
Heuristic Search

CMPUT 261: Introduction to Artificial Intelligence

P&M §3.6

Logistics

• TA office hours begin this week

• Including a quick Python refresher

• See eClass page for times and meeting links

• Assignment #1 released later today

• Download from (and submit on) eClass

• Due: Tuesday, September 27 at 11:59pm

Lecture Outline
1. Logistics

2. Heuristics

3. A* Search

After this lecture, you should be able to:
• Implement and demonstrate the operation of A* search on a graph
• Identify whether a heuristic is admissible
• Construct an admissible heuristic for an arbitrary search problem
• Identify whether one heuristic dominates another
• Construct a dominating heuristic for a set of given heuristics
• Explain when a heuristic will allow more efficient exploration

Recap: Uninformed Search
Different search strategies have different properties and behaviour

• Depth first search is space-efficient but not always complete or time-efficient

• Breadth first search is complete and always finds the shortest path to a goal,
but is not space-efficient

• Iterative deepening search can provide the benefits of both, at the expense
of some time-efficiency

• All three strategies must potentially expand every node, and are not
guaranteed to return an optimal solution

• Least cost first search is optimal (under some conditions), but still must
potentially expand every node

Recap: Iterative Deepening Search
Input: a graph; a set of start nodes; a function

 for max_depth from 1 to :
 more_nodes := False

 while is not empty:
 select the newest path from
 remove from
 if :
 return
 if k < max_depth:
 for each neighbour of :
 add to frontier
 else if has neighbours:
 more_nodes := True
 end-while

 if more_nodes = False:
 return None

goal

∞

frontier := {⟨s⟩ ∣ s is a start node}
frontier

⟨n0, …, nk⟩ frontier
⟨n0, …, nk⟩ frontier

goal(nk)
⟨n0, …, nk⟩

n nk
⟨n0, …, nk, n⟩

nk

Bonus: Time Complexity of
Iterated Deepening Search

Claim: Iterated deepening search has time complexity no worse than
(i.e., times worse than breadth first search)

O(mbm)
m

• Breadth-first search requires time, because in the worst case it
visits every path once

• Iterative deepening search has worse time complexity, because it visits
every path at least once, and many paths multiple times.

• But how much worse?

O(bm)

1. Paths of length 1 are visited times; paths of length 2 are visited
times; ... ; paths of length are visited 1 time.

2. In other words, every path is visited times or fewer

Note: This is a very loose bound. See the text for a much tighter bound.

m m − 1
m

m

Recap: Optimality
Definition:
An algorithm is optimal if it is guaranteed to return an optimal
(i.e., minimal-cost) solution first.

• Depth-first search, breadth-first search, iterative deepening search are
not optimal (why?)

• Least-cost first search is optimal (if there is a positive lower bound on
arc costs)

Recap: Search Strategies
Depth First Breadth

First
Iterative

Deepening
Least Cost

First

Selection Newest Oldest Newest,
multiple Cheapest

Data
structure Stack Queue Stack,

counter
Priority
queue

Complete? Finite
graphs only Complete Complete Complete if

cost(p) > 𝜀
Space

complexity O(mb) O(bm) O(mb) O(bm)

Time
complexity O(bm) O(bm) O(mbm) ** O(bm)

Optimal? No No No Optimal

Domain Knowledge

• Domain-specific knowledge can help speed up search by identifying
promising directions to explore

• We will encode this knowledge in a function called a heuristic function
which estimates the cost to get from a node to a goal node

• The search algorithms in this lecture take account of this heuristic
knowledge when selecting a path from the frontier

Heuristic Function
Definition:
A heuristic function is a function that returns a non-negative
estimate of the cost of the cheapest path from node to a goal node.

• For paths:
• Uses only readily-available information about a node

(i.e., easy to compute)
• Problem-specific

h(n)
n

h(⟨n0, …, nk⟩) = h(nk)

Admissible Heuristic

Definition:
A heuristic function is admissible if is always less than or equal to the
cost of the cheapest path from to any goal node.

