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Lecture Outline
1. Recap


2. Causality Introduction


3. Causal Queries

After this lecture, you should be able to:

• distinguish between an observation and an intervention

• construct the post-intervention distribution for a causal query

• evaluate a causal query on a given causal network

• justify whether a causal model is valid

• define selection effect



Patterns of dependence:


1. Chain: Ends are not marginally independent,  
but conditionally independent given middle 

2. Common ancestor: Descendants are not marginally 
independent, but conditionally independent given ancestor 

3. Common descendant: Ancestors are marginally 
independent, but not conditionally independent given 
descendant

Recap: Independence in a

Belief Network

Belief Network Independence Property:  
Every node is independent of its non-descendants, conditional only on its parents



Recap: Variable Elimination
1. Condition on observations by conditioning


2. Construct joint distribution factor by multiplication


3. Remove non-query, non-observed variables by summing out


4. Normalize at the end


Interleaving order of sums and products can improve efficiency:


  

∑
A

∑
E

f1(Q, A, B, C) × f2(C, D, E) 112 computations

= (∑
A

f1(Q, A, B, C)) × (∑
E

f2(C, D, E)) 28 computations



Causality Introduction: 
A Tale of Two Belief Networks

• Two different ways to factor the joint distribution between 
whether the sidewalk is Wet and whether it is Raining:


 


• Each factorization corresponds to a different Belief Network

P(Rain, Wet) = P(Wet ∣ Rain)P(Rain)
= P(Rain ∣ Wet)P(Wet)

Rain Wet P(Rain, Wet)
F T 0.125
F F 0.375
T T 0.45
T F 0.05

Wet

Rain

Rain

Wet

Natural network

Inverted network

P(Rain = T ) = 0.5{
{P(Rain = F) = 0.5



The Inverted Network

Isn't Crazy

Corresponds to the factoring 


• Sometimes you want to answer the question 
Given that I observe that the sidewalk is Wet, what is the probability that 
it is currently Raining?


• This is just updating our confidence in a hypothesis (it is Raining) given our 
observations (Wet sidewalk)


• Could preprocess the natural network into this form to avoid having to do a lot of 
computations with Bayes' Rule

P(Rain ∣ Wet)P(Wet)

Rain

Wet

Inverted network



The Inverted Network 
Is Crazy

Corresponds to the factoring 


• If I cause my sidewalk to be Wet (by throwing water on it), what is the 
probability that it is Raining?


• So, condition on Wet=true


• This network seems to imply that it will be  



• .... wait, what?


• Question: What is going wrong in this example?

P(Rain ∣ Wet)P(Wet)

P(Rain ∣ Wet = True) = .78 > P(Rain) = .5

Rain

Wet

Inverted network

Rain Wet P(Rain | Wet)
F F 0.88
T F 0.12
F T 0.22
T T 0.78

Wet P(Wet)
T 0.575
F 0.425



Observations vs. Interventions

• The semantics of Belief Networks are defined for observational questions


• They don't directly model causal questions


• In fact, in our Rainy Sidewalk example, we would get exactly the same 
(crazy) answer to our causal question from querying the natural network


• The joint distribution represented by the networks doesn't model the situation in 
which I intervene


• Adding a variable James_Throws_Water to the distribution



Observations vs. Interventions: 
Examples

• Observation: If I observe soil pH is high, will this plant grow more?


• Intervention: If I make the pH of the soil high, will this plant grow more?


• Observation: If I observe that the clock says 11pm, will it be dark out when I look 
out the window?


• Intervention: If I set the clock to 11pm, will it be dark out when I look out the 
window?


• Observation: In the past, did students who volunteered for extra tutoring get higher 
grades than those who didn't?


• Intervention: If I assign extra tutoring to a student, will they get a higher grade than if 
I don't?



Simpson's Paradox

A D R count P(A,D,R)

Y T T 18 0.225

Y T F 12 0.15

Y F T 7 0.0875

Y F F 3 0.0375

O T T 2 0.025

O T F 8 0.1

O F T 9 0.1125

O F F 21 0.2625

• Is the drug effective for young patients?






• Is the drug effective for old patients?






• Is the drug effective?




P(R = true ∣ D = true, A = young) = 0.60
P(R = true ∣ D = false, A = young) = 0.70

P(R = true ∣ D = true, A = old) = 0.20
P(R = true ∣ D = false, A = old) = 0.30

P(R = true ∣ D = true) = 0.50
P(R = true ∣ D = false) = 0.40

Suppose we have information from two trials of a new drug:  
One on young test subjects, and one on old test subjects.

 - age

 - received drug

 - recovered

A
D
R



Simpson's Paradox, explained
• The joint distribution factors as  




• Per-age queries are answered directly by 


•
For the overall query, we want  


• But that's not how the distribution factors.  If we follow the factoring above, we will instead compute


 


• In our dataset, knowing whether a subject got the drug tells you something  
about their age, and younger patients have a higher overall recovery rate than older patients


•    vs   

P(A, D, R) = P(A) × P(D ∣ A) × P(R ∣ D, A)

P(R ∣ D, A)

P(R ∣ D) =
∑A P(R ∣ A, D)P(A)

∑A,R P(R ∣ A, D)P(A)

P(R |D) =
P(R, D)

P(D)
=

∑A P(A, D, R)
∑A,R P(A, D, R)

=
∑A P(R |A, D)P(D |A)P(A)

∑A,R P(R |A, D)P(D |A)P(A)

P(R ∣ A = young) = 0.625 P(R ∣ A = old) = 0.275

D

A

R



Selection Bias
• This problem is an example of selection bias


• Whether subjects received treatment is systematically related to 
their response to the treatment


• This is why randomized trials are the gold standard for causal 
questions:


• The only thing that determines whether or not a subject is 
treated is a random number 


• Random number is definitely independent of anything else 
(including response to treatment)

D

A

R

D

A

R

H Q



Why do we need this?
The problem we're trying to solve here:


• Given an observational dataset (which may include selection bias), answer 
causal questions (i.e., questions about the results of interventions)


Question: If randomized trials never have selection bias, why would we even want 
to do this?  (i.e., why not always just use randomized trials?)


