Graph Search

CMPUT 261: Introduction to Artificial Intelligence

P&M §3.1-3.4

Recap: Course Essentials

Course information: https://jrwright.info/introai/

- This is the main source of information about the class
- Syllabus, slides, readings, deadlines

Lectures: Tuesdays and Thursdays, 9:30-10:50am in T BW-1

In person

eClass: https://eclass.srv.ualberta.ca/course/view.php?id=81622

- Discussion forum for public questions about assignments, lecture material, etc.
- Handing in assignments

Email: james.wright@ualberta.ca for private questions

• (health problems, inquiries about grades)

Office hours: By appointment, or after lecture

- There is no lab for this course
- TA office hours instead (announced next class)

Lecture Outline

- 1. Recap
- 2. Search Problems
- 3. Graph Search
- 4. Markov Assumption

After this lecture, you should be able to:

- Represent a search problem formally
- Represent a search problem as a search graph
- Implement a generic graph search
- Identify whether a representation satisfies the Markov assumption

Search

- It is often easier to recognize a solution than to compute it
 - Search exploits this property!
- Agent searches internal representation to find solution
 - All computation is purely internal to the agent.
 - Outcomes are known and deterministic, so no need for observations
- Formally represent as searching a directed graph for a path to a goal state
- Question: Why might this be a good idea?
 - Because it is very general. Many Al problems can be represented in this form, and the same algorithms can solve them all.

State Space

- A state describes all the relevant information about a possible configuration of the environment
- Markov assumption: How the environment got to a given configuration doesn't matter, just the current configuration.
 - It is always possible to construct such a representation (how?)
- A state is an assignment of values to one or more variables, e.g.:
 - A single variable called "state"
 - x and y coordinates, temperature, battery charge, etc.
- Actions change the environment from one state to another

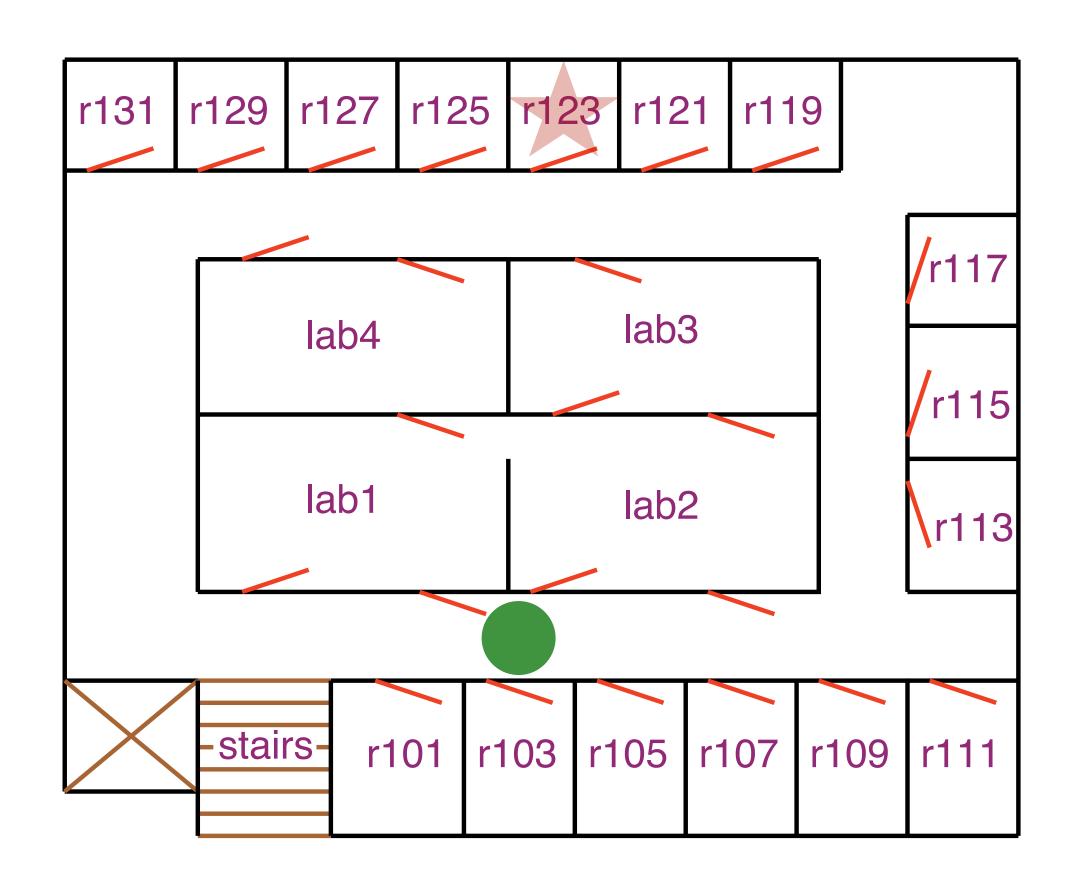
Search Problem

Definition: Search problem (textbook: state-space problem)

