Conditional Independence

CMPUT 261: Introduction to Artificial Intelligence
P\&M §8.2

Assignment \#1

- Assignment \#1 is due TODAY at 11:59pm
- Hand in on eClass

Lecture Outline

1. Recap
2. Structure
3. Marginal Independence
4. Conditional Independence

After this lecture, you should be able to:

- Define marginal and conditional independence
- Compute joint probabilities by exploiting marginal and conditional independence
- Compute the minimal number of quantities needed to define a joint distribution given a particular structure / generating process
- Identify marginally or conditionally independent random variables

Recap: Probability

- Probability is a numerical measure of uncertainty
- Not a measure of truth
- Semantics:
- A possible world is a complete assignment of values to variables
- Every possible world has a probability
- Probability of a proposition is the sum of probabilities of possible worlds in which the statement is true

Recap:

Conditional Probability

- When we receive evidence in the form of a proposition e, it rules out all of the possible worlds in which e is false
- We set those worlds' probability to 0 , and rescale remaining probabilities to sum to 1
- Result is probabilities conditional on e: $P(h \mid e)$

Unstructured Joint Distributions

- Probabilities are not fully arbitrary
- Semantics tell us probabilities given the joint distribution.
- Semantics alone do not restrict probabilities very much
- In general, we might need to explicitly specify the entire joint distribution
- Question: How many numbers do we need to assign to fully specify a joint distribution of k binary random variables?
- We call situations where we have to explicitly enumerate the entire joint distribution unstructured

Structure

- Unstructured domains are very hard to reason about
- Fortunately, most real problems are generated by some sort of underlying process
- This gives us structure that we can exploit to represent and reason about probabilities in a more compact way
- We can compute any required joint probabilities based on the process, instead of specifying every possible joint probability explicitly
- Simplest kind of structure is when random variables don't interact

Generating Process

Example: I keep flipping a fair coin until it come up Heads

- Let S be a random variable that counts how many times I flipped the coin
- Knowing the process that generates the probabilities gives us a way to compute the probabilities rather than explicitly specifying each one individually

Example 2: Same as example 1, except that the coin comes up heads with probability p

Questions:

1. What is $\operatorname{Pr}(S=1)$?
2. What is $\operatorname{Pr}(S=k)$ (for integer $k>0$?)
3. How many numbers would I have to assign to explicitly describe this distribution?
4. How many numbers would I need to assign to succinctly describe the distribution from
Example 2?

Marginal Independence

When the value of one variable never gives you information about the value of the other, we say the two variables are marginally independent.

Definition:

Random variables X and Y are marginally independent iff

$$
\begin{aligned}
& \text { 1. } P(X=x \mid Y=y)=P(X=x) \text {, and } \\
& \text { 2. } P(Y=y \mid X=x)=P(Y=y)
\end{aligned}
$$

for all values of $x \in \operatorname{dom}(X)$ and $y \in \operatorname{dom}(Y)$.

Marginal Independence Example

- I flip four fair coins, and get four results: $C_{1}, C_{2}, C_{3}, C_{4}$
- Question: What is the probability that C_{1} is heads?
- $P\left(C_{1}=\right.$ heads $)$
- Suppose that C_{2}, C_{3}, and C_{4} are tails
- Question: Now what is the probability that C_{1} is heads?
- $P\left(C_{1}=\right.$ heads $\mid C_{2}=$ tails, $C_{3}=$ tails, $C_{4}=$ tails $)$
- Why?

Properties of Marginal Independence

Proposition:

If X and Y are marginally independent, then

$$
P(X=x, Y=y)=P(X=x) P(Y=y)
$$

for all values of $x \in \operatorname{dom}(X)$ and $y \in \operatorname{dom}(Y)$.

Proof:

$$
\begin{array}{ll}
\text { 1. } P(X=x, Y=y)=P(X=x \mid Y=y) P(Y=y) & \text { Chain rule } \\
\text { 2. } P(X=x, Y=y)=P(X=x) P(Y=y) & \text { Marginal independence }
\end{array}
$$

Exploiting Marginal Independence

- Instead of storing the entire joint distribution, we

C_{1}	P
H	0.5
C_{2}	P
H	0.5
C_{3}	P
H	0.5
C_{4}	P
H	0.5

- Question: How many numbers do we need to assign to fully specify the marginal distribution for a single binary variable?
- If everything is independent, learning from observations is hopeless (why?)
- But also if nothing is independent
- The intermediate case, where many variables are independent, is ideal

\mathbf{C}_{1}	\mathbf{C}_{2}	\boldsymbol{C}_{3}	\boldsymbol{C}_{4}	P
H	H	H	H	0.0625
H	H	H	T	0.0625
H	H	T	H	0.0625
H	H	T	T	0.0625
H	T	H	H	0.0625
H	T	H	T	0.0625
H	T	T	H	0.0625
H	T	T	T	0.0625
T	H	H	H	0.0625
T	H	H	T	0.0625
T	H	T	H	0.0625
T	H	T	T	0.0625
T	T	H	H	0.0625
T	T	H	T	0.0625
T	T	T	H	0.0625

Clock Scenario

Example:

- I have a stylish but impractical clock with no number markings
- Two students, Alice and Bob, both look at the clock at the same time, and form opinions about what time it is
- Their opinion of the time is directly affected by the actual time

Random variables:

A - Time Alice thinks it is
B - Time Bob thinks it is
T - Actual time

Conditional Independence

When knowing the value of a third variable Z makes two variables A, B independent, we say that they are conditionally independent given Z (or independent conditional on \mathbb{Z}).

