
Branch & Bound

CMPUT 261: Introduction to Artificial Intelligence

P&M §3.7-3.8

or, How I Learned to Stop Worrying and Love Depth First Search

Logistics

Assignment #1 was released on Tuesday

• Available on eClass

• Due: Tuesday September 27 at 11:59pm

Example: Heaps in Python

Source: https://jrwright.info/introai/examples/fringe.py

https://jrwright.info/introai/examples/fringe.py

Recap: Heuristics
Definition:
A heuristic function is a function that returns a non-negative estimate
of the cost of the cheapest path from n to a goal node.

• e.g., Euclidean distance instead of travelled distance

Definition:
A heuristic function is admissible if is always less than or equal to the
cost of the cheapest path from to a goal node.

• i.e., is a lower bound on for any goal node

h(n)

h(n)
n

h(n) cost(⟨n, …, g⟩) g

Recap: A* Search
• A* search uses both path cost information and heuristic information to

select paths from the frontier

• Let

• estimates the total cost to the nearest goal node starting from

• A* removes paths from the frontier with smallest

• When is admissible,
 is a solution, and

 is a prefix of :

•

f(p) = cost(p) + h(p)

f(p) p

f(p)

h
p* = ⟨s, …, n, …, g⟩
p = ⟨s, …, n⟩ p*

f(p) ≤ cost(p*)

start actual

cost(p)
n estimated goal

h(n)

f(p)

Recap: A* Search Algorithm
Input: a graph; a set of start nodes; a function

while is not empty:
 select -minimizing path from frontier
 remove from
 if :
 return
 for each neighbour of :
 add to frontier
end while

goal

frontier := {⟨s⟩ ∣ s is a start node}
frontier

f ⟨n0, …, nk⟩
⟨n0, …, nk⟩ frontier

goal(nk)
⟨n0, …, nk⟩

n nk
⟨n0, …, nk, n⟩

i.e.,  
for all other paths

f(⟨n0, …, nk⟩) ≤ f(p)
p ∈ frontier

Recap: A* is Optimal
Theorem:
If there is a solution, A* using heuristic function always returns an optimal solution (in
finite time), if

1. The branching factor is finite,

2. All arc costs are greater than some , and

3. is an admissible heuristic.

Proof:

1. The optimal solution is guaranteed to be removed from the frontier eventually

2. No suboptimal solution will be removed from the frontier whenever the frontier
contains a prefix of the optimal solution

h

ϵ > 0

h

Lecture Outline
1. Recap & Logistics

2. Cycle Pruning

3. Branch & Bound

4. Exploiting Search Direction

After this lecture, you should be able to:
• Implement cycle pruning
• Explain when cycle pruning is and is not space- and time-efficient
• Implement branch & bound and IDA* and demonstrate their operation
• Derive the space and time complexity for branch & bound and IDA*
• Predict whether forward, backward, or bidirectional search are more efficient for a

search problem

Cycle Pruning

• Even on finite graphs, depth-first search may not be
complete, because it can get trapped in a cycle.

• A search algorithm can prune any path that ends in a node
already on the path without missing an optimal solution
(Why?)

Questions:

1. Is depth-first search on
with cycle pruning
complete for finite
graphs?

2. What is the time
complexity for cycle
checking in depth-first
search?

3. What is the time
complexity for cycle
checking in breadth-first
search?

Cycle Pruning
Depth First Search

Input: a graph; a set of start nodes; a function

while is not empty:
 select the newest path from
 remove from
 if for all :
 if :
 return
 for each neighbour of :
 add to
end while

goal

frontier := {⟨s⟩ ∣ s is a start node}
frontier

⟨n0, …, nk⟩ frontier
⟨n0, …, nk⟩ frontier

nk ≠ nj 0 ≤ j < k
goal(nk)

⟨n0, …, nk⟩
n nk

⟨n0, …, nk, n⟩ frontier

Branch & Bound

• The function provides a path-specific lower bound on solution cost
starting from

• Idea: Maintain a global upper bound on solution cost also
• Then prune any path whose lower bound exceeds the upper bound