- A set of states
- A start state (or set of start states)
- A set of actions available at each state
- A successor function that maps from a state to a set of neighbour states
 - The textbook calls this an "action function"
- A cost for moving from each state to each successor state
- A goal function that returns true when a state satisfies the goal

Example: DeliveryBot

DeliveryBot wants to get from outside room 103 to inside room 123



DeliveryBot as a Search Problem

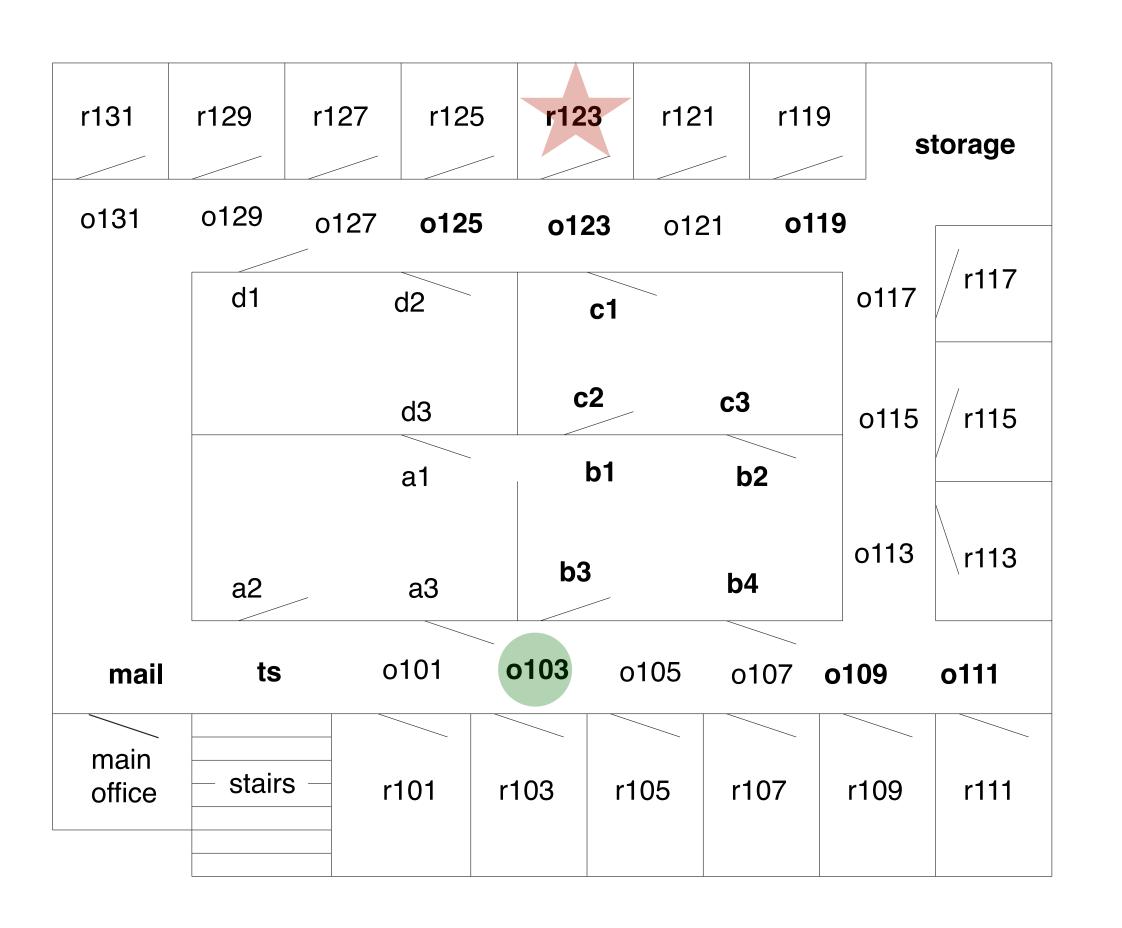
States {r131, o131, r129, o129, ...}

Actions {go-north, go-south, go-east, go-west}

Start state o103

succ(r101) = {r101, o101}, Successor function succ(o101) = {o101, lab1, r101,o105, ts}, ...

