
Local Search

CMPUT 261: Introduction to Artificial Intelligence 
 

P&M §4.7

Logistics & Assignment #1
• Assignment #1 was released last week 

See eClass

• Due September 27 at 11:59pm

• Office hours have begun!

• Not mandatory; for getting help from TAs

• There are no labs for this course: You do not need to show up for
your scheduled lab section

• There will be an example/practice midterm

Assignment #1 Clarification

• Default implementations of arc_cost and cost assume that a path is a sequence of arcs

• i.e., rather than

• This can make initializing with a zero-length path a little painful

• You are not required to use this default representation

• Use any data structure for paths and arcs that you like

⟨(n1, n2), (n2, n3), (n3, n4)⟩ ⟨n1, n2, n3, n4⟩

Recap
• Search problems are an extremely general encoding for choosing a

sequence of actions from a start state to a goal state

• Using heuristic functions can speed this process up

• A* search is optimal but space-intensive

• Branch & bound depth-first search is optimal and space

efficient, but needs a good starting bound

• Iterative Deepening A* (IDA*) finds a good bound by iterative

restarts (like IDS), but can be quadratically less time-efficient

• Varying the direction of search can exploit mismatches in forward
and reverse branching factors

Lecture Outline
1. Recap & Logistics

2. Local Search

3. Hill Climbing

4. Randomized Algorithms

After this lecture, you should be able to:

• Implement stochastic local search and demonstrate its operation

• Implement simulated annealing and demonstrate its operation

• Identify when stochastic local search is more appropriate than graph search

• Explain the relative advantages and disadvantages of different neighbourhood

specifications

Searching for Goal Nodes

• State is the values of the different variables

• Easy to recognize when we've succeeded, but computing a "satisfying
assignment" is NP-complete in general

• SAT is an example of a constraint satisfaction problem

Example (SAT problem): Given a Boolean formula,

,

is there an assignment of truth values to the variables that makes the formula true?

P(X) = (X1 ∨ X2 ∨ ¬X3) ∧ … ∧ (¬Xk−2 ∨ ¬Xk−1 ∨ Xk)

Xi

Sometimes, we know how to recognize a goal node, but not how to
construct one.

Searching for Goal Nodes
We can encode SAT as a graph search problem (assignments as states, variable
value changes as actions), but:

1. The space is too big to explore exhaustively

• Question: How many states are there in a SAT problem with variables?

• Industrial SAT problems routinely have hundreds of thousands of
variables

2. We don't care about the sequence of actions

• Once we have a satisfying assignment, we are done

• In fact, there isn't even a "real" set of actions; we have to make
something up!

k

Local Search
• Idea: start from a random assignment, and then search around in the space of

possible assignments

• Need not keep track of the sequence of moves that we took

• Intuitively:

1. Select an assignment of a value to each variable

2. Repeat:

(i) Select a variable to change

(ii) Select a new value for that variable

3. until a satisfying assignment is found

Local Search Problem
Definition: Local Search Problem

• A constraint satisfaction problem: A set of variables, domains
for the variables, and constraints on their joint assignment.

• Neighbours function:

• Maps from a node to a set of "similar" nodes

• Score function:

• Evaluates the "quality" of an assignment

neighbours(n)

n

score(n)

Questions:

1. What are the
nodes?

2. What are the
goal nodes?

Neighbourhoods
• In previous graph search problems, the successor function represents

states that can be reached from a given state by taking some actual action

• In local search problems, the neighbours function is a design decision

• We choose actions that will help us efficiently explore the space rather
than trying to represent actual actions

• Usually the neighbourhood is states that differ in small ways from the
current state (variable assignment)

• E.g.: Assignments that differ in different variables, possibly by a
small amount

• Question: What might be a good neighbourhood function for SAT?

k

Heuristics vs. Scores
• Previously, the heuristic was optional, for improving efficiency

• In local search problems, the score function is required

• The state space is too big to exhaustively explore, so
uninformed search is not an option

• Sometimes we don't even have a goal, we just want to
maximize the quality of the state

• Example scores: number of satisfied clauses (in SAT); number of
satisfied constraints (in CSP)

• Note: we maximize a score (why?)

