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Logistics

• TA office hours begin this week 

• Including a quick Python refresher 

• See eClass page for times and meeting links 

• Assignment #1 released later today 

• Download from (and submit on) eClass 

• Due: Tuesday, September 27 at 11:59pm



Lecture Outline
1. Logistics 

2. Heuristics 

3. A* Search

After this lecture, you should be able to: 
• Implement and demonstrate the operation of A* search on a graph 
• Identify whether a heuristic is admissible 
• Construct an admissible heuristic for an arbitrary search problem 
• Identify whether one heuristic dominates another 
• Construct a dominating heuristic for a set of given heuristics 
• Explain when a heuristic will allow more efficient exploration



Recap: Uninformed Search
Different search strategies have different properties and behaviour 

• Depth first search is space-efficient but not always complete or time-efficient 

• Breadth first search is complete and always finds the shortest path to a goal, 
but is not space-efficient 

• Iterative deepening search can provide the benefits of both, at the expense 
of some time-efficiency 

• All three strategies must potentially expand every node, and are not 
guaranteed to return an optimal solution 

• Least cost first search is optimal (under some conditions), but still must 
potentially expand every node



Recap: Iterative Deepening Search
Input: a graph; a set of start nodes; a  function 

   for max_depth from 1 to : 
        more_nodes := False 

              
        while  is not empty: 
            select the newest path  from  
            remove  from  
            if : 
                return  
            if k < max_depth: 
                for each neighbour  of : 
                    add  to frontier 
            else if  has neighbours: 
                more_nodes := True 
        end-while 

        if more_nodes = False: 
            return None

goal

∞

frontier := {⟨s⟩ ∣ s is a start node}
frontier

⟨n0, …, nk⟩ frontier
⟨n0, …, nk⟩ frontier

goal(nk)
⟨n0, …, nk⟩

n nk
⟨n0, …, nk, n⟩

nk



Bonus: Time Complexity of 
Iterated Deepening Search

Claim: Iterated deepening search has time complexity no worse than  
(i.e.,  times worse than breadth first search)

O(mbm)
m

• Breadth-first search requires  time, because in the worst case it 
visits every path once 

• Iterative deepening search has worse time complexity, because it visits 
every path at least once, and many paths multiple times. 

• But how much worse?

O(bm)

1. Paths of length 1 are visited  times; paths of length 2 are visited  
times; ... ; paths of length  are visited 1 time. 

2. In other words, every path is visited  times or fewer 

Note: This is a very loose bound.  See the text for a much tighter bound.

m m − 1
m

m



Recap: Optimality
Definition: 
An algorithm is optimal if it is guaranteed to return an optimal  
(i.e., minimal-cost) solution first.

• Depth-first search, breadth-first search, iterative deepening search are 
not optimal (why?) 

• Least-cost first search is optimal (if there is a positive lower bound on 
arc costs)



Recap: Search Strategies
Depth First Breadth 

First
Iterative 

Deepening
Least Cost 

First

Selection Newest Oldest Newest, 
multiple Cheapest

Data 
structure Stack Queue Stack, 

counter
Priority 
queue

Complete? Finite 
graphs only Complete Complete Complete if 

cost(p) > 𝜀
Space  

complexity O(mb) O(bm) O(mb) O(bm)

Time 
complexity O(bm) O(bm) O(mbm) ** O(bm)

Optimal? No No No Optimal



Domain Knowledge

• Domain-specific knowledge can help speed up search by identifying 
promising directions to explore  

• We will encode this knowledge in a function called a heuristic function 
which estimates the cost to get from a node to a goal node 

• The search algorithms in this lecture take account of this heuristic 
knowledge when selecting a path from the frontier



Heuristic Function
Definition: 
A heuristic function is a function  that returns a non-negative 
estimate of the cost of the cheapest path from node  to a goal node. 

• For paths:  
• Uses only readily-available information about a node 

(i.e., easy to compute) 
• Problem-specific

h(n)
n

h(⟨n0, …, nk⟩) = h(nk)



Admissible Heuristic

Definition: 
A heuristic function is admissible if  is always less than or equal to the 
cost of the cheapest path from  to any goal node. 