Goal function goal(state): (state == r123)



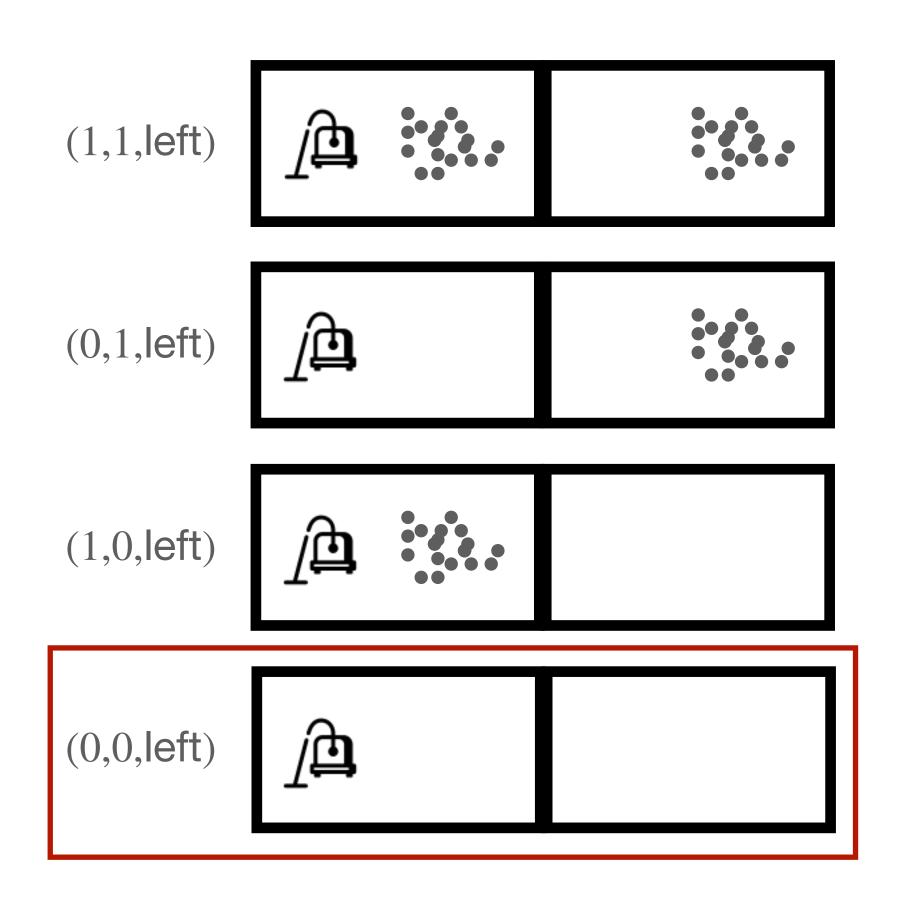
Example: VacuumBot

- Two rooms, one cleaning robot
- Each room can be clean or dirty
- Robot has two actions:
 - clean: makes the room the robot is in clean
 - move: moves to the other room

Questions:

- 1. How many **states** are there?
- 2. How many goal states?

VacuumBot as a Search Problem: States



Solving Search Problems, informally

- 1. Consider each start state
- 2. Consider every state that can be **reached** from some state that has been previously considered (and remember how to reach the state)
- 3. Stop when you encounter a goal state, output plan for reaching the state

Directed Graphs

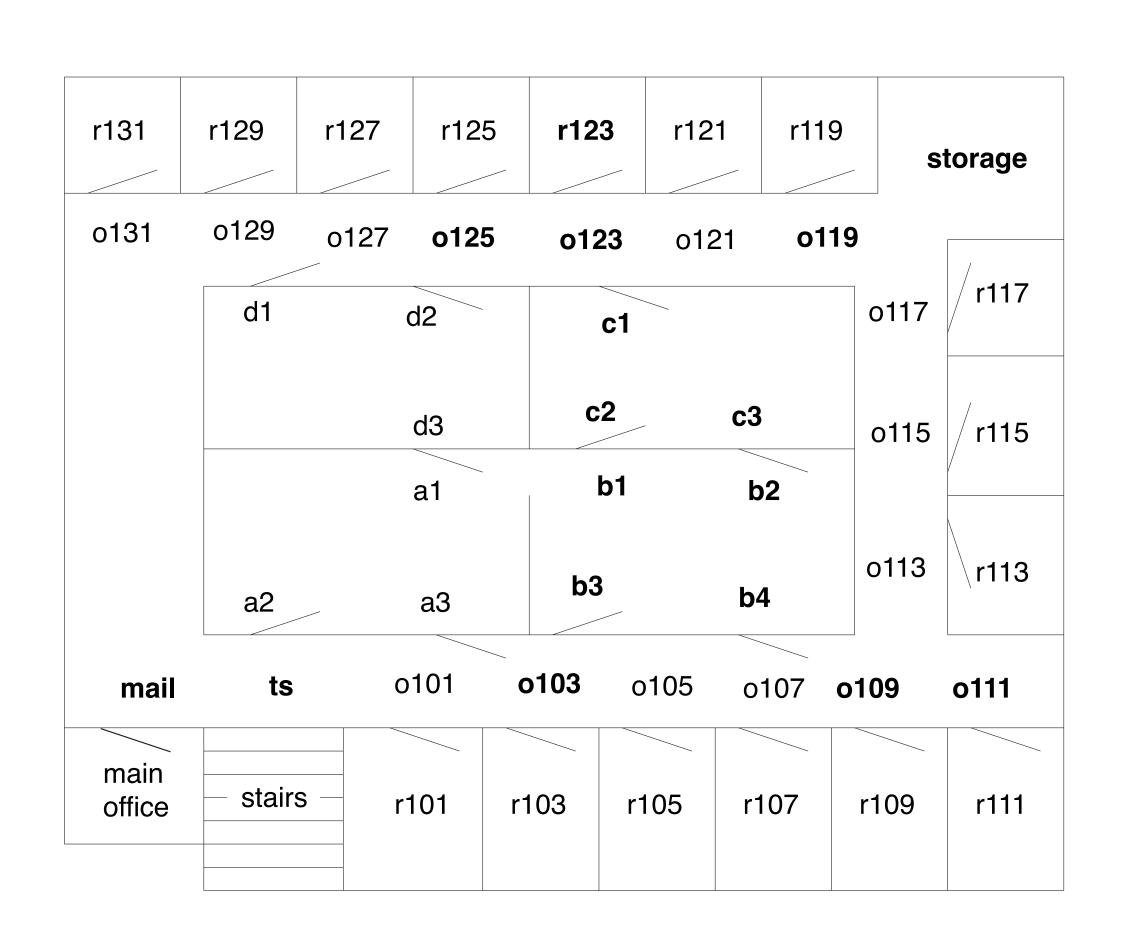
- A directed graph is a pair G = (N, A)
 - N is a set of **nodes**
 - A is a set of ordered pairs called arcs
- Node n_2 is a **neighbour** of n_1 if there is an arc from n_1 to n_2
 - i.e., $\langle n_1, n_2 \rangle \in A$
- A path is a sequence of nodes $\langle n_0, n_1, \ldots, n_k \rangle$ with $\langle n_{i-1}, n_i \rangle \in A$
 - Length of a path is number of arcs (not nodes)

