Uninformed Search

CMPUT 261: Introduction to Artificial Intelligence

P&M §3.5

Logistics

- TA office hours begin next week
 - Moemen: Mondays at 10am
 - Shi-ang: Wednesdays at 12pm
 - Amir: Tuesdays at 2pm
 - See eClass page for meeting links
- Assignment #1 released next week
- Python tutorials next week during TA office hours

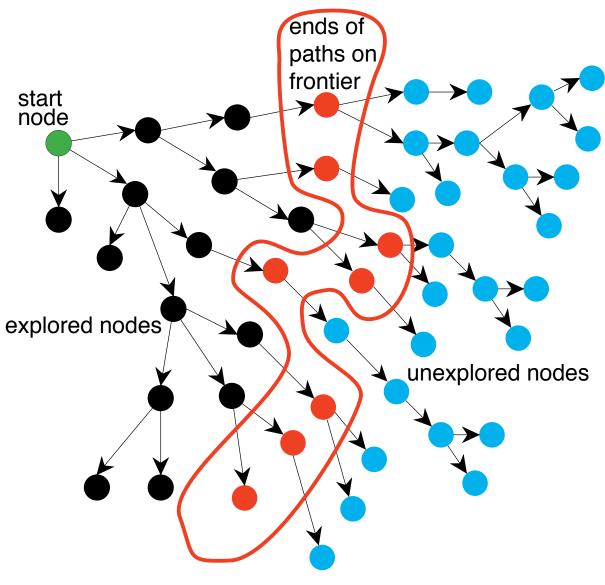
Recap: Graph Search

- Many Al tasks can be represented as search problems
 - A single generic graph search algorithm can then solve them all!
- A search problem consists of states, actions, start states, a successor function, a goal function, optionally a cost function
- Solution quality can be represented by labelling arcs of the search graph with costs

Recap: Generic Graph Search Algorithm

Input: a graph; a set of start nodes; a goal function

```
frontier := \{\langle s \rangle \mid s \text{ is a start node}\}
while frontier is not empty:
    select a path \langle n_0, ..., n_k \rangle from frontier
    remove \langle n_0, ..., n_k \rangle from frontier
    if goal(n_k):
       return \langle n_0, \ldots, n_k \rangle
    for each neighbour n of n_k:
       add \langle n_0, ..., n_k, n \rangle to frontier
end while
```



https://artint.info/2e/html/ArtInt2e.Ch3.S4.html

Lecture Outline

- 1. Logistics & Recap
- 2. Properties of Algorithms and Search Graphs
- 3. Depth First and Breadth First Search
- 4. Iterative Deepening Search
- 5. Least Cost First Search

After this lecture, you should be able to:

- Demonstrate the operation of depth-first, breadth-first, iterative-deepening, and least-cost-first search on a graph
- Implement depth-first, breadth-first, iterative deepening, and least-cost first search
- Derive the time and space requirements for instantiations of the generic graph search algorithm

Algorithm Properties

What properties of algorithms do we want to analyze?

- 1. A search algorithm is **complete** if it is guaranteed to find a solution within a finite amount of time whenever a solution exists.
- 2. The time complexity of a search algorithm is a measure of how much time the algorithm will take to run, in the worst case.
 - In this section we measure by total number of paths added to the frontier.
- 3. The **space complexity** of a search algorithm is a measure of how much **space** the algorithm will use, in the **worst case**.
 - We measure by maximum number of paths in the frontier at one time.

Search Graph Properties

What properties of the search graph do algorithmic properties depend on?

• Forward branch factor: Maximum number of neighbours Notation: b

Maximum path length. (Could be infinite!)

Notation: *m*

- Presence of cycles
- Length of the shortest path to a goal node

Depth First Search

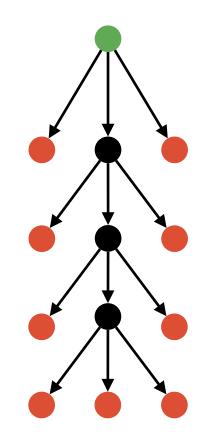
Input: a graph; a set of start nodes; a goal function

```
frontier := \{\langle s \rangle \mid s \text{ is a start node}\}
while frontier is not empty:
    select the newest path \langle n_0, ..., n_k \rangle from frontier
    remove \langle n_0, ..., n_k \rangle from frontier
    if goal(n_k):
       return \langle n_0, \ldots, n_k \rangle
    for each neighbour n of n_k:
       add \langle n_0, ..., n_k, n \rangle to frontier
end while
```

Question:

What data structure for the frontier implements this search strategy?