Definition:

Random variables X and Y are conditionally independent given Z iff

$$
P(X=x \mid Y=y, Z=z)=P(X=x \mid Z=z)
$$

for all values of $x \in \operatorname{dom}(X), y \in \operatorname{dom}(Y)$, and $z \in \operatorname{dom}(Z)$.
We write this using the notation $X \Perp Y \mid Z$.
Clock example: A and B are conditionally independent given T.

Properties of

Conditional Independence

Proposition:

If X and Y are conditionally independent given Z, then

$$
P(X=x, Y=y \mid Z)=P(X=x \mid Z) P(Y=y \mid Z)
$$

for all values of $x \in \operatorname{dom}(X), y \in \operatorname{dom}(Y)$, and $z \in \operatorname{dom}(Z)$.

Proof:

1. $P(X=x, Y=y \mid Z)=P(X=x \mid Y=y, Z=z) P(Y=y \mid Z) \quad$ Chain rule
2. $P(X=x, Y=y \mid Z)=P(X=x \mid Z) P(Y=y \mid Z) \quad$ Conditional independence

Properties of

Conditional Independence

Question: Is conditional independence commutative?

- i.e., If $X \Perp Y \mid Z$, is it also true that $Y \Perp X \mid Z$?

Proof:

$$
\begin{aligned}
X \Perp Y \mid Z & \Longleftrightarrow P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z) \text { previous result } \\
& \Longleftrightarrow P(Y, X \mid Z)=P(Y \mid Z) P(X \mid Z) \text { commutativity of multiplication } \\
& \Longleftrightarrow Y \Perp X \mid Z
\end{aligned}
$$

Exploiting Conditional Independence

If X and Y are marginally independent given Z, then we can again just store smaller tables and recover joint distributions by multiplication.

- Question: How many tables do we need to store in order to be able to compute the joint distribution of X, Y, Z when X and Y are independent given Z ?
- i.e., how many table to be able to compute $P(X=x, Y=y, Z=z)$ for every combination of x, y, z ?

Preview: In the upcoming lectures, we will see how to efficiently exploit complex structures of conditional independence

Simplified Clock Example

\boldsymbol{A}	\boldsymbol{T}	$\mathrm{P}(\mathrm{A} \mid \mathrm{T})$
12	1	0.25
1	1	0.50
2	1	0.25
1	2	0.25
2	2	0.50
3	2	0.25
2	3	0.25
3	3	0.50
4	3	0.25
	\bullet	
	\bullet	

\boldsymbol{B}	\boldsymbol{T}	$\mathbf{P}(\mathbf{B} \mid \mathrm{T})$
12	1	0.25
1	1	0.5
2	1	0.25
1	2	0.25
2	2	0.5
3	2	0.25
2	3	0.25
3	3	0.5
4	3	0.25
	\bullet	
	\bullet	

\boldsymbol{T}	$\mathbf{P (T)}$
1	0
2	$1 / 10$
3	$1 / 10$
4	$1 / 10$
5	$1 / 10$
6	$1 / 10$
7	$1 / 10$
8	$1 / 10$
9	$1 / 10$
10	$1 / 10$
11	$1 / 10$
12	0

$$
\begin{aligned}
& P(A=1, B=2, T=2) \\
= & P(A=1 \mid T=2) P(B=2 \mid T=2) P(T=2) \\
= & 0.25 \times 0.5 \times 0.10 \\
= & 0.0125 \\
& P(A=1, B=2, T=1) \\
= & P(A=1 \mid T=1) P(B=2 \mid T=1) P(T=1) \\
= & 0.5 \times 0.25 \times 0.0 \\
= & 0
\end{aligned}
$$

Warnings

- Often, when two variables are marginally independent, they are also conditionally independent given a third variable
- E.g., coins C_{1}, and C_{2} are marginally independent, and also conditionally independent given C_{3} : Learning the value of C_{3} does not make C_{2} any more informative about C_{1}.
- This is not always true
- Consider another random variable: B is true if both C_{1} and C_{2} are the same value
- C_{1} and C_{2} are marginally independent: $P\left(C_{1}=\right.$ heads $\mid C_{2}=$ heads $)=P\left(C_{1}=\right.$ heads $)$
- In fact, C_{1} and C_{2} are also both marginally independent of $B: P\left(C_{1} \mid B=\right.$ true $)=P\left(C_{1}\right)$
- But if I know the value of B, then knowing the value of C_{1} tells me exactly what the value of C_{2} must be: $P\left(C_{1}=\right.$ heads $\mid B=$ true, $C_{2}=$ heads $) \neq P\left(C_{1}=\right.$ heads $\mid B=$ true $)$
- C_{1} and C_{2} are not conditionally independent given B

Summary

- Unstructured joint distributions are exponentially expensive to represent (and operate on)
- Marginal and conditional independence are especially important forms of structure that a distribution can have
- Vastly reduces the cost of representation and computation
- Beware: The relationship between marginal and conditional independence is not fixed
- Joint probabilities of (conditionally or marginally) independent random variables can be computed by multiplication