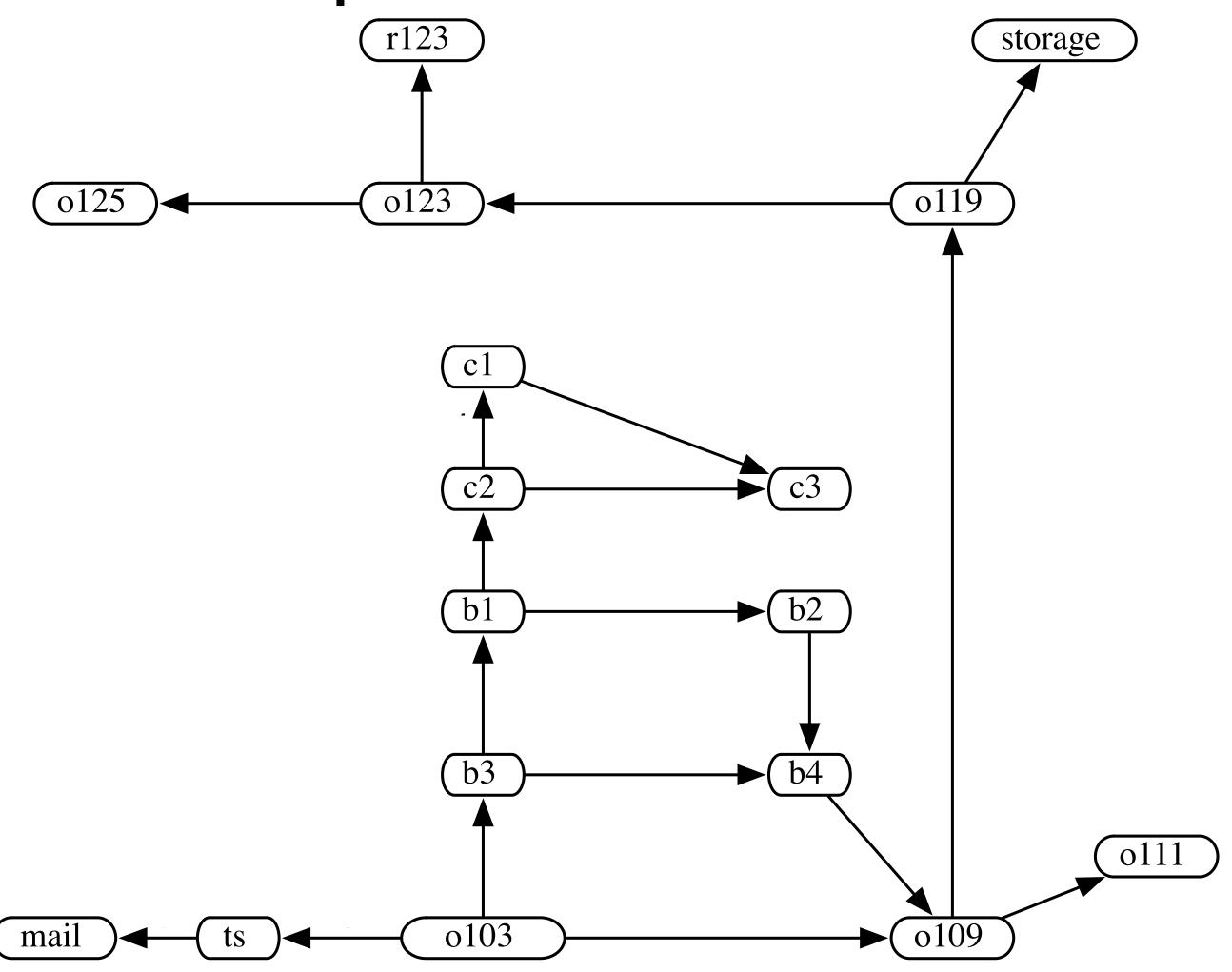
Search Graph

We can represent any search problem as a search graph:

- 1. Nodes are the **states**
- 2. Neighbours are the successors of a state
 - i.e., add one arc from state s to each of s's successors
- 3. A solution is a path $\langle n_0, n_1, ..., n_k \rangle$ from a start node to a goal node
- 4. Label each arc with the cost for transitioning to the successor state
- 5. Optional: Label each arc with the action that leads to the successor state
 - Question: Why is this optional?

DeliveryBot: Search Graph





VacuumBot: Search Graph

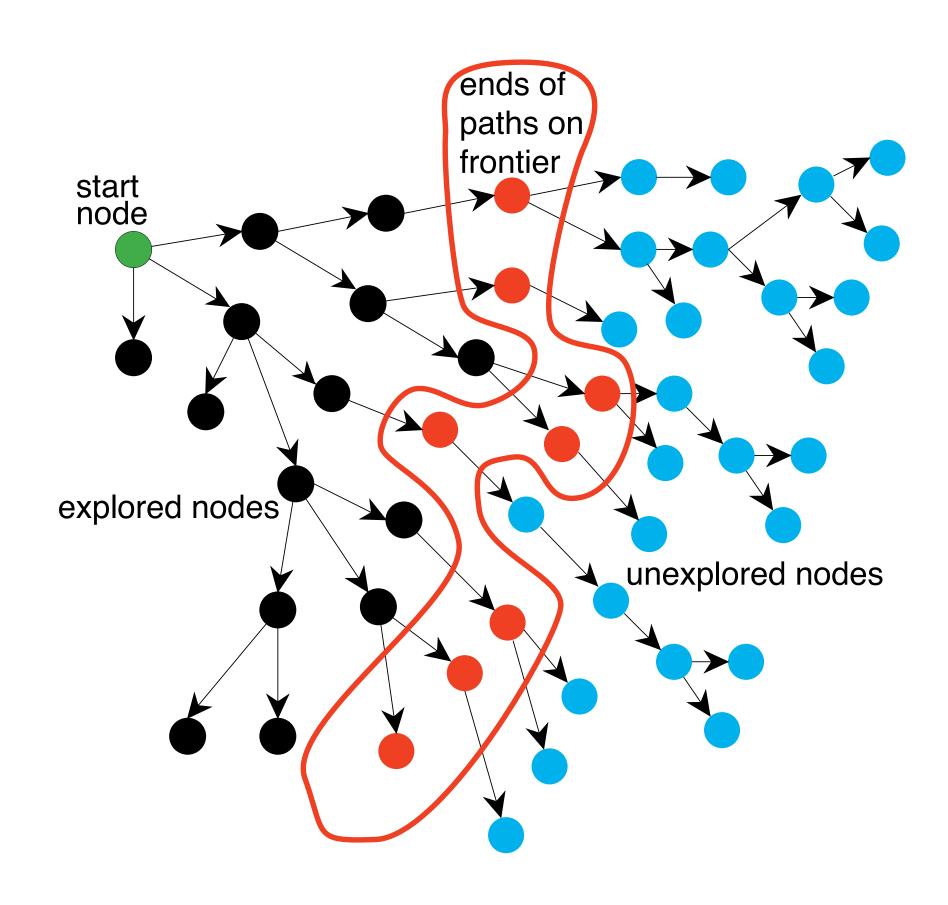


VacuumBot: Search Graph

```
V = \{(0,0,\text{left}), (0,1,\text{left}), (1,0,\text{left}), (1,1,\text{left}), (0,0,\text{right}), (0,1,\text{right}), (1,0,\text{right}), (1,1,\text{right})\}
A = \{ \langle (x, y, p), (x', y', p') \rangle \mid (x', y', p') = f(x, y, p) \lor (x', y', p') = g(x, y, p) \}
         f(x, y, p) = \begin{cases} (0, y, p) & \text{if } p = \text{left} \\ (x, 0, p) & \text{if } p = \text{right} \end{cases}
        g(x, y, p) = \begin{cases} (x, y, \text{right}) & \text{if } p = \text{left} \\ (x, y, \text{left}) & \text{if } p = \text{right} \end{cases}
goal(x, y, p) = (x = 0 \land y = 0)
cost(v_1, v_2) = 1
```

