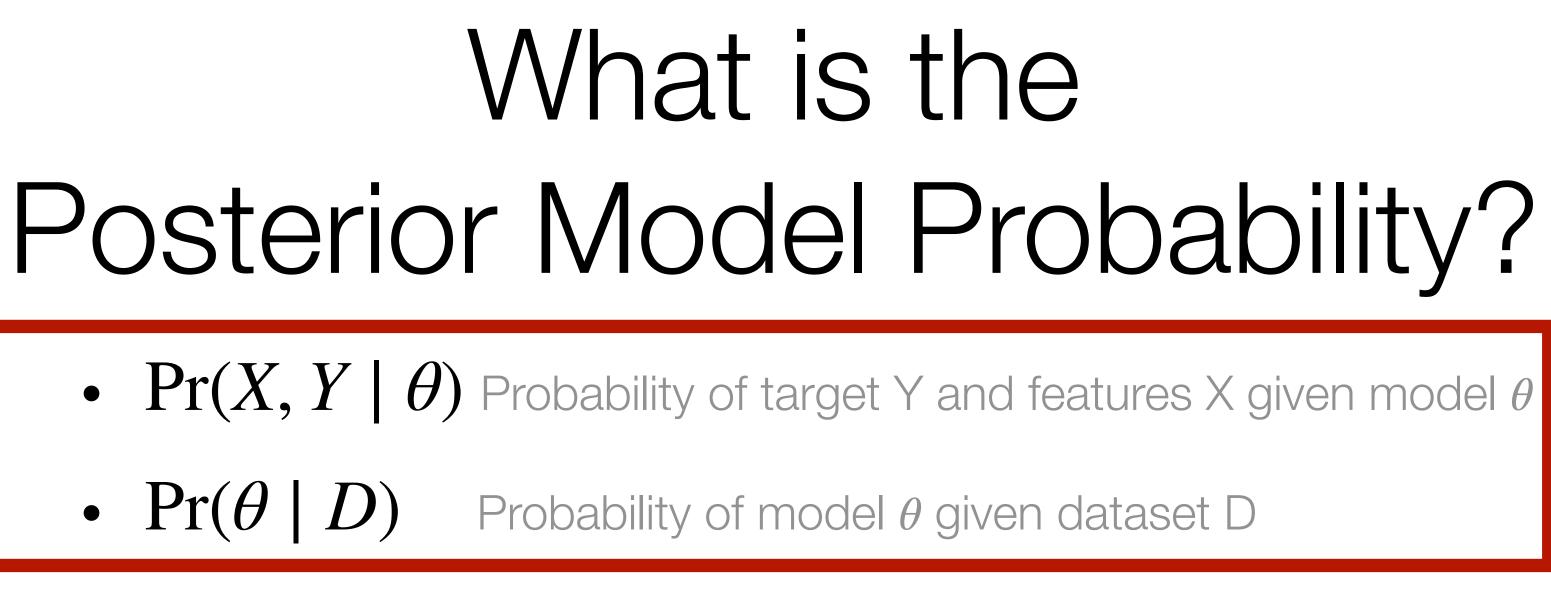
- of target Y and features X given model θ
- of model θ given dataset D

- $Y_1|\theta) \times \ldots \times \Pr(X_m, Y_m|\theta)$

• $Pr(\theta \mid D)$

Now we can use **Bayes' Rule** to compute the posterior probability of a model θ :





Prior probability

of model θ

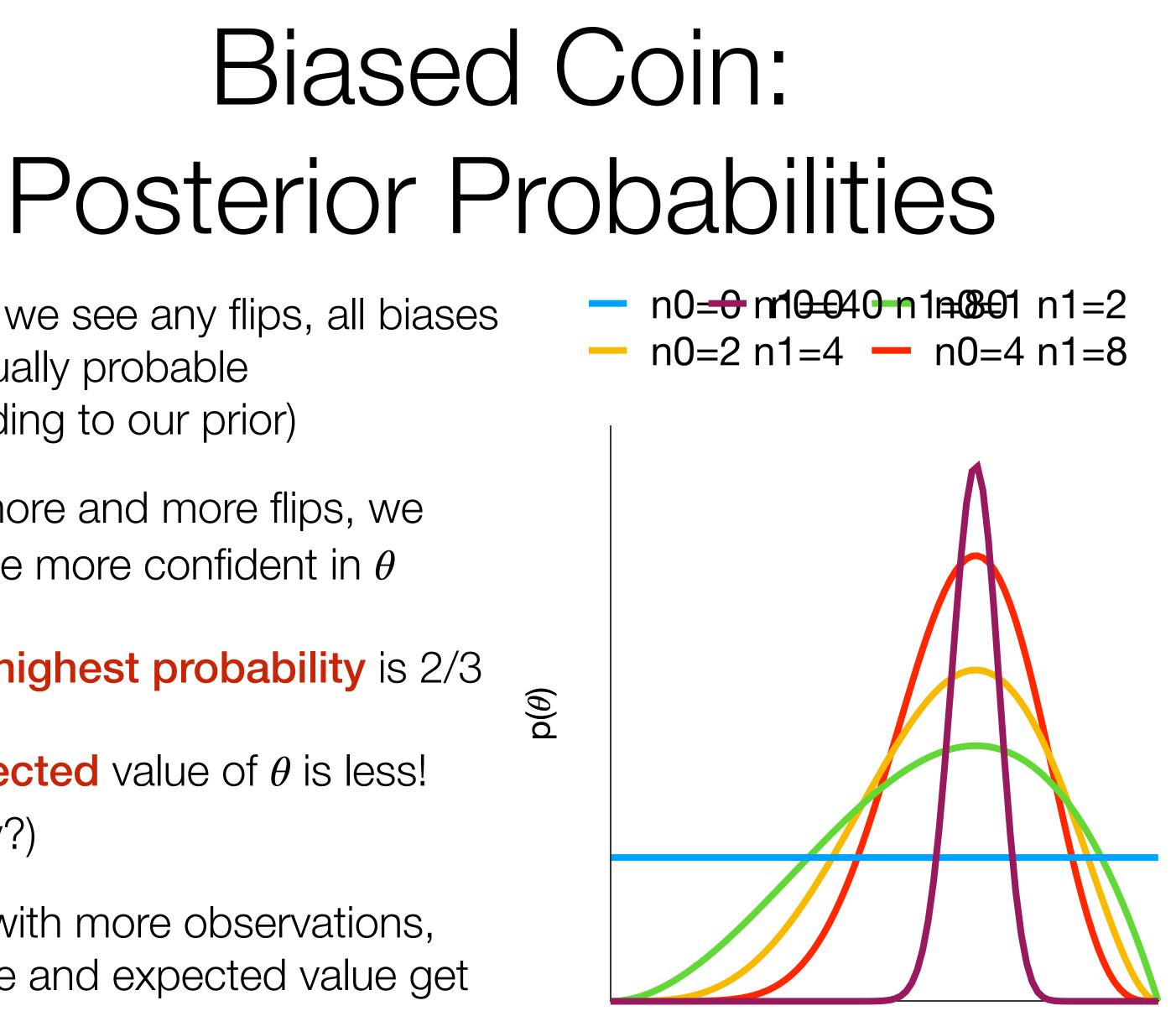
 $\Pr(D \mid \theta) \Pr(\theta)$ Pr(D) $\prod_{i} \Pr(X_{i}, Y_{i} | \theta) \Pr(\theta)$ $\Pr(D)$ $= \frac{\prod_{i} \Pr(X_{i}, Y_{i} | \theta) \Pr(\theta)}{\sum_{\theta'} \Pr(D | \theta') \Pr(\theta')}$

- don't know the coin's bias
- Model: Binomial observations \bullet
 - Observations: $Y \in \{h, t\}$
 - Bias: $\theta \in [0,1]$
 - Likelihood: $Pr(H \mid \theta) = \theta$
 - Question: What should the prior $Pr(\theta)$ be?

Example: Biased Coin

• Back to coin flipping! We can flip a coin and observe heads or tails, but we

- Before we see any flips, all biases are equally probable (according to our prior)
- After more and more flips, we become more confident in θ
- θ with highest probability is 2/3
 - **Expected** value of θ is less! (**why**?)
 - But with more observations, mode and expected value get closer



Beta-Binomial Models

- Likelihood: $P(h \mid \theta) = \theta$
 - aka **Bernoulli** $(h \mid \theta)$
 - Dataset likelihood: $\theta^{n_1} \times (1 \theta)^{n_0}$
 - aka **Binomial** (n_1, n_0)
- Prior: $P(\theta) \propto 1$
 - aka **Beta**(1,1)
- Models of this kind are called **Beta-Binomial models** lacksquare
- They can be solved analytically: $Pr(\theta \mid D) = \text{Beta}(1 + n_1, 1 + n_0)$

Conjugate Priors

- The beta distribution is a **conjgate prior** for the binomial distribution:
- Other distributions have this property:
 - Gaussian-Gaussian (for means) lacksquare
 - \bullet

Updating a beta prior with a binomial likelihood gives a beta posterior

Dirichlet-Multinomial (generalization of Beta-Binomial for multiple values)

Using Model Probabilities

So we can estimate $Pr(\theta \mid D)$. What can we do with it?

- 1. Parameter estimates
- 2. Target predictions (model averaging)
- 3. Target predictions (point estimates)

1. Parameter Estimates

- Sometimes, we really want to know the parameters of a model itself
- E.g., maybe I don't care about predicting the next coin flip, but I do want to know whether the coin is fair
- Can use $Pr(\theta \mid D)$ to make statements like

 $Pr(0.49 \le \theta \le 0.51) > 0.9$

- Sometimes we do want to make predictions:
- This is called the **posterior predictive distribution**
- model, and then predicting with that model?

2. Model Averaging

Question: How is this different from just learning a point estimate of a

3. Maximum A Posteriori

• Sometimes we do want to make predictions, **but...**

 $\Pr(Y|D) = \int_{0}^{1} \Pr(Y|\theta) \Pr(\theta|D) d\theta$

- the posterior predictive distribution may be **expensive** to compute (or even intractable)
- One possible solution is to use the **maximum a posterior** model as a point estimate: $\Pr(Y|D) \simeq \Pr(Y|\hat{\theta})$
- **Question:** Why would you do this instead of just using a point estimate that was computed in the usual way?

where
$$\hat{\theta} = \arg \max_{\theta} \Pr(\theta \mid D)$$

Prior Distributions as Bias

• Suppose I'm comparing two models, θ_1 and θ_2 such that

- **Question:** Which model has higher **posterior probability**? \bullet
- Priors are a way of encoding bias: they tell use which models to prefer when the data doesn't

 $Pr(D \mid \theta_1) = Pr(D \mid \theta_2)$

Priors for Pseudocounts

- Beta-Binomial and Dirichlet-Multinomial models
- E.g., for pseudocounts k_1 and k_0 ,

• We can straightforwardly encode pseudocounts as prior information in

 $p(\theta) = \text{Beta}(1 + k_1, 1 + k_0)$

- Some **regularizers** can be encoded as priors also
- L2 regularization is equivalent to a Gaussian prior on the weights: $p(w) = \mathcal{N}(w \mid m, s)$
- L1 regularization is equivalent to a Laplacian prior on the weights: $p(w) = \exp(|w|)/2$

Priors for Regularization



- random variable X
- - variable Y = h(X)
- **Question:** But first, why would we want to?

Estimation via Sampling

Suppose that we are able to generate independent random samples from a

• How can we use those random samples to estimate the expected value of X?

• or some function h of X; but that in general is just a different random

Estimation from a Sample

Law of Large Numbers:

value of X.

$$\mathbb{E}[X] = \sum_{x} f(x)x \approx \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

Since Y = h(X) is also a random variable, this generalizes to arbitrary functions of X:

$$\mathbb{E}[h(X)] = \sum_{x} f(x)h(x) \approx \frac{1}{n} \sum_{i=1}^{n} h(x_i)$$

As the number n of independent samples x_1, x_2, \ldots, x_n from a random variable X with distribution f(x) approaches infinity, the sample average approaches the expected

Probably Approximately Correct

- We never actually have an infinite number of sampled values
- How do we know when we have **enough** samples?

Hoeffding's inequality:

Suppose $0 \le X \le 1$, and s is the sample Then

$\Pr(|\mathbb{E}[X] -$

- For any given error margin
 e and number of samples n, we can plug into this formula
 and get a PAC bound.
 - Can also go the other way: plug in the acceptable error bound to RHS, and derive the **number of samples** *n* needed
- This generalizes to arbitrary **bounded** random variables $a \leq X \leq b$.

Suppose $0 \le X \le 1$, and s is the sample average from n independent samples from X.

$$|s| > \epsilon \leq 2e^{-2n\epsilon^2}$$

Generating Samples from a Single Variable

How can we generate samples from a distribution?