• i.e., is a lower bound on for any goal node

h(n)
n

h(n) cost(⟨n, …, g⟩) g

Example Heuristics
• Number of dirty rooms for VacuumBot

(ignores the need to move between rooms)

• Euclidean distance for DeliveryBot
(ignores that it can't go through walls)

• Points for chess pieces
(ignores positional strength)

• Farmer problem?

Question: Which of these heuristics are admissible? Why?

Domain for Delivery Robot

lab4

stairs

lab1 lab2

lab3

r101 r103 r105 r107 r109 r111

r113

r115

r117

r119r121r123r125r127r129r131

c�D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 1.3, Page 2

icons by Icons8

https://icons8.com

Constructing
Admissible Heuristics

• Search problems try to find a cost-minimizing path, subject to
constraints encoded in the search graph

• How to construct an easier problem? Drop some constraints.

• This is called a relaxation of the original problem

• The cost of the optimal solution to the relaxation will always be an
admissible heuristic for the original problem (Why?)

• Neat trick: If you have two admissible heuristics and , then
 is admissible too! (Why?)

h1 h2
h3(n) = max{h1(n), h2(n)}

Simple Uses of Heuristics
• Heuristic depth first search: Add neighbours to the frontier in decreasing order of

their heuristic values, then run depth first search as usual

• Will explore most promising successors first, but

• Still explores all paths through a successor before considering other successors

• Not complete, not optimal

• Greedy best first search: Select path from the frontier with the lowest heuristic value

• Not guaranteed to work any better than breadth first search (why?)

A* Search
• A* search uses both path cost information and heuristic information to

select paths from the frontier

• Let

• estimates the total cost to the nearest goal node starting from

• A* removes paths from the frontier with smallest

• When is admissible,
 is a solution, and

 is a prefix of :

• (why?)

f(p) = cost(p) + h(p)

f(p) p

f(p)

h
p* = ⟨s, …, n, …, g⟩
p = ⟨s, …, n⟩ p*

f(p) ≤ cost(p*)

start actual

cost(p)
n estimated goal

h(n)

f(p)

A* Search Algorithm
Input: a graph; a set of start nodes; a function

while is not empty:
 select -minimizing path from frontier
 remove from
 if :
 return
 for each neighbour of :
 add to frontier
end while

goal

frontier := {⟨s⟩ ∣ s is a start node}
frontier

f ⟨n0, …, nk⟩
⟨n0, …, nk⟩ frontier

goal(nk)
⟨n0, …, nk⟩

n nk
⟨n0, …, nk, n⟩

Question:

What data structure for the
frontier implements this search
strategy?

i.e.,  
for all other paths

f(⟨n0, …, nk⟩) ≤ f(p)
p ∈ frontier

A* Search Example:
DeliveryBotState-Space Graph for the Delivery Robot

16

8 12

4

6

4

4

4 9

7

7

4

3

6

8

6

4

3

7

mail ts o103

b3

b1

c2

c1

c3

b2

b4

o109

o119

o111

o123

r123

o125

storage

c�D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 3.1, Page 12 8 / 17

26 23 21 24

27

12

1817

1513

6

0

4 11

1210

6

• Heuristic: Euclidean distance

• Question: What is ?
?

• A* will spend a bit of time exploring paths in
the labs before trying to go around via

• At that point the heuristic starts helping more

• Question: Does breadth-first search explore
paths in the lab too?

• Question: Does breadth-first search explore
any paths that A* does not?

f(⟨o103,b3⟩)
f(⟨o103,o109⟩)

o109

A* Optimality
Theorem:
If there is a solution of finite cost, A* using heuristic function always returns an
optimal solution (in finite time), if

1. The branching factor is finite, and

2. All arc costs are greater than some , and

3. is an admissible heuristic.