Generic Graph Search Algorithm

- Given a graph, start nodes, and goal, incrementally explore paths from the start nodes
- Maintain a frontier of paths that have been explored
- As search proceeds, the frontier **expands** into the unexplored nodes until a goal is encountered.
- The way the frontier is expanded defines the search strategy



https://artint.info/2e/html/ArtInt2e.Ch3.S4.html

Generic Graph Search Algorithm

Input: a graph; a set of start nodes; a goal function

```
frontier := \{\langle s \rangle \mid s \text{ is a start node}\}
while frontier is not empty:
    select a path \langle n_0, ..., n_k \rangle from frontier
    remove \langle n_0, ..., n_k \rangle from frontier
    if goal(n_k):
       return \langle n_0, \ldots, n_k \rangle
    for each neighbour n of n_k:
       add \langle n_0, ..., n_k, n \rangle to frontier
end while
```

Search Problem with Costs

What if solutions have differing qualities?

- Add costs to each arc: $\operatorname{cost}\left(\langle n_{i-1}, n_i \rangle\right)$
- Cost of a solution is the sum of the arc costs:

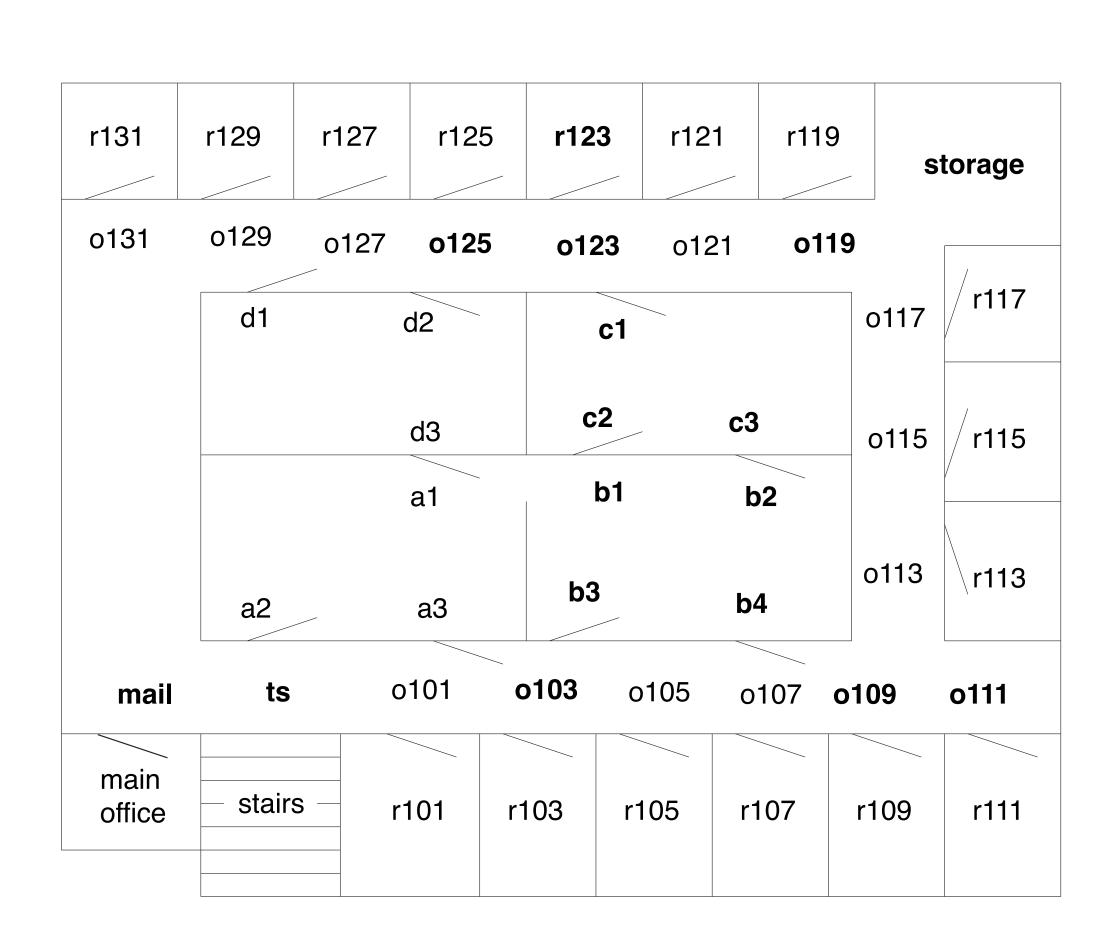
$$\operatorname{cost}\left(\langle n_0, n_1, \dots, n_k \rangle\right) = \sum_{i=1}^k \operatorname{cost}\left(\langle n_{i-1}, n_i \rangle\right)$$

