or, How I Learned to Stop Worrying and Love Depth First Search

Branch & Bound

CMPUT 261: Introduction to Artificial Intelligence

P&M §3.7-3.8

Logistics

Assignment #1 was released on Tuesday

- Available on eClass
- Due: Tuesday September 27 at 11:59pm

Example: Heaps in Python

5	from hea	apq <mark>import</mark> heappush, heappo
6		
7	class F	<pre>ringe(object):</pre>
8	def	<pre>init(self):</pre>
9		<pre>self.heap = []</pre>
10		
11	def	<pre>add(self, path):</pre>
12		"""Add `path` to the fring
13		<pre># Push a ``(priority, item</pre>
14		<pre># and `heappop` will order</pre>
15		heappush(self.heap, (self.
16		
17	def	<pre>remove(self):</pre>
18		"""Remove and return the e
19		<pre>priority,path = heappop(set</pre>
20		<mark>return</mark> path
21		
22	def	<pre>priority(self, path):</pre>
23		"""Return a number indicat
24		return len(path)

эр

7e""" `` tuple onto the heap so that `heappush` them properly priority(path), path))

earliest-priority path from the fringe""" elf.heap)

ting priority of `**path**`"""

Source: <u>https://jrwright.info/introai/examples/fringe.py</u>

Definition:

of the cost of the cheapest path from n to a goal node.

• e.g., Euclidean distance instead of travelled distance

Definition:

cost of the cheapest path from *n* to a goal node.

• i.e., h(n) is a lower bound on $cost(\langle n, ..., g \rangle)$ for any goal node g

Recap: Heuristics

A heuristic function is a function h(n) that returns a non-negative estimate

A heuristic function is **admissible** if h(n) is always less than or equal to the

- A* search uses **both** path cost information and heuristic information to select paths from the frontier
- Let $f(p) = \operatorname{cost}(p) + h(p)$
 - f(p) estimates the total cost to the nearest goal node starting from p
- A* removes paths from the frontier with smallest f(p)
- When h is **admissible**, $p^* = \langle s, \dots, n, \dots, g \rangle$ is a **solution**, and $p = \langle s, ..., n \rangle$ is a **prefix** of p^* :
 - $f(p) \le \operatorname{cost}(p^*)$

Recap: A* Search

Recap: A* Search Algorithm

Input: a graph; a set of start nodes; a goal function

frontier := $\{\langle s \rangle \mid s \text{ is a start node}\}$ while *frontier* is not empty: select *f*-minimizing path $\langle n_0, \ldots, n_k \rangle$ from *frontier* **remove** $\langle n_0, \ldots, n_k \rangle$ from *frontier* if $goal(n_k)$: return $\langle n_0, \ldots, n_k \rangle$ for each neighbour n of n_k : add $\langle n_0, \ldots, n_k, n \rangle$ to frontier end while

Recap: A* is Optimal

Theorem:

If there is a solution, A^{*} using heuristic function h always returns an optimal solution (in finite time), if

- The branching factor is **finite**,
- 2. All arc costs are greater than some $\epsilon > 0$, and
- 3. h is an **admissible** heuristic.

Proof:

- contains a prefix of the optimal solution

The optimal solution is guaranteed to be removed from the frontier eventually

2. No suboptimal solution will be removed from the frontier whenever the frontier

Lecture Outline

- Recap & Logistics 1.
- 2. Cycle Pruning
- 3. Branch & Bound
- Exploiting Search Direction 4.

After this lecture, you should be able to:

- Implement cycle pruning lacksquare
- Explain when cycle pruning is and is not space- and time-efficient \bullet
- Implement branch & bound and IDA* and demonstrate their operation \bullet
- Derive the space and time complexity for branch & bound and IDA*
- search problem

• Predict whether forward, backward, or bidirectional search are more efficient for a

- Even on **finite graphs**, depth-first search may not be complete, because it can get trapped in a cycle.
- A search algorithm can **prune** any path that ends in a node already on the path without missing an optimal solution (**Why?**)

Cycle Pruning

Questions:

- Is depth-first search on with cycle pruning **complete** for finite graphs?
- 2. What is the **time complexity** for cycle checking in depth-first search?
- What is the **time** 3. **complexity** for cycle checking in **breadth-first** search?