• i.e.,  is a lower bound on  for any goal node 

h(n)
n

h(n) cost(⟨n, …, g⟩) g



Example Heuristics
• Number of dirty rooms for VacuumBot 

(ignores the need to move between rooms) 

• Euclidean distance for DeliveryBot  
(ignores that it can't go through walls) 

• Points for chess pieces  
(ignores positional strength) 

• Farmer problem?

Question: Which of these heuristics are admissible? Why?

Domain for Delivery Robot

lab4

stairs

lab1 lab2

lab3

r101 r103 r105 r107 r109 r111

r113

r115

r117

r119r121r123r125r127r129r131
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Constructing 
Admissible Heuristics

• Search problems try to find a cost-minimizing path, subject to 
constraints encoded in the search graph 

• How to construct an easier problem?  Drop some constraints. 

• This is called a relaxation of the original problem 

• The cost of the optimal solution to the relaxation will always be an 
admissible heuristic for the original problem (Why?) 

• Neat trick: If you have two admissible heuristics  and , then 
 is admissible too!  (Why?) 

h1 h2
h3(n) = max{h1(n), h2(n)}



Simple Uses of Heuristics
• Heuristic depth first search: Add neighbours to the frontier in decreasing order of 

their heuristic values, then run depth first search as usual 

• Will explore most promising successors first, but 

• Still explores all paths through a successor before considering other successors 

• Not complete, not optimal 

• Greedy best first search: Select path from the frontier with the lowest heuristic value 

• Not guaranteed to work any better than breadth first search (why?)



A* Search
• A* search uses both path cost information and heuristic information to 

select paths from the frontier 

• Let  

•  estimates the total cost to the nearest goal node starting from  

• A* removes paths from the frontier with smallest  

• When  is admissible,  
 is a solution, and 

 is a prefix of : 

•    (why?)

f(p) = cost(p) + h(p)

f(p) p

f(p)

h
p* = ⟨s, …, n, …, g⟩
p = ⟨s, …, n⟩ p*

f(p) ≤ cost(p*)

start actual

cost(p)
n estimated goal

h(n)

f(p)



A* Search Algorithm
Input: a graph; a set of start nodes; a  function 

 
while  is not empty: 
    select -minimizing path  from frontier 
    remove  from  
    if : 
        return  
    for each neighbour  of : 
        add  to frontier 
end while

goal

frontier := {⟨s⟩ ∣ s is a start node}
frontier

f ⟨n0, …, nk⟩
⟨n0, …, nk⟩ frontier

goal(nk)
⟨n0, …, nk⟩

n nk
⟨n0, …, nk, n⟩

Question: 

What data structure for the 
frontier implements this search 
strategy?

i.e.,  
for all other paths 

f(⟨n0, …, nk⟩) ≤ f(p)
p ∈ frontier



A* Search Example: 
DeliveryBotState-Space Graph for the Delivery Robot
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• Heuristic: Euclidean distance 

• Question: What is ?  
? 

• A* will spend a bit of time exploring paths in 
the labs before trying to go around via  

• At that point the heuristic starts helping more 

• Question: Does breadth-first search explore 
paths in the lab too? 

• Question: Does breadth-first search explore 
any paths that A* does not?

f(⟨o103,b3⟩)
f(⟨o103,o109⟩)

o109



A* Optimality
Theorem: 
If there is a solution of finite cost, A* using heuristic function  always returns an 
optimal solution (in finite time), if 

1. The branching factor is finite, and 

2. All arc costs are greater than some , and 

3.  is an admissible heuristic. 

Proof: 

1. No suboptimal solution will be removed from the frontier whenever the frontier 
contains a prefix of the optimal solution  

2. The optimal solution is guaranteed to be removed from the frontier eventually

h

ϵ > 0

h



A* Optimality Proofs: A Lexicon
An admissible heuristic:  

 

A start node:  

A goal node:   (i.e., ) 

The optimal solution:  

A prefix of the optimal solution:  

A suboptimal solution: 

h(n)

f(⟨n0, …, nk⟩) = cost(⟨n0, …, nk⟩) + h(nk)

s

z goal(z) = 1

p* = ⟨s, …, a, b, …z⟩

p′ = ⟨s, …, a⟩

g = ⟨s, q, …, z⟩



A* Optimality
Proof part 1: Optimality (no  is removed before ) 

1.  and  

(i) , and  

2.  

