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Logistics & Assignment #1
• Assignment #1 was released last week 

See eClass


• Due September 27 at 11:59pm


• Office hours have begun!


• Not mandatory; for getting help from TAs


• There are no labs for this course: You do not need to show up for 
your scheduled lab section


• There will be an example/practice midterm



Assignment #1 Clarification

• Default implementations of arc_cost and cost assume that a path is a sequence of arcs


• i.e.,  rather than 

• This can make initializing with a zero-length path a little painful

• You are not required to use this default representation


• Use any data structure for paths and arcs that you like

⟨(n1, n2), (n2, n3), (n3, n4)⟩ ⟨n1, n2, n3, n4⟩



Recap
• Search problems are an extremely general encoding for choosing a 

sequence of actions from a start state to a goal state


• Using heuristic functions can speed this process up

• A* search is optimal but space-intensive

• Branch & bound depth-first search is optimal and space 

efficient, but needs a good starting bound

• Iterative Deepening A* (IDA*) finds a good bound by iterative 

restarts (like IDS), but can be quadratically less time-efficient


• Varying the direction of search can exploit mismatches in forward 
and reverse branching factors



Lecture Outline
1. Recap & Logistics


2. Local Search


3. Hill Climbing


4. Randomized Algorithms

After this lecture, you should be able to:

• Implement stochastic local search and demonstrate its operation

• Implement simulated annealing and demonstrate its operation

• Identify when stochastic local search is more appropriate than graph search

• Explain the relative advantages and disadvantages of different neighbourhood 

specifications



Searching for Goal Nodes

• State is the values of the different variables


• Easy to recognize when we've succeeded, but computing a "satisfying 
assignment" is NP-complete in general


• SAT is an example of a constraint satisfaction problem

Example (SAT problem): Given a Boolean formula,


,


is there an assignment of truth values to the variables  that makes the formula true?

P(X) = (X1 ∨ X2 ∨ ¬X3) ∧ … ∧ (¬Xk−2 ∨ ¬Xk−1 ∨ Xk)

Xi

Sometimes, we know how to recognize a goal node, but not how to 
construct one.



Searching for Goal Nodes
We can encode SAT as a graph search problem (assignments as states, variable 
value changes as actions), but:


1. The space is too big to explore exhaustively


• Question: How many states are there in a SAT problem with  variables?


• Industrial SAT problems routinely have hundreds of thousands of 
variables


2. We don't care about the sequence of actions


• Once we have a satisfying assignment, we are done


• In fact, there isn't even a "real" set of actions; we have to make 
something up!

k



Local Search
• Idea: start from a random assignment, and then search around in the space of 

possible assignments


• Need not keep track of the sequence of moves that we took


• Intuitively:


1. Select an assignment of a value to each variable


2. Repeat:


(i) Select a variable to change


(ii) Select a new value for that variable


3. until a satisfying assignment is found



Local Search Problem
Definition: Local Search Problem 

• A constraint satisfaction problem: A set of variables, domains 
for the variables, and constraints on their joint assignment.


• Neighbours function: 


• Maps from a node  to a set of "similar" nodes


• Score function: 


• Evaluates the "quality" of an assignment

neighbours(n)

n

score(n)

Questions:


1. What are the 
nodes?


2. What are the 
goal nodes?



Neighbourhoods
• In previous graph search problems, the successor function represents 

states that can be reached from a given state by taking some actual action


• In local search problems, the neighbours function is a design decision


• We choose actions that will help us efficiently explore the space rather 
than trying to represent actual actions


• Usually the neighbourhood is states that differ in small ways from the 
current state (variable assignment)


• E.g.: Assignments that differ in  different variables, possibly by a 
small amount


• Question: What might be a good neighbourhood function for SAT?

k



Heuristics vs. Scores
• Previously, the heuristic was optional, for improving efficiency


• In local search problems, the score function is required


• The state space is too big to exhaustively explore, so 
uninformed search is not an option


• Sometimes we don't even have a goal, we just want to 
maximize the quality of the state


• Example scores: number of satisfied clauses (in SAT); number of 
satisfied constraints (in CSP)


• Note: we maximize a score (why?)