Cycle Pruning Depth First Search

Input: a graph; a set of start nodes; a goal function frontier := $\{\langle s \rangle \mid s \text{ is a start node}\}$ while *frontier* is not empty: select the newest path $\langle n_0, ..., n_k \rangle$ from *frontier* **remove** $\langle n_0, ..., n_k \rangle$ from *frontier* if $n_k \neq n_j$ for all $0 \leq j < k$: if $goal(n_k)$: return $\langle n_0, \ldots, n_k \rangle$ for each neighbour n of n_k : add $\langle n_0, \ldots, n_k, n \rangle$ to *frontier* end while

- The f(p) function provides a **path-specific lower bound** on solution cost starting from *p*
- Idea: Maintain a global upper bound on solution cost also \bullet
 - Then prune any path whose lower bound exceeds the upper bound
- **Question:** Where does the upper bound come from?
 - Cheapest solution found so far
 - Before solutions found, specified on entry

Branch & Bound

Branch & Bound Algorithm

Input: a graph; a set of start nodes; a goal function; heuristic h(n); bound

frontier := $\{\langle s \rangle \mid s \text{ is a start node}\}$ *bound* := *bound*₀ $best := \emptyset$ **while** *frontier* is not empty: select the newest path $\langle n_0, ..., n_k \rangle$ from *frontier* **remove** $\langle n_0, ..., n_k \rangle$ from *frontier* if $f(\langle n_0, \ldots, n_k \rangle) \leq bound$: if $goal(n_k)$: bound := $cost(\langle n_0, ..., n_k \rangle)$ $best := \langle n_0, \dots, n_k \rangle$ else: for each neighbour n of n_k : add $\langle n_0, \ldots, n_k, n \rangle$ to *frontier* end while return best

Question: Why not *f* here?

Choosing bound₀

- If $bound_0$ is set to just above the optimal cost, branch & bound will explore no more paths than A*
 - Won't explore any paths p' that are more costly than the optimal solution, because $f(p') > bound_0$
 - Will eventually find the optimal solution path p^* because $f(p^*) < bound_0$
- But we don't (in general) know the cost of the optimal solution!
- Solution: iteratively increase $bound_0$ (like with iterative deepening search)
 - This algorithm is sometimes called IDA*
 - Some lower-cost paths will be re-explored

Initialize $bound_0$

until solution found:

Perform **branch & bound** using $bound_0$

Increase *bound*₀

Iterative Deepening A* (IDA*)

- 1. What should we initialize $bound_0$ to?
- 2. How much should we increase $bound_0$ by at each step?
 - Iteratively increase bound to the lowest f-value path that was pruned
 - Guarantees at least one more path will be explored
 - Can stop immediately after finding a solution (why?)
 - Time complexity can be **much worse** than A*: $O(b^{2m})$ instead of $O(b^m)$ (**why?**)
 - Choosing next *f*-limit is an active area of research (see <u>https://www.movingai.com/SAS/IDA/</u>)

Initialize $bound_0$

until solution found:

Perform **branch & bound** using $bound_0$

Increase *bound*₀

Heuristic Depth First Search

Heuri	stic
Depth	First

	Heuristic Depth First	A*	Branch & Bound	IDA*
Space complexity	O(mb)	O(b ^m)	O(mb)	O(mb)
Time Complexity	O(b ^m)	O(b ^m)	<i>O(b^m</i>)	O(b ^{2m})
Heuristic Usage	Limited	Optimal	Optimal (if bound <i>low</i> enough)	Close to Optimal
Optimal?	No	Yes	Yes (if bound <i>high</i> enough)	Yes

Optimal?	No	
-----------------	----	--

Exploiting Search Direction

- When we care about finding the path to a known goal node, we can search forward, but we can often search backward
- Given a search graph G = (N, A), known goal node g, and set of start nodes S, can construct a **reverse** search problem $G = (N, A^r)$:
 - Designate g as the start node

2.
$$A^r = \{ \langle n_2, n_1 \rangle \mid \langle n_1, \rangle \}$$

3. $goal^{r}(n) = 1$ if $n \in S$ (i.e., if *n* is a start node of the original problem)

 $|n_2\rangle \in A$

Questions:

- When is this **useful**?
- 2. When is this **infeasible**?

Reverse Search

Definitions:

- Forward branch factor: Max Notation: b
 - Time complexity of forward search: $O(b^m)$
- 2. Reverse branch factor: Maximum number of incoming neighbours Notation: *r*
 - Time complexity of reverse search: $O(r^m)$

When the reverse branch factor is **smaller** than the forward branch factor, reverse search is more **time-efficient**.

Forward branch factor: Maximum number of outgoing neighbours

Bidirectional Search

- Idea: Search backward from from goal and forward from start simultaneously
- Time complexity is **exponential in path length**, so exploring half the path length is an exponential improvement
 - Even though must explore half the path length twice
- Main problems:
 - Guaranteeing that the frontiers meet
 - Checking that the frontiers have met

Questions:

What bidirectional **combinations** of search algorithm make sense?

- Breadth first + Breadth first?
- Depth first + Depth first?
- Breadth first + Depth first?

Summary

- The more accurate the heuristic is, the fewer the paths A* will explore
- Branch & bound combines the optimality guarantee and heuristic efficiency of A* with the space efficiency of depthfirst search
- **IDA*** is an iterative-deepening version of branch & bound that doesn't require that you get the initial bound "right"
 - But its time complexity can be significantly worse
- Tweaking the direction of search can yield efficiency gains