(i)  

(ii)  

(iii)  

(iv)

g p*

f(g) = cost(g) f(p*) = cost(p*)

f(⟨n0, …, nk⟩) = cost(⟨n0, …, nk⟩) + h(nk) h(z) = 0

f(p′ ) < f(g)

f(⟨s, …, a⟩) = cost(⟨s, …, a⟩) + h(a)

f(⟨s, …, a, b, …, z⟩) = cost(⟨s, …, a, b, …, z⟩) + h(z) = cost(⟨s, …, a⟩) + cost(a, b, …, z⟩)

h(a) ≤ cost(⟨a, b, …, z⟩)

f(p′ ) ≤ f(p*) < f(g)

An admissible heuristic:  
 

A start node:  
A goal node:   (i.e., ) 
The optimal solution:  
A prefix of the optimal solution:  
A suboptimal solution: 

h(n)
f(⟨n0, …, nk⟩) = cost(⟨n0, …, nk⟩) + h(nk)

s
z goal(z) = 1

p* = ⟨s, …, a, b, …z⟩
p′ = ⟨s, …, a⟩

g = ⟨s, q, …, z⟩

∎



A* Completeness
Proof part 2: A* is complete 

• Every path that is removed from the frontier is only replaced by more-costly paths 
(why?) 

• Since individual arc costs are larger than , every path in the frontier will eventually 
have cost larger than , for any finite  

• Every path with at least  arcs will have cost larger than  

• So every path in the frontier will eventually have cost larger than the cost of the 
optimal solution 

• So the optimal solution will eventually be removed from the frontier 

• Question: Why are we talking about costs and not -values?

ϵ
k k

k
ϵ

k

f

An admissible heuristic:  
 

A start node:  
A goal node:   (i.e., ) 
The optimal solution:  
A prefix of the optimal solution:  
A suboptimal solution: 

h(n)
f(⟨n0, …, nk⟩) = cost(⟨n0, …, nk⟩) + h(nk)

s
z goal(z) = 1

p* = ⟨s, …, a, b, …z⟩
p′ = ⟨s, …, a⟩

g = ⟨s, q, …, z⟩



Comparing Heuristics

• Suppose that we have two admissible heuristics,  and  

• Suppose that for every node ,  

Question: Which heuristic is better for search (with A*)?

h1 h2

n h2(n) ≥ h1(n)



Dominating Heuristics
Definition: 
A heuristic  dominates a heuristic  if 

1. , and 

2.

h2 h1

∀n : h2(n) ≥ h1(n)
∃n : h2(n) > h1(n) .

Theorem: 
If  dominates , and both heuristics are admissible, then A* using  will never 
remove more paths from the frontier than A* using  . 

• i.e., better heuristics remove weakly fewer paths

h2 h1 h2
h1

Question:  
Which admissible heuristic dominates all other admissible heuristics?



A* Analysis
For a search graph with finite maximum branch factor  and 
finite maximum path length ... 

1. What is the worst-case space complexity of A*? 
[A: ]  [B: ]  [C: ]  [D: it depends] 

2. What is the worst-case time complexity of A*? 
[A: ]  [B: ]  [C: ]  [D: it depends]

b
m

O(m) O(mb) O(bm)

O(m) O(mb) O(bm)

Question: If A* has the same space and time complexity as least cost first 
search, then what is its advantage?



Summary

• Domain knowledge can help speed up graph search 

• Domain knowledge can be expressed by a heuristic function, 
which estimates the cost of a path to the goal from a node 

• Admissible heuristics can be built from relaxations of the original 
problem 

• Simple uses of heuristics do not guarantee improved performance 

• A* algorithm for (optimal) use of admissible heuristics