Depth First Search



Depth-first search always removes one of the longest paths from the frontier.

Example:

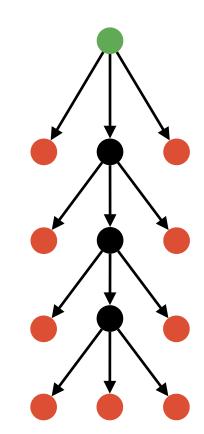
Frontier: $[p_1, p_2, p_3, p_4]$ $successors(p_1) = \{n_1, n_2, n_3\}$

What happens?

- 1. Remove p_1 ; test p_1 for goal
- 2. Add $\{\langle p_1, n_1 \rangle, \langle p_1, n_2 \rangle, \langle p_1, n_3 \rangle\}$ to **front** of frontier
- 3. New frontier: $[\langle p_1, n_1 \rangle, \langle p_1, n_2 \rangle, \langle p_1, n_3 \rangle, p_2, p_3, p_4]$
- 4. p_2 is selected only after all paths starting with p_1 have been explored

Question: When is $\langle p_1, n_3 \rangle$ selected?

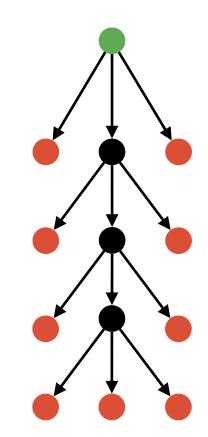
Depth First Search Analysis



For a search graph with maximum branch factor b and maximum path length m...

- 1. What is the worst-case time complexity of depth-first search?
 - [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]
- 2. When is depth-first search complete?
- 3. What is the worst-case space complexity of depth-first search?
 - [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]

When to Use Depth First Search



- When is depth-first search appropriate?
 - Memory is restricted
 - All solutions at same approximate depth
 - Order in which neighbours are searched can be tuned to find solution quickly
- When is depth-first search inappropriate?
 - Infinite paths exist
 - When there are likely to be shallow solutions
 - Especially if some other solutions are very deep

Breadth First Search

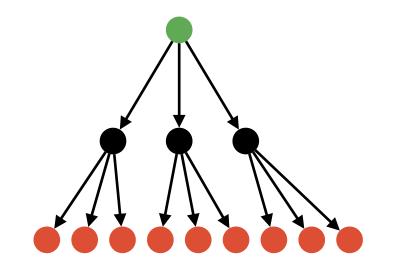
Input: a graph; a set of start nodes; a goal function

```
frontier := \{\langle s \rangle \mid s \text{ is a start node}\}
while frontier is not empty:
    select the oldest path \langle n_0, ..., n_k \rangle from frontier
    remove \langle n_0, ..., n_k \rangle from frontier
    if goal(n_k):
       return \langle n_0, \ldots, n_k \rangle
    for each neighbour n of n_k:
       add \langle n_0, ..., n_k, n \rangle to frontier
end while
```

Question:

What data structure for the frontier implements this search strategy?

Breadth First Search



Breadth-first search always removes one of the **shortest** paths from the frontier.

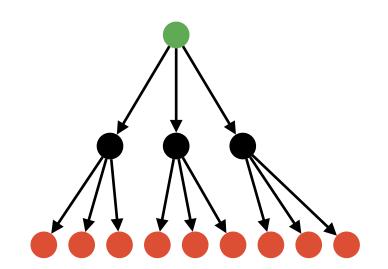
Example:

Frontier: $[p_1, p_2, p_3, p_4]$ $successors(p_1) = \{n_1, n_2, n_3\}$

What happens?