1. Practicality: Sometimes it is impossible.  (There's only one national economy, 
so you cannot raise taxes and also not raise taxes)


2. Ethics: Sometimes it is immoral. (It would be unfair to randomly assign 
different prison sentences to different convicts)



Post-Intervention Distribution

• The causal query is really a query on a different distribution in which we 
have forced 


• Different from the original joint distribution conditioned on observing 
that 


• We will refer to the two distributions as the observational distribution 
and the post-intervention distribution


• With a post-intervention distribution, we can compute the answers to causal 
queries using existing techniques 
(e.g., variable elimination)

D = true

D = true



Post-Intervention Distribution

for Simpson's Paradox

• Observational distribution:  



• Question: What is the post-intervention distribution for 
Simpson's Paradox?


• We're forcing , so  
for all 


• That's the same as just omitting the  factor


• Post-intervention distribution: 

P(A, D, R) = P(A) × P(D ∣ A) × P(R ∣ D, A)

D = true P(D = true ∣ A = a) = 1
a ∈ dom(A)

P(D ∣ A)

P(G, D, R) = P(A) × P(D) × P(R ∣ D, A)

D

A

R

D

A

R



The Do-Calculus
• How should we express causal queries?


• One approach: The do-calculus


• Condition on observations:  



• Express interventions with special do operator: 



• Allows us to mix observational and interventional information: 

P(Y ∣ X = x)

P(Y ∣ do(X = x))

P(Y ∣ Z = z, do(X = x))



Evaluating Causal Queries 
With the Do-Calculus

Given a query :


1. Construct post-intervention distribution  by removing all links from 
's direct parents to 


2. Evaluate the observational query  in the post-
intervention distribution

P(Y ∣ do(X = x), Z = z)
̂P

X X

̂P(Y ∣ X = x, Z = z)



Example: Simpson's Paradox
• Observational distribution:     


• Observational query: 


 


• Observational query values:       


• Post-intervention distribution for causal query : 



• Causal query:  

 


• Causal query values: 
     

P(A, D, R) = × P(A) × P(D ∣ A) × P(R ∣ A, D)

P(R |D) =
P(R, D)

P(D)
=

∑A P(A, D, R)
∑A,R P(A, D, R)

=
∑A P(R |D, A)P(D |A)P(A)

∑A,R P(R |D, A)P(D |A)P(A)

P(R ∣ D = true) = 0.50 P(R ∣ D = false) = 0.40

P (R ∣ do(D = true))
̂P(A, D, R) = P(R ∣ D, A) × P(A)

P(R |do(D = true)) = ̂P(R |D = true) =
∑A P(R |D, A)P(A)

∑A,R P(R |D, A)P(A)

P (R ∣ do(D = true)) = 0.40 P (R ∣ do(D = false)) = 0.50

D

A

R

D

A

R



Example: Rainy Sidewalk
Query: 


Natural network:


• Observational distribution: 


• Post intervention distribution:   


• 


Inverted network: 

• Observational distribution: 


• Post intervention distribution:   



•

P(Rain ∣ do(Wet = true))

P(Wet, Rain) = P(Wet ∣ Rain)P(Rain)
̂P(Wet = true, Rain) = P(Rain)P(Wet)

P(Rain ∣ do(Wet = true)) = .50

P(Wet, Rain) = P(Rain ∣ Wet)P(Wet)

̂P(Wet = true, Rain) = P(Rain ∣ Wet)P(Wet)

P(Rain ∣ do(Wet = true)) = .78

Wet

Rain

Observational

Wet

Rain

Post-intervention

Rain

Wet

Observational

Rain

Wet

Post-intervention



Causal Models

• The natural network gives the correct answer to our causal query, 
but the inverted network does not  (Why?)


• Not every factoring of a joint distribution is a valid causal model


Definition: 
A causal model is a directed acyclic graph of random variables such 
that for every edge , the value of random variable  is realized 
before the value of random variable .

X → Y X
Y



Alternative Representation: 
Influence Diagrams

Instead of adding a new operator, we can instead represent 
causal queries by augmenting the causal model with decision 
variables  for each potential intervention target .
FD D

dom(FD) = dom(D) ∪ {idle}

P(D |parents(D), FD) =
P(D |parents(D)) if FD = idle,
1 if FD ≠ idle ∧ D = FD,
0 otherwise.



Influence Diagrams Examples

Wet

Rain

FWet

D

A

RFD



Summary
• Observational queries  are different from 

causal queries 


• To evaluate causal query :


1. Construct post-intervention distribution  by removing all 
links from 's direct parents to 


2. Evaluate the observational query  in the 
post-intervention distribution


• Not every correct Bayesian network is a valid causal model

P(Y ∣ X = x)
P(Y ∣ do(X = x))

P(Y ∣ do(X = x))
̂P

X X

̂P(Y ∣ X = x, Z = z)