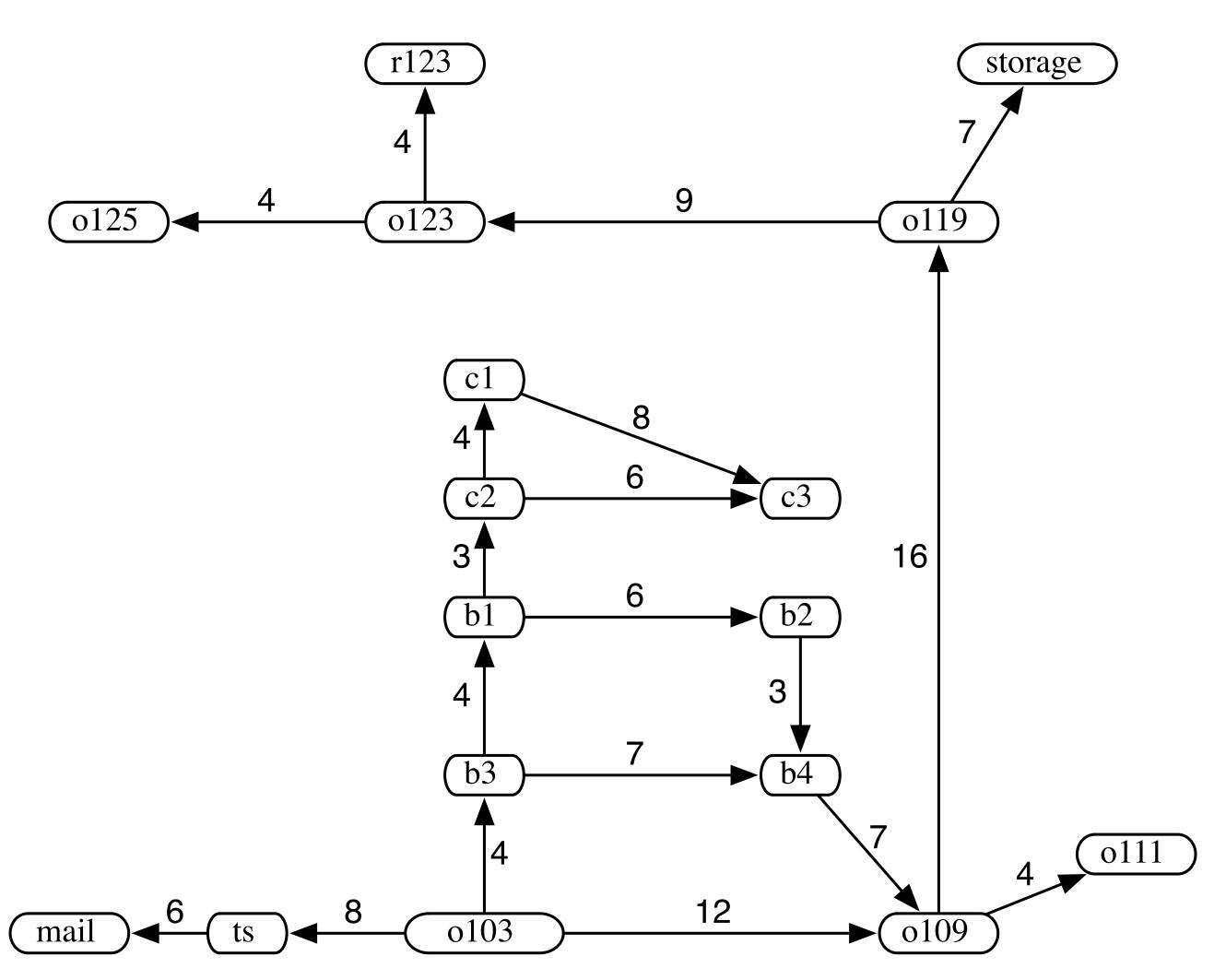
An optimal solution is one with the lowest cost

Questions:

- 1. Is this scheme sufficiently general?
- 2. What if we only care about the number of actions that the agent takes?
- 3. What if we only care about the quality of the solution we find?