- 1. Remove p_1 ; test p_1 for goal
- 2. Add $\{\langle p_1, n_1 \rangle, \langle p_1, n_2 \rangle, \langle p_1, n_3 \rangle\}$ to end of frontier:
- 3. New frontier: $[p_2, p_3, p_4, \langle p_1, n_1 \rangle, \langle p_1, n_2 \rangle, \langle p_1, n_3 \rangle]$
- 4. p_2 is selected next

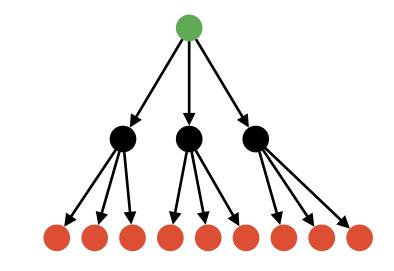
Breadth First Search Analysis



For a search graph with maximum branch factor b and maximum path length m...

- 1. What is the worst-case time complexity?
 - [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]
- 2. When is breadth-first search complete?
- 3. What is the worst-case space complexity?
 - [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]

When to Use Breadth First Search



- When is breadth-first search appropriate?
 - When there might be infinite paths
 - When there are likely to be shallow solutions, or
 - When we want to guarantee a solution with fewest arcs
- When is breadth-first search inappropriate?
 - Large branching factor
 - All solutions located deep in the tree
 - Memory is restricted

Comparing DFS vs. BFS

	Depth-first	Breadth-first
Complete?	Only for finite graphs	Complete
Space complexity	O(mb)	O(b ^m)
Time complexity	$O(b^m)$	$O(b^m)$

- Can we get the space benefits of depth-first search without giving up completeness?
- Run depth-first search to a maximum depth
 - then try again with a larger maximum
 - until either goal found or graph completely searched

Iterative Deepening Search

Input: a graph; a set of start nodes; a goal function

for max_depth from 1 to ∞ :

Perform **depth-first search** to a maximum depth *max_depth* **end for**

Iterative Deepening Search

Input: a graph; a set of start nodes; a goal function

```
for max\_depth from 1 to \infty:
    more_nodes := False
    frontier := \{\langle s \rangle \mid s \text{ is a start node}\}
   while frontier is not empty:
       select the newest path \langle n_0, ..., n_k \rangle from frontier
      remove \langle n_0, ..., n_k \rangle from frontier
      if goal(n_k):
          return \langle n_0, \ldots, n_k \rangle
       if k < max_depth:
          for each neighbour n of n_k:
             add \langle n_0, ..., n_k, n \rangle to frontier
      else if n_k has neighbours:
          more_nodes := True
   end-while
   if more_nodes = False:
       return None
```

Iterative Deepening Search Analysis

For a search graph with maximum branch factor b and maximum path length m...

- 1. What is the worst-case time complexity?
 - [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]
- 2. When is iterative deepening search complete?
- 3. What is the worst-case space complexity?
 - [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]

When to Use Iterative Deepening Search

- When is iterative deepening search appropriate?
 - Memory is limited, and
 - Both deep and shallow solutions may exist
 - or we prefer shallow ones
 - Tree may contain infinite paths

Optimality

Definition:

An algorithm is **optimal** if it is guaranteed to return an optimal (i.e., **minimal-cost**) solution **first**.

Question: Which of the three algorithms presented so far is optimal? Why?

Least Cost First Search

- None of the algorithms described so far is guided by arc costs
 - BFS and IDS are implicitly guided by path length, which can be the same for uniform-cost arcs
- They return a path to a goal node as soon as they happen to blunder across one, but it may not be the optimal one
- Least Cost First Search is a search strategy that is guided by arc costs

Least Cost First Search

Input: a *graph*; a set of *start nodes*; a *goal* function

```
frontier := \{\langle s \rangle \mid s \text{ is a start node}\}
while frontier is not empty:
    select the cheapest path \langle n_0, ..., n_k \rangle from frontier
    remove \langle n_0, ..., n_k \rangle from frontier
   if goal(n_k):
       return \langle n_0, \ldots, n_k \rangle
    for each neighbour n of n_k:
       add \langle n_0, ..., n_k, n \rangle to frontier
end while
```

i.e., $cost(\langle n_0, ..., n_k \rangle) \leq cost(p)$ for all other paths $p \in frontier$

