
Branch & Bound

CMPUT 261: Introduction to Artificial Intelligence 
 

P&M §3.7-3.8

or, How I Learned to Stop Worrying and Love Depth First Search



Logistics

Assignment #1 was released on Tuesday 

• Available on eClass 

• Due: Tuesday September 27 at 11:59pm



Example: Heaps in Python

Source: https://jrwright.info/introai/examples/fringe.py

https://jrwright.info/introai/examples/fringe.py


Recap: Heuristics
Definition: 
A heuristic function is a function  that returns a non-negative estimate 
of the cost of the cheapest path from n to a goal node. 

• e.g., Euclidean distance instead of travelled distance 

Definition: 
A heuristic function is admissible if  is always less than or equal to the 
cost of the cheapest path from  to a goal node. 

• i.e.,  is a lower bound on  for any goal node 

h(n)

h(n)
n

h(n) cost(⟨n, …, g⟩) g



Recap: A* Search
• A* search uses both path cost information and heuristic information to 

select paths from the frontier 

• Let  

•  estimates the total cost to the nearest goal node starting from  

• A* removes paths from the frontier with smallest  

• When  is admissible,  
 is a solution, and 

 is a prefix of : 

•  

f(p) = cost(p) + h(p)

f(p) p

f(p)

h
p* = ⟨s, …, n, …, g⟩
p = ⟨s, …, n⟩ p*

f(p) ≤ cost(p*)

start actual

cost(p)
n estimated goal

h(n)

f(p)



Recap: A* Search Algorithm
Input: a graph; a set of start nodes; a  function 

 
while  is not empty: 
    select -minimizing path  from frontier 
    remove  from  
    if : 
        return  
    for each neighbour  of : 
        add  to frontier 
end while

goal

frontier := {⟨s⟩ ∣ s is a start node}
frontier

f ⟨n0, …, nk⟩
⟨n0, …, nk⟩ frontier

goal(nk)
⟨n0, …, nk⟩

n nk
⟨n0, …, nk, n⟩

i.e.,  
for all other paths 

f(⟨n0, …, nk⟩) ≤ f(p)
p ∈ frontier



Recap: A* is Optimal
Theorem: 
If there is a solution, A* using heuristic function  always returns an optimal solution (in 
finite time), if 

1. The branching factor is finite, 

2. All arc costs are greater than some , and 

3.  is an admissible heuristic. 

Proof: 

1. The optimal solution is guaranteed to be removed from the frontier eventually 

2. No suboptimal solution will be removed from the frontier whenever the frontier 
contains a prefix of the optimal solution 

h

ϵ > 0

h



Lecture Outline
1. Recap & Logistics 

2. Cycle Pruning 

3. Branch & Bound 

4. Exploiting Search Direction

After this lecture, you should be able to: 
• Implement cycle pruning 
• Explain when cycle pruning is and is not space- and time-efficient 
• Implement branch & bound and IDA* and demonstrate their operation 
• Derive the space and time complexity for branch & bound and IDA* 
• Predict whether forward, backward, or bidirectional search are more efficient for a 

search problem 



Cycle Pruning

• Even on finite graphs, depth-first search may not be 
complete, because it can get trapped in a cycle. 

• A search algorithm can prune any path that ends in a node 
already on the path without missing an optimal solution 
(Why?)

Questions: 

1. Is depth-first search on 
with cycle pruning 
complete for finite 
graphs? 

2. What is the time 
complexity for cycle 
checking in depth-first 
search? 

3. What is the time 
complexity for cycle 
checking in breadth-first 
search?



Cycle Pruning 
Depth First Search

Input: a graph; a set of start nodes; a  function 

 
while  is not empty: 
    select the newest path  from  
    remove  from  
    if  for all : 
        if : 
            return  
        for each neighbour  of : 
            add  to  
end while

goal

frontier := {⟨s⟩ ∣ s is a start node}
frontier

⟨n0, …, nk⟩ frontier
⟨n0, …, nk⟩ frontier

nk ≠ nj 0 ≤ j < k
goal(nk)

⟨n0, …, nk⟩
n nk

⟨n0, …, nk, n⟩ frontier



Branch & Bound

• The  function provides a path-specific lower bound on solution cost 
starting from  

• Idea: Maintain a global upper bound on solution cost also 
• Then prune any path whose lower bound exceeds the upper bound 