• Question: Where does the upper bound come from?
• Cheapest solution found so far
• Before solutions found, specified on entry

f(p)
p

Branch & Bound Algorithm
Input: a graph; a set of start nodes; a function; heuristic ;

while is not empty:
 select the newest path from
 remove from
 if
 if :

 else:
 for each neighbour of :
 add to
end while 
return

goal h(n) bound0

frontier := {⟨s⟩ ∣ s is a start node}
bound := bound0
best := Ø

frontier
⟨n0, …, nk⟩ frontier

⟨n0, …, nk⟩ frontier
f(⟨n0, …, nk⟩) ≤ bound :

goal(nk)
bound := cost(⟨n0, …, nk⟩)
best := ⟨n0, …, nk⟩

n nk
⟨n0, …, nk, n⟩ frontier

best

Question: Why not here?f

Choosing bound0
• If is set to just above the optimal cost, branch & bound will explore no more paths than A*

• Won't explore any paths that are more costly than the optimal solution, because

• Will eventually find the optimal solution path because

• But we don't (in general) know the cost of the optimal solution!

• Solution: iteratively increase (like with iterative deepening search)

• This algorithm is sometimes called IDA*

• Some lower-cost paths will be re-explored

bound0

p′ f(p′) > bound0

p* f(p*) < bound0

bound0

Initialize

until solution found:

 Perform branch & bound using

 Increase

bound0

bound0

bound0

Iterative Deepening A* (IDA*)
1. What should we initialize to?

2. How much should we increase by at each step?

• Iteratively increase bound to the lowest -value path that was pruned

• Guarantees at least one more path will be explored

• Can stop immediately after finding a solution (why?)

• Time complexity can be much worse than A*:
 instead of (why?)

• Choosing next -limit is an active area of research
(see https://www.movingai.com/SAS/IDA/)

bound0

bound0

f

O(b2m) O(bm)

f

Initialize

until solution found:

 Perform branch & bound using

 Increase

bound0

bound0

bound0

https://www.movingai.com/SAS/IDA/

Heuristic Depth First Search
Heuristic

Depth First A* Branch &
Bound IDA*

Space
complexity O(mb) O(bm) O(mb) O(mb)

Time
Complexity O(bm) O(bm) O(bm) O(b2m)

Heuristic
Usage Limited Optimal

Optimal
(if bound low

enough)

Close to
Optimal

Optimal? No Yes
Yes

(if bound high
enough)

Yes

Exploiting Search Direction
• When we care about finding the path to a known goal

node, we can search forward, but we can often search
backward

• Given a search graph , known goal node ,
and set of start nodes , can construct a reverse
search problem :

1. Designate as the start node

2.

3. if
(i.e., if is a start node of the original problem)

G = (N, A) g
S

G = (N, Ar)

g

Ar = {⟨n2, n1⟩ ∣ ⟨n1, n2⟩ ∈ A}
goalr(n) = 1 n ∈ S

n

Questions:
1. When is this useful?
2. When is this infeasible?

Reverse Search
Definitions:

1. Forward branch factor: Maximum number of outgoing neighbours
Notation:

• Time complexity of forward search:

2. Reverse branch factor: Maximum number of incoming neighbours
Notation:

• Time complexity of reverse search:

When the reverse branch factor is smaller than the forward branch
factor, reverse search is more time-efficient.

b

r

O(bm)

O(rm)

Bidirectional Search
• Idea: Search backward from from goal and

forward from start simultaneously

• Time complexity is exponential in path length,
so exploring half the path length is an
exponential improvement

• Even though must explore half the path
length twice

• Main problems:

• Guaranteeing that the frontiers meet

• Checking that the frontiers have met

Questions:

What bidirectional
combinations of search
algorithm make sense?

• Breadth first +
Breadth first?

• Depth first +
Depth first?

• Breadth first +
Depth first?

Summary
• The more accurate the heuristic is, the fewer the paths A*

will explore

• Branch & bound combines the optimality guarantee and
heuristic efficiency of A* with the space efficiency of depth-
first search

• IDA* is an iterative-deepening version of branch & bound that
doesn't require that you get the initial bound "right"

• But its time complexity can be significantly worse

• Tweaking the direction of search can yield efficiency gains