Question:

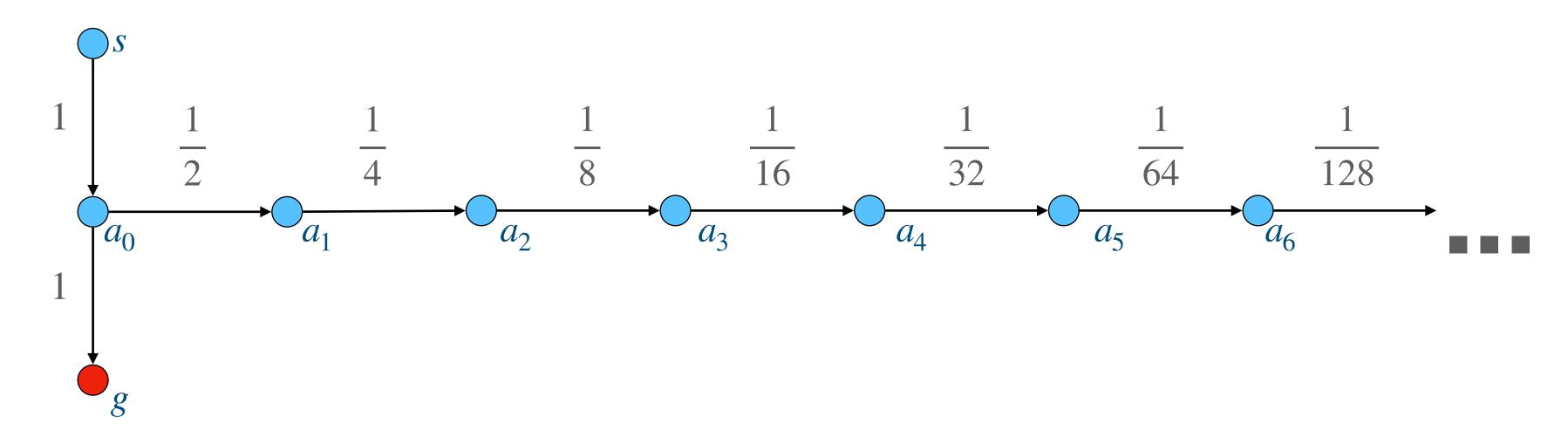
What data structure for the frontier implements this search strategy?

Least Cost First Search Analysis

- **Theorem:** Least Cost First Search is **complete** and **optimal** if there is $\epsilon > 0$ with $cost(\langle n_1, n_2 \rangle) > \epsilon$ for every arc $\langle n_1, n_2 \rangle$:
 - 1. Suppose $\langle n_0, ..., n_k \rangle$ is the optimal solution
 - 2. Suppose that p is any non-optimal solution So, $cost(p) > \langle n_0, ..., n_k \rangle$
 - 3. For every $0 \le \ell \le k$, $cost(\langle n_0, ..., n_\ell \rangle) < cost(p)$
 - 4. So p will never be removed from the frontier before $\langle n_0, ..., n_k \rangle$
- What is the worst-case **space complexity** of Least Cost First Search? [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]
- When does Least Cost First Search have to expand every node of the graph?

Why $c(n_1,n_2)>\epsilon>0$ instead of just $c(n_1,n_2)>0$?

- Consider the infinite search graph below
- Every cost is larger than 0
- But there's no single positive value that is smaller than all costs
 - Can make arc costs arbitrarily small by following the right-hand path far enough
- But then $c\left(\langle s,a_0,g\rangle\right)>c\left(\langle s,a_0,a_1,...,a_n\rangle\right)$ for all values of n
 - The solution $\langle s, a_0, g \rangle$ will never be removed from the frontier



Summary

Different search strategies have different properties and behaviour

- Depth first search is space-efficient but not always complete or time-efficient
- Breadth first search is complete and always finds the shortest path to a goal, but is not space-efficient
- Iterative deepening search can provide the benefits of both, at the expense of some time-efficiency
- All three strategies must potentially expand every node, and are not guaranteed to return an optimal solution
- Least cost first search is optimal (under some conditions), but still must potentially expand every node