Proof:

1. No suboptimal solution will be removed from the frontier whenever the frontier
contains a prefix of the optimal solution

2. The optimal solution is guaranteed to be removed from the frontier eventually

h

ϵ > 0

h

A* Optimality Proofs: A Lexicon
An admissible heuristic:

A start node:

A goal node: (i.e.,)

The optimal solution:

A prefix of the optimal solution:

A suboptimal solution:

h(n)

f(⟨n0, …, nk⟩) = cost(⟨n0, …, nk⟩) + h(nk)

s

z goal(z) = 1

p* = ⟨s, …, a, b, …z⟩

p′ = ⟨s, …, a⟩

g = ⟨s, q, …, z⟩

A* Optimality
Proof part 1: Optimality (no is removed before)

1. and

(i) , and

2.

(i)

(ii)

(iii)

(iv)

g p*

f(g) = cost(g) f(p*) = cost(p*)

f(⟨n0, …, nk⟩) = cost(⟨n0, …, nk⟩) + h(nk) h(z) = 0

f(p′) < f(g)

f(⟨s, …, a⟩) = cost(⟨s, …, a⟩) + h(a)

f(⟨s, …, a, b, …, z⟩) = cost(⟨s, …, a, b, …, z⟩) + h(z) = cost(⟨s, …, a⟩) + cost(a, b, …, z⟩)

h(a) ≤ cost(⟨a, b, …, z⟩)

f(p′) ≤ f(p*) < f(g)

An admissible heuristic:

A start node:
A goal node: (i.e.,)
The optimal solution:
A prefix of the optimal solution:
A suboptimal solution:

h(n)
f(⟨n0, …, nk⟩) = cost(⟨n0, …, nk⟩) + h(nk)

s
z goal(z) = 1

p* = ⟨s, …, a, b, …z⟩
p′ = ⟨s, …, a⟩

g = ⟨s, q, …, z⟩

∎

A* Completeness
Proof part 2: A* is complete

• Every path that is removed from the frontier is only replaced by more-costly paths
(why?)

• Since individual arc costs are larger than , every path in the frontier will eventually
have cost larger than , for any finite

• Every path with at least arcs will have cost larger than

• So every path in the frontier will eventually have cost larger than the cost of the
optimal solution

• So the optimal solution will eventually be removed from the frontier

• Question: Why are we talking about costs and not -values?

ϵ
k k

k
ϵ

k

f

An admissible heuristic:

A start node:
A goal node: (i.e.,)
The optimal solution:
A prefix of the optimal solution:
A suboptimal solution:

h(n)
f(⟨n0, …, nk⟩) = cost(⟨n0, …, nk⟩) + h(nk)

s
z goal(z) = 1

p* = ⟨s, …, a, b, …z⟩
p′ = ⟨s, …, a⟩

g = ⟨s, q, …, z⟩

Comparing Heuristics

• Suppose that we have two admissible heuristics, and

• Suppose that for every node ,

Question: Which heuristic is better for search (with A*)?

h1 h2

n h2(n) ≥ h1(n)

Dominating Heuristics
Definition:
A heuristic dominates a heuristic if

1. , and

2.

h2 h1

∀n : h2(n) ≥ h1(n)
∃n : h2(n) > h1(n) .

Theorem:
If dominates , and both heuristics are admissible, then A* using will never
remove more paths from the frontier than A* using .

• i.e., better heuristics remove weakly fewer paths

h2 h1 h2
h1

Question:
Which admissible heuristic dominates all other admissible heuristics?

A* Analysis
For a search graph with finite maximum branch factor and
finite maximum path length ...

1. What is the worst-case space complexity of A*?
[A:] [B:] [C:] [D: it depends]

2. What is the worst-case time complexity of A*?
[A:] [B:] [C:] [D: it depends]

b
m

O(m) O(mb) O(bm)

O(m) O(mb) O(bm)

Question: If A* has the same space and time complexity as least cost first
search, then what is its advantage?

Summary

• Domain knowledge can help speed up graph search

• Domain knowledge can be expressed by a heuristic function,
which estimates the cost of a path to the goal from a node

• Admissible heuristics can be built from relaxations of the original
problem

• Simple uses of heuristics do not guarantee improved performance

• A* algorithm for (optimal) use of admissible heuristics