Generic Local Search Algorithm
Input: a constraint satisfaction problem; a neighbours function;
a score function to maximize; a stop_walk criterion

current := random assignment of values to variables 
incumbent := current 
repeat 
 if incumbent is a satisfying assignment: 
 return incumbent 
 if stop_walk(): 
 current := new random assignment of values to variables 
 else: 
 select a current from neighbours(current) 
 if score(current) > score(incumbent): 
 incumbent := current 
until termination

Hill Climbing
• Idea: Select the neighbour with the highest score

• This is called an improving step

• If no improving steps available, halt and return incumbent

• We'll move toward the best solution once we are close enough

• This algorithm is called hill climbing:

• It seeks the highest point on the scoring function's graph

• It moves only uphill (i.e., it makes only improving steps)

Hill Climbing Algorithm
Input: a constraint satisfaction problem; a neighbours function; a score function

current := random assignment of values to variables 
incumbent := current 
repeat 
 if incumbent is a satisfying assignment: 
 return incumbent 
 if False: 
 current := new random assignment of values to variables 
 else: 
 current := n from neighbours(current) with maximum score(n) 
 if score(current) > score(incumbent): 
 incumbent := current 
 else: 
 return incumbent 
until termination

Questions:

1. Is hill climbing
complete?

2. Is hill climbing
optimal?

Hill Climbing Problems
1. Foothills: Local maxima that are not global maxima

2. Plateaus: Regions of the state space where the score is uninformative

3. Ridges: Foothills that would not be foothills with a larger neighbourhood

4. Ignorance of the global optimum: Unless we reach a satisfying
assignment, we cannot be sure that an optimum returned by local search
is the global optimum.

Ridge

Foothill

Plateau

Global 
optimum

Randomized Algorithms

• Adding random moves can fix some hill climbing problems

• Two main kinds of random move:

1. Random restart: Start searching from a completely random new
location

2. Random step: Choose a random neighbour

• Stochastic local search: Add both kinds of random moves to hill climbing

Stochastic Local Search
Input: a constraint satisfaction problem; a neighbours function; a score
function to maximize; a stop_walk criterion; a random_step criterion

current := random assignment of values to variables 
incumbent := current 
repeat 
 if incumbent is a satisfying assignment: 
 return incumbent 
 if stop_walk(): 
 current := new random assignment of values to variables 
 else if random_step(): 
 current := a random element from neighbours(current) 
 else: 
 current := n from neighbours(current) with maximum score(n) 
 if score(current) > score(incumbent): 
 incumbent := current

Questions:

1. Is stochastic
local search
complete?
(Why?)

2. Is stochastic
local search
optimal? 
(Why?)

Two Examples
• Consider two partial algorithms:

1. Hill climbing plus random restart

2. Hill climbing plus random steps

• Question: Which finds the maximum most easily 
on each of these two search spaces? Why?

Simulated Annealing
• Idea: Start out by searching pretty randomly, but become more directed

• Intuition: Move to a good neighbourhood quickly, then search intensively in
that neighbourhood

• Maintain a "temperature"

• Choose new nodes more randomly at higher temperatures;  
Gradually decrease the temperature (according to a cooling schedule)

• At each step:

1. Randomly choose a neighbour

2. If , always accept (i.e., assign to)

3. Else, accept with probability

T

new
score(new) > score(current) current

e[(score(new)−score(current))/T]

Simulated Annealing cont.

• Small neighbourhoods are good, because they are more efficient to search

• Large neighbourhoods are good, because they are more likely to contain
an improvement

• Simulated annealing allows for a large neighbourhood and efficient
searching

• You don't have to generate the whole neighbourhood, just randomly
construct a single neighbour

e[(score(new)−score(current))/T]
• Worse means lower acceptance probability

• Always negative (why?)

score(new) • Higher T makes
negative value smaller

• Higher acceptance
probability

Summary
• For some problems, we only care about finding a goal node, not the actions

we took to find it

• Local search: Look for goal states by iteratively moving from a current
state to a neighbouring state

• Hill climbing: Always move to the highest-score neighbour

• Random step: Sometimes choose a random neighbour

• Random restart: Sometimes start again from an entirely random state

• Simulated annealing: Random moves start very random, become
more greedy over time