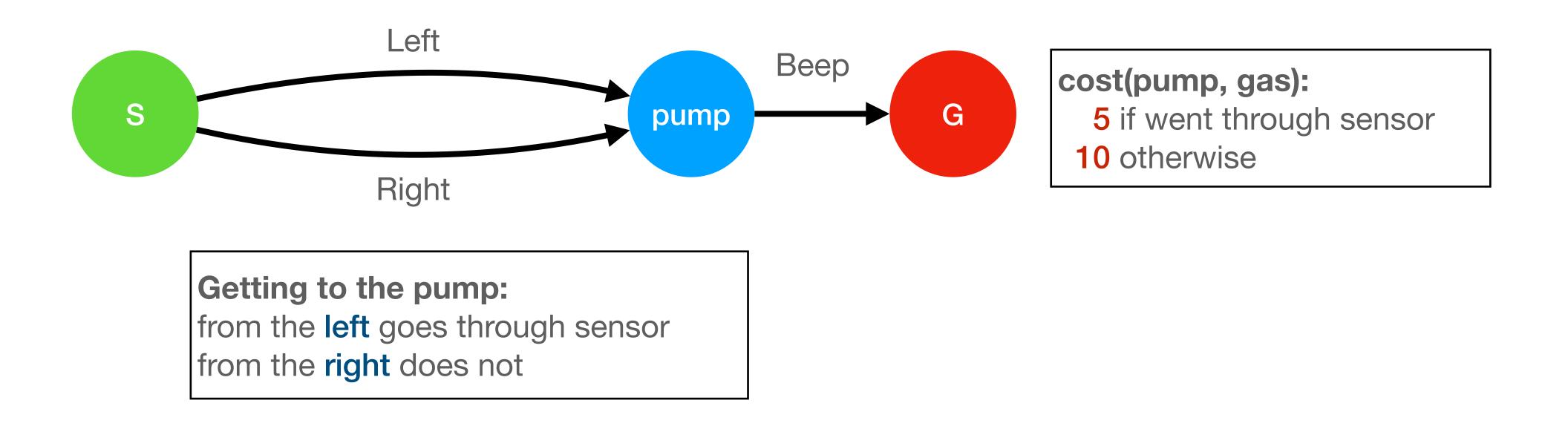
DeliveryBot with Costs





Markov Assumption: GasBot

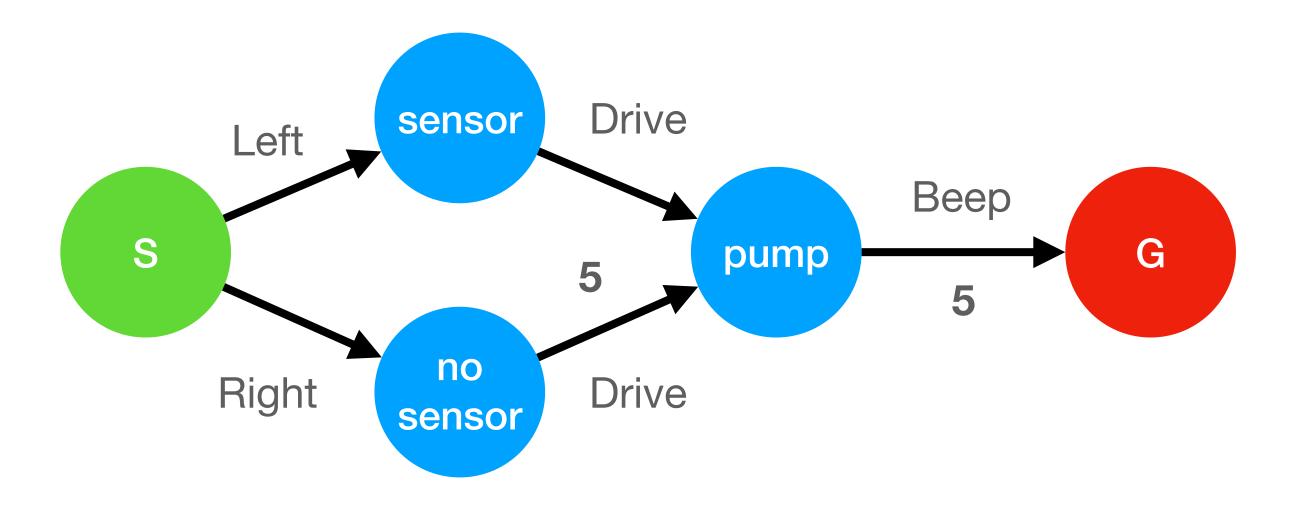
The Markov assumption is crucial to the graph search algorithm



Question: Does this environment representation satisfy the Markov assumption? Why or why not?

Markov Assumption: GasBot

The Markov assumption is crucial to the graph search algorithm



Questions

- 1. Does this environment satisfy the Markov assumption? Why or why not?
- 2. How else could we have fixed up the previous example?

Summary

- Many Al tasks can be represented as search problems
 - A single generic graph search algorithm can then solve them all!
- A search problem consists of states, actions, start states, a successor function, a goal function, optionally a cost function
- Solution quality can be represented by labelling arcs of the search graph with costs
- The Markov assumption is critical for graph search to work