Generic Local Search Algorithm
Input: a constraint satisfaction problem; a neighbours function; 
a score function to maximize; a stop_walk criterion


current := random assignment of values to variables 
incumbent := current 
repeat 
    if incumbent is a satisfying assignment: 
        return incumbent 
    if stop_walk(): 
        current := new random assignment of values to variables 
    else: 
        select a current from neighbours(current) 
    if score(current) > score(incumbent): 
        incumbent := current 
until termination



Hill Climbing
• Idea: Select the neighbour with the highest score


• This is called an improving step


• If no improving steps available, halt and return incumbent


• We'll move toward the best solution once we are close enough


• This algorithm is called hill climbing:


• It seeks the highest point on the scoring function's graph


• It moves only uphill (i.e., it makes only improving steps)



Hill Climbing Algorithm
Input: a constraint satisfaction problem; a neighbours function; a score function


current := random assignment of values to variables 
incumbent := current 
repeat 
    if incumbent is a satisfying assignment: 
        return incumbent 
    if False: 
        current := new random assignment of values to variables 
    else: 
        current := n from neighbours(current) with maximum score(n) 
    if score(current) > score(incumbent): 
        incumbent := current 
    else: 
        return incumbent 
until termination

Questions:


1. Is hill climbing 
complete?


2. Is hill climbing 
optimal?



Hill Climbing Problems
1. Foothills: Local maxima that are not global maxima


2. Plateaus: Regions of the state space where the score is uninformative


3. Ridges: Foothills that would not be foothills with a larger neighbourhood


4. Ignorance of the global optimum: Unless we reach a satisfying 
assignment, we cannot be sure that an optimum returned by local search 
is the global optimum.

Ridge

Foothill

Plateau

Global 
optimum



Randomized Algorithms

• Adding random moves can fix some hill climbing problems


• Two main kinds of random move:


1. Random restart:  Start searching from a completely random new 
location


2. Random step: Choose a random neighbour


• Stochastic local search: Add both kinds of random moves to hill climbing



Stochastic Local Search
Input: a constraint satisfaction problem; a neighbours function; a score 
function to maximize; a stop_walk criterion; a random_step criterion


current := random assignment of values to variables 
incumbent := current 
repeat 
    if incumbent is a satisfying assignment: 
        return incumbent 
    if stop_walk(): 
        current := new random assignment of values to variables 
    else if random_step(): 
        current := a random element from neighbours(current) 
    else: 
        current := n from neighbours(current) with maximum score(n) 
    if score(current) > score(incumbent): 
        incumbent := current

Questions:


1. Is stochastic 
local search 
complete? 
(Why?)


2. Is stochastic 
local search 
optimal? 
(Why?)



Two Examples
• Consider two partial algorithms:


1. Hill climbing plus random restart


2. Hill climbing plus random steps


• Question: Which finds the maximum most easily 
on each of these two search spaces?  Why?



Simulated Annealing
• Idea: Start out by searching pretty randomly, but become more directed


• Intuition: Move to a good neighbourhood quickly, then search intensively in 
that neighbourhood


• Maintain a "temperature" 


• Choose new nodes more randomly at higher temperatures;  
Gradually decrease the temperature (according to a cooling schedule)


• At each step:

1. Randomly choose a neighbour 

2. If , always accept (i.e., assign to )

3. Else, accept with probability


 

T

new
score(new) > score(current) current

e[(score(new)−score(current))/T]



Simulated Annealing cont.

• Small neighbourhoods are good, because they are more efficient to search


• Large neighbourhoods are good, because they are more likely to contain 
an improvement


• Simulated annealing allows for a large neighbourhood and efficient 
searching


• You don't have to generate the whole neighbourhood, just randomly 
construct a single neighbour

e[(score(new)−score(current))/T]
• Worse  means lower acceptance probability 

• Always negative (why?)

score(new) • Higher T makes 
negative value smaller


• Higher acceptance 
probability 



Summary
• For some problems, we only care about finding a goal node, not the actions 

we took to find it


• Local search: Look for goal states by iteratively moving from a current 
state to a neighbouring state


• Hill climbing: Always move to the highest-score neighbour


• Random step: Sometimes choose a random neighbour


• Random restart: Sometimes start again from an entirely random state


• Simulated annealing: Random moves start very random, become 
more greedy over time


