No-Regret Learning

Hart & Mas-Colell (2000) Nekipolov, Syrgkanis, and Tardos (2015)

CMPUT 654: Modelling Human Strategic Behaviour

Lecture Outline

- Recap 1.
- 2. Hart & Mas-Colell (2000)
- 3. Coarse Correlated Equilibrium
- Nekipolov, Syrgkanis, and Tardos (2015) 4.

Hart & Mas-Colell (2000)

Why:

- correlated equilibrium
- 1. plausibility
- 2. Proves that it converges to correlated equilibrium

A no-regret algorithm (regret matching) that converges to

• Influential: This paper is always cited in this area

Defines regret matching algorithm and argues for its

Correlated Equilibrium

Definition:

where

- π is a joint distribution over v,
- $\sigma = (\sigma_1, \dots, \sigma_n)$ is a vector of mappings $\sigma_i : D_i \to A_i$, and
- for every agent *i* and mapping $\sigma'_i: D_i \to A_i$,

 $\pi(d)u_{i}(\sigma_{1}(d_{1}),...,\sigma_{n}(d_{n})) \geq \sum \pi(d)u_{i}(\sigma_{1}(d_{1}),...,\sigma_{i}(d_{i}),...,\sigma_{n}(d_{n}))$ $d \in D_1 \times \cdots \times D_n$ $d \in D_1 \times \cdots \times D_n$

Given an *n*-agent game G=(N,A,u), a correlated equilibrium is a tuple (v, π, σ) ,

• $v = (v_1, ..., v_n)$ is a tuple of random variables with domains $(D_1, ..., D_n)$,

Correlated Equilibrium (simplified)

Definition:

Given an *n*-agent game G=(N,A,u), a **correlated equilibrium** is a distribution $\sigma \in \Delta(A)$ such that for every $i \in N$ and actions $a'_{i},a''_{i} \in A_{i}$,

 $a \in A: a_i = a'_i$

 $\sum \sigma(a)[u_i(a_i'', a_{-i}) - u_i(a)] \le 0$

Repeated Setting

- A game G=(N,A,u) is played repeatedly over t=1,2,...
- At time t, agent i selects action a^{i_t}
- Each agent i receives utility $u_i(a_t)$

- For every pair of strategies *j*,*k*, let $W_{i,t}(j,k)$ be the utility that *i* would have received at time t by playing k instead of j
 - Unchanged from $u_i(a^t)$ if *i* didn't play *j*
- $D_{i,t}(j,k)$ is the average of $W_{i,t}(j,k) u_i(a^t)$ up until time t
- At each time step, each agent chooses between actions with **positive** D(j,k), where *j* is the **most-recent action**, and the most-recent action *j*

Regret Matching

Convergence of Regret Matching

Theorem:

If all players play according to regret matching, then the empirical distributions of play converge to the set of correlated equilibria.

Coarse Correlated Equilibrium

Definition:

Given an *n*-agent game G=(N,A,u), a coarse correlated equilibrium is a distribution $\sigma \in \Delta(A)$ such that for every $i \in N$ and action $a'_i \in A_i$,

$$\sum_{a_{-i}\in A_{-i}}\sigma(a)u_i(a'_i,a_{-i}) - \sum_{a\in A}\sigma(a)u_i(a) \le 0$$

Instead of getting to replace each action with an arbitrary action, compare to the case where we play a single action:

Convergence of Multiagent No-Regret Learning

Proposition:

If every agent plays a no-regret learning algorithm, then the empirical distribution of play will converge to a coarse correlated equilibrium.

Nekipolov, Syrgkanis, and Tardos (2015)

Why:

Application of a non-equilibrium behavioural rule to econometrics

- Define rationalizable set NR 1.
- 2. Prove properties of NR for sponsored search auctions
- 3. Apply to value estimation

Setting: Sponsored Search

- There are k slots
- Each agent submits a bid b_i
- Highest bid gets first slot, etc.
- Each agent pays bid of next-highest slot
- Payments are **per-click** rather than **per-impression** lacksquare

Problem: Estimating Types

- Each agent has a value v_i for a click
- Previously: Assume equilibrium
- Now: Assume no-regret learning

• We want to **estimate** what those values are, based on bids

Rationalizable Set

Definition: sequence of bids has regret less than ε_i if *i*'s value is v_i .

The rationalizable set NR is the set of pairs (v_i, ε_i) such that i's

Data Analysis

Claims:

- 1. Bids are highly **shaded** (only 60% of value)
- error, and others with large error

2. Almost all accounts have a few keywords with very small

Some questions:

- 1. related to I-SAW is it?
- one to use for point estimates?

Epilogue

Regret matching includes a notion of inertia. How closely

2. Why do we think that the **smallest** rationalizable error is the