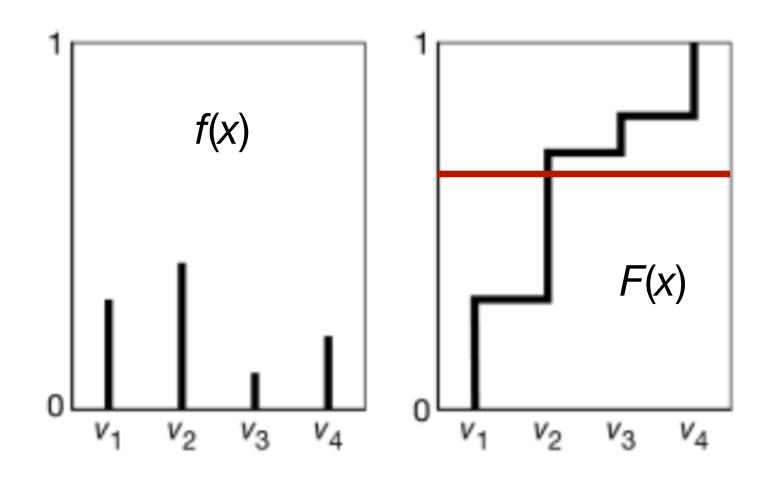
- 1. Totally order the domain of the variable (can be arbitrary for categorical variables)
- 2. Cumulative distribution: $F(x) = Pr(X \le x)$

$$F(x) = \int_{-\infty}^{x} f(z)dz \qquad F(x) =$$

3. Select a uniform random number $y \in [0,1]$

4. Return $x_i = F^{-1}(y)$

- $= \sum f(x')$ $x' \leq x$



Hard-To-Sample Distributions

especially large joint distributions

Question: Why might a distribution be hard to sample from?

- Use samples from easier distributions:
 - Rejection Sampling
 - Importance Sampling
- Go piece by piece through the joint distribution 2.
 - Forward Sampling in a Belief Network
 - Particle Filtering

- Often, we want to sample from distributions that are hard to sample from,

- Can we use an **easy-to-sample** distribution g(x) to help us sample from f(x)? •
 - Very common: We know an **unnormalized** $f^*(x)$, but not the properly normalized distribution f(x):

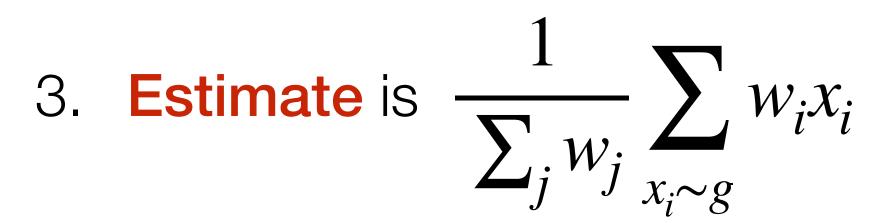
$$f(x) = \frac{f^*(x)}{\int_{-\infty}^{\infty} f^*(z) dz}$$

- f(x) is the target distribution
 - $f^*(x)$ is the unnormalized target distribution
- g(x) is the proposal distribution

Proposal Distributions

Importance Sampling

- Rejection sampling works, but it can be **wasteful**
 - Lots of samples get rejected when proposal \bullet and target distributions are very different
- What if we took a **weighted average** instead?
 - 1. Sample x_1, x_2, \ldots, x_n from g(x)
 - 2. Weight each sample x_i by



$$w_i = \frac{Mf^*(x_i)}{g(x_i)}$$

$$\mathbb{E}[X] = \sum_{x} f(x)x$$
$$= \sum_{x} \frac{g(x)}{g(x)} f(x)x$$
$$= \sum_{x} g(x) \frac{f(x)}{g(x)} x$$
$$\approx \frac{1}{n} \sum_{x_i \sim g} \frac{f(x_i)}{g(x_i)} x_i$$

Forward Sampling in a Belief Network

- terms of other parts
 - E.g., belief networks: $P(X, Y, Z) = P(X)P(Y)P(Z \mid X, Y)$
 - We might be able to directly sample from each conditional distribution but not from the joint distribution
- Forward sampling:
 - **Select** an ordering of variables consistent with the factoring
 - 2. **Repeat** until enough samples generated: **For** each variable X in the ordering: Sample $x_i \sim P(X \mid pa(X))$

• Sometimes we know how to sample parts of a large joint distribution in

Summary

- Cross-validation is a powerful technique for selecting hyperparameters based on data In Bayesian Learning, we learn a **distribution** over models instead of a **single model** \bullet • When the model is conjugate, posterior probabilities can be computed analytically

- We can make predictions by **model averaging** to compute the **posterior predictive** lacksquaredistribution
- The prior can encode bias over models, much the same as regularization
- Often we cannot directly estimate probabilities or expectations from our model
- Monte Carlo estimates: Use a random sample from the distribution to estimate expectations \bullet by sample averages
- Two families of techniques for hard to sample distributions:
 - 1. Use an easier-to-sample **proposal** distribution instead
 - 2. Sample parts of the model **sequentially**