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Logistics

• Assignment #2 due Tuesday, Oct 25 at 11:59pm 

• Midterm is Thursday, Nov 3 

• Coverage: Everything up to and including lecture 18 (Nov 1: Image Data)



Recap: Linear Models

• Linear regression is a simple model for predicting real quantities 

• Can be used for classification too, either based on sign of prediction or 
using logistic regression 

• Gradient descent is a general, widely-used training procedure (with several 
variants) 

• Linear models can be optimized in closed form for certain losses 

• In practice often optimized with gradient descent 



Recap: Overfitting
• Overfitting is when a learned model fails to generalize due to overconfidence 

and/or learning spurious regularities 

• Causes of overfitting:  
• Bias: Systematic choice of suboptimal hypotheses 
• Variance: Different training sets can yield very different hypotheses 
• Noise: Unpredictability that is inherent in the process  

(e.g., coin flips cannot be perfectly predicted, even by the "true" model) 

• Avoiding overfitting: 

1. Pseudocounts: Add imaginary observations 

2. Regularization: Penalize model complexity



Lecture Outline
1. Recap & Logistics 

2. Cross Validation 

3. Exact Bayesian Inference 

4. Monte Carlo Simulation

After this lecture, you should be able to: 
• derive the posterior probability of a model using Bayes' rule 
• explain how to use the Beta and Bernoulli distributions for Bayesian learning 
• demonstrate model averaging 
• estimate expectations from a finite sample 
• apply Hoeffding's inequality to derive PAC bounds for number of samples, 

confidence level, and/or error 
• implement rejection sampling, importance sampling, and forward sampling



Hyperparameters
• Previous methods for avoiding overfitting require us to choose some numbers: 

• How many pseudocounts to add? 
• What should regularization parameter  be? 

• These are hyperparameters: Parameters that specify the training process or 
hypothesis space rather than the hypothesis itself 

• Ideally we would like to be able to choose hyperparameters from the data 

• Question: Can we use the test data to see which of these work best? 

• Idea: Use some of the training data as an estimate of the test data

λ



Cross-Validation Procedure
Cross-validation can be used to estimate most hyperparameters: 

For each of a set of candidate hyperparameters: 

1. Randomly remove some datapoints from the training set; 
these examples are the validation set 

2. Train the model on the training set using some values of hyperparameters 
(pseudocounts, polynomial degree, regression parameter, etc.) 

3. Evaluate the results on the validation set 

Then, choose whichever hyperparameters had the best performance on the 
validation set



k-Fold Cross-Validation

• We want our training set to be as large as possible, so we get better 
models 

• We want our validation set to be as large as possible, so that it is an 
accurate estimation of test performance 

• When one is larger, the other must be smaller 

• k-fold cross-validation lets us use every one of our examples for both 
validation and training



-Fold Cross-Validation Procedurek
1. Randomly partition training data into  approximately equal-sized sets 

(folds) 

2. Train  times, each time using all the folds but one; remaining fold is used for 
validation 

3. Optimize hyperparameters based on validation errors 

• Each example is used exactly once for validation and  times for training 

• Extreme case:  is called leave-one-out cross-validation

k

k

k − 1

k = n



Learning Point Estimates

• So far, we have considered how to find the best single model, e.g., 

• learn a classification function 

• optimize the weights of a linear or logistic regression 

• The predictions might be a probability distribution, but they are coming out 
of a single model: 

  Probability of target Y given observation X 

• We have been learning point estimates of our model

P(Y ∣ X)



Learning Model Probabilities

• Instead, we could learn a distribution over models: 
 
 
 

• This is called Bayesian learning: we never discard any model, we only 
weight them differently depending upon their posterior probability 

• Question: Why would we want to do that?

•  Probability of target Y and features X given model 𝜃 

•      Probability of model 𝜃 given dataset D

Pr(X, Y ∣ θ)

Pr(θ ∣ D)



•  Probability of target Y and features X given model 𝜃 

•      Probability of model 𝜃 given dataset D

Pr(X, Y ∣ θ)

Pr(θ ∣ D)

What is a Model?

• We can do Bayesian learning over finite sets of models: 

• e.g., { rank by feature 𝜃 | 𝜃 ∈ {height, weight, age} } 

• We can do Bayesian learning over parametric families of models: 

• e.g., { regression with weights w0=𝜃1, w1=𝜃2 | 𝜃 ∈ ℝ2 } 

• We can mix the two!   

• 𝜃 can encode choice of model family and parameters



What is the Dataset?

• We have an expression for the probability of a single example given a model: 
 

• Question: What is the expression for the probability of a dataset of observations 
 given a model? 

• Easiest approach: Assume that the dataset independent, identically distributed 
observations:  

 

Pr(X, Y ∣ θ)

D = {(X1, Y1), …, (Xm, Ym)}

(Xi, Yi) ∼ P(X, Y ∣ θ)

Pr(D |θ) = Pr(X1, Y1 |θ) × … × Pr(Xm, Ym |θ)

=
m

∏
i=1

Pr(Xi, Yi |θ)

•  Probability of target Y and features X given model 𝜃 

•      Probability of model 𝜃 given dataset D

Pr(X, Y ∣ θ)

Pr(θ ∣ D)



What is the  
Posterior Model Probability?

Now we can use Bayes' Rule to compute the posterior 
probability of a model 𝜃: 
 
 
 

Pr(θ |D) =
Pr(D |θ) Pr(θ)

Pr(D)

=
∏i Pr(Xi, Yi |θ) Pr(θ)

Pr(D)

=
∏i Pr(Xi, Yi |θ) Pr(θ)

∑θ′ 
Pr(D |θ′ ) Pr(θ′ )

Prior probability 
of model 𝜃

Likelihood of data D 
given model 𝜃

•  Probability of target Y and features X given model 𝜃 

•      Probability of model 𝜃 given dataset D

Pr(X, Y ∣ θ)

Pr(θ ∣ D)



Example: Biased Coin
• Back to coin flipping!  We can flip a coin and observe heads or tails, but we 

don't know the coin's bias 

• Model: Binomial observations  

• Observations:  

• Bias:  

• Likelihood:  

• Question: What should the prior  be?

Y ∈ {h, t}

θ ∈ [0,1]

Pr(H ∣ θ) = θ

Pr(θ)



p(
𝜃)

𝜃

n0=0 n1=0 n0=1 n1=2
n0=2 n1=4 n0=4 n1=8

p(
𝜃)

𝜃

n0=40 n1=80

Biased Coin: 
Posterior Probabilities

• Before we see any flips, all biases 
are equally probable  
(according to our prior) 

• After more and more flips, we 
become more confident in 𝜃 

• 𝜃 with highest probability is 2/3 

• Expected value of 𝜃 is less! 
(why?) 

• But with more observations, 
mode and expected value get 
closer



Beta-Binomial Models
• Likelihood:  

• aka  

• Dataset likelihood:  

• aka  

• Prior:  

• aka  

• Models of this kind are called Beta-Binomial models 

• They can be solved analytically: 

P(h ∣ θ) = θ

Bernoulli(h ∣ θ)

θn1 × (1 − θ)n0

Binomial(n1, n0)

P(θ) ∝ 1

Beta(1,1)

Pr(θ ∣ D) = Beta(1 + n1,1 + n0)



Conjugate Priors

• The beta distribution is a conjgate prior for the binomial distribution: 

• Updating a beta prior with a binomial likelihood gives a beta posterior 

• Other distributions have this property: 

• Gaussian-Gaussian (for means) 

• Dirichlet-Multinomial (generalization of Beta-Binomial for multiple values)



Using Model Probabilities

So we can estimate .  What can we do with it? 

1. Parameter estimates 

2. Target predictions (model averaging) 

3. Target predictions (point estimates)

Pr(θ ∣ D)



1. Parameter Estimates

• Sometimes, we really want to know the parameters of a model itself 

• E.g., maybe I don't care about predicting the next coin flip, but I do want to 
know whether the coin is fair 

• Can use  to make statements like  

  

Pr(θ ∣ D)

Pr(0.49 ≤ θ ≤ 0.51) > 0.9



2. Model Averaging

• Sometimes we do want to make predictions: 

  

• This is called the posterior predictive distribution 

• Question: How is this different from just learning a point estimate of a 
model, and then predicting with that model?

Pr(Y |D) = ∑
θ

Pr(Y |θ) Pr(θ |D)



3. Maximum A Posteriori
• Sometimes we do want to make predictions, but... 

  

• the posterior predictive distribution may be expensive to compute (or even 
intractable) 

• One possible solution is to use the maximum a posterior model as a point estimate: 

 

• Question: Why would you do this instead of just using a point estimate that was 
computed in the usual way?

Pr(Y |D) = ∫
1

0
Pr(Y |θ) Pr(θ |D)dθ

Pr(Y |D) ≃ Pr(Y | ̂θ)  where  ̂θ = arg max
θ

Pr(θ |D)



Prior Distributions as Bias

• Suppose I'm comparing two models,  and  such that 

 

• Question: Which model has higher posterior probability?  

• Priors are a way of encoding bias: they tell use which models to prefer 
when the data doesn't

θ1 θ2

Pr(D ∣ θ1) = Pr(D ∣ θ2)



Priors for Pseudocounts

• We can straightforwardly encode pseudocounts as prior information in 
Beta-Binomial and Dirichlet-Multinomial models 

• E.g., for pseudocounts  and , 

 

k1 k0

p(θ) = Beta(1 + k1,1 + k0)



Priors for Regularization

• Some regularizers can be 
encoded as priors also 

• L2 regularization is equivalent to 
a Gaussian prior on the weights: 

 

• L1 regularization is equivalent to 
a Laplacian prior on the weights: 

p(w) = 𝒩(w ∣ m, s)

p(w) = exp( |w | )/2

p(
w
)

w

Gaussian/L2
Laplace/L1



Estimation via Sampling

• Suppose that we are able to generate independent random samples from a 
random variable  

• How can we use those random samples to estimate the expected value of ? 

• or some function  of ; but that in general is just a different random 
variable  

• Question: But first, why would we want to?

X

X

h X
Y = h(X)



Estimation from a Sample
Law of Large Numbers: 
As the number  of independent samples  from a random variable  with 
distribution  approaches infinity, the sample average approaches the expected 
value of . 

  

Since  is also a random variable, this generalizes to arbitrary functions of : 

 

n x1, x2, …, xn X
f(x)

X

𝔼[X] = ∑
x

f(x)x ≈
1
n

n

∑
i=1

xi

Y = h(X) X

𝔼[h(X)] = ∑
x

f(x)h(x) ≈
1
n

n

∑
i=1

h(xi)



Probably Approximately Correct
• We never actually have an infinite number of sampled values 

• How do we know when we have enough samples? 

Hoeffding's inequality: 
Suppose , and  is the sample average from  independent samples from .  
Then 

. 

• For any given error margin  and number of samples , we can plug into this formula 
and get a PAC bound. 

• Can also go the other way: plug in the acceptable error bound to RHS, and derive 
the number of samples  needed 

• This generalizes to arbitrary bounded random variables .

0 ≤ X ≤ 1 s n X

Pr( |𝔼[X] − s | > ϵ) ≤ 2e−2nϵ2

ϵ n

n

a ≤ X ≤ b



Generating Samples from a  
Single Variable

How can we generate samples from a distribution? 

1. Totally order the domain of the variable 
(can be arbitrary for categorical variables) 

2. Cumulative distribution:  

  

3. Select a uniform random number  

4. Return 

F(x) = Pr(X ≤ x)

F(x) = ∫
x

−∞
f(z)dz F(x) = ∑

x′ ≤x

f(x′ )

y ∈ [0,1]

xi = F−1(y)

F(x)

f(x)



Hard-To-Sample Distributions
Often, we want to sample from distributions that are hard to sample from, 
especially large joint distributions 

Question: Why might a distribution be hard to sample from? 

1. Use samples from easier distributions: 

• Rejection Sampling 

• Importance Sampling 

2. Go piece by piece through the joint distribution 

• Forward Sampling in a Belief Network 

• Particle Filtering



Proposal Distributions
• Can we use an easy-to-sample distribution  to help us sample from ? 

• Very common: We know an unnormalized , but not the properly 
normalized distribution : 

  

•  is the target distribution 

•  is the unnormalized target distribution 

•  is the proposal distribution

g(x) f(x)

f*(x)
f(x)

f(x) =
f*(x)

∫ ∞
−∞

f*(z)dz

f(x)

f*(x)

g(x)



Importance Sampling
• Rejection sampling works, but it can be wasteful 

• Lots of samples get rejected when proposal 
and target distributions are very different 

• What if we took a weighted average instead? 

1. Sample  from  

2. Weight each sample  by  

3. Estimate is  

x1, x2, …, xn g(x)

xi wi =
Mf*(xi)

g(xi)
1

∑j wj ∑
xi∼g

wixi

𝔼[X] = ∑
x

f(x)x

= ∑
x

g(x)
g(x)

f(x)x

= ∑
x

g(x)
f(x)
g(x)

x

≈
1
n ∑

xi∼g

f(xi)
g(xi)

xi



Forward Sampling in a 
Belief Network

• Sometimes we know how to sample parts of a large joint distribution in 
terms of other parts 

• E.g., belief networks:  

• We might be able to directly sample from each conditional 
distribution but not from the joint distribution 

• Forward sampling: 

1. Select an ordering of variables consistent with the factoring 

2. Repeat until enough samples generated: 
    For each variable  in the ordering: 
        Sample 

P(X, Y, Z) = P(X)P(Y)P(Z ∣ X, Y)

X
xi ∼ P(X ∣ pa(X))



Summary
• Cross-validation is a powerful technique for selecting hyperparameters based on data 
• In Bayesian Learning, we learn a distribution over models instead of a single model 
• When the model is conjugate, posterior probabilities can be computed analytically 
• We can make predictions by model averaging to compute the posterior predictive 

distribution 
• The prior can encode bias over models, much the same as regularization 
• Often we cannot directly estimate probabilities or expectations from our model 
• Monte Carlo estimates: Use a random sample from the distribution to estimate expectations 

by sample averages 
• Two families of techniques for hard to sample distributions: 

1. Use an easier-to-sample proposal distribution instead 
2. Sample parts of the model sequentially