• Question: Where does the upper bound come from? 
• Cheapest solution found so far 
• Before solutions found, specified on entry

f(p)
p



Branch & Bound Algorithm
Input: a graph; a set of start nodes; a  function; heuristic ;  

 
 

 
while  is not empty: 
    select the newest path  from  
    remove  from  
    if  
        if : 
             
             
        else: 
            for each neighbour  of : 
                add  to  
end while 
return 

goal h(n) bound0

frontier := {⟨s⟩ ∣ s is a start node}
bound := bound0
best := Ø

frontier
⟨n0, …, nk⟩ frontier

⟨n0, …, nk⟩ frontier
f(⟨n0, …, nk⟩) ≤ bound :

goal(nk)
bound := cost(⟨n0, …, nk⟩)
best := ⟨n0, …, nk⟩

n nk
⟨n0, …, nk, n⟩ frontier

best

Question: Why not  here?f



Choosing bound0
• If  is set to just above the optimal cost, branch & bound will explore no more paths than A* 

• Won't explore any paths  that are more costly than the optimal solution, because  

• Will eventually find the optimal solution path  because  

• But we don't (in general) know the cost of the optimal solution! 

• Solution: iteratively increase  (like with iterative deepening search) 

• This algorithm is sometimes called IDA* 

• Some lower-cost paths will be re-explored

bound0

p′ f(p′ ) > bound0

p* f(p*) < bound0

bound0

Initialize  

until solution found: 

    Perform branch & bound using  

    Increase 

bound0

bound0

bound0



Iterative Deepening A* (IDA*)
1. What should we initialize  to? 

2. How much should we increase  by at each step? 

• Iteratively increase bound to the lowest -value path that was pruned 

• Guarantees at least one more path will be explored 

• Can stop immediately after finding a solution (why?) 

• Time complexity can be much worse than A*: 
 instead of  (why?) 

• Choosing next -limit is an active area of research  
(see https://www.movingai.com/SAS/IDA/) 

bound0

bound0

f

O(b2m) O(bm)

f

Initialize  

until solution found: 

    Perform branch & bound using  

    Increase 

bound0

bound0

bound0

https://www.movingai.com/SAS/IDA/


Heuristic Depth First Search
Heuristic 

Depth First A*  Branch & 
Bound IDA*

Space  
complexity O(mb) O(bm) O(mb) O(mb)

Time 
Complexity O(bm) O(bm) O(bm) O(b2m)

Heuristic 
Usage Limited Optimal

Optimal 
(if bound low 

enough)

Close to 
Optimal

Optimal? No Yes
Yes


(if bound high 
enough)

Yes



Exploiting Search Direction
• When we care about finding the path to a known goal 

node, we can search forward, but we can often search 
backward 

• Given a search graph , known goal node , 
and set of start nodes , can construct a reverse 
search problem : 

1. Designate  as the start node 

2.  

3.  if  
(i.e., if  is a start node of the original problem)

G = (N, A) g
S

G = (N, Ar)

g

Ar = {⟨n2, n1⟩ ∣ ⟨n1, n2⟩ ∈ A}
goalr(n) = 1 n ∈ S

n

Questions: 
1. When is this useful? 
2. When is this infeasible?



Reverse Search
Definitions: 

1. Forward branch factor: Maximum number of outgoing neighbours 
Notation:  

• Time complexity of forward search:   

2. Reverse branch factor: Maximum number of incoming neighbours 
Notation:  

• Time complexity of reverse search:  

When the reverse branch factor is smaller than the forward branch 
factor, reverse search is more time-efficient.

b

r

O(bm)

O(rm)



Bidirectional Search
• Idea: Search backward from from goal and 

forward from start simultaneously 

• Time complexity is exponential in path length, 
so exploring half the path length is an 
exponential improvement 

• Even though must explore half the path 
length twice 

• Main problems: 

• Guaranteeing that the frontiers meet 

• Checking that the frontiers have met

Questions: 

What bidirectional 
combinations of search 
algorithm make sense? 

• Breadth first + 
Breadth first? 

• Depth first +  
Depth first? 

• Breadth first +  
Depth first?



Summary
• The more accurate the heuristic is, the fewer the paths A* 

will explore 

• Branch & bound combines the optimality guarantee and 
heuristic efficiency of A* with the space efficiency of depth-
first search 

• IDA* is an iterative-deepening version of branch & bound that 
doesn't require that you get the initial bound "right" 

• But its time complexity can be significantly worse 

• Tweaking the direction of search can yield efficiency